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Surface plasmons confined by microstructures on tunnel junctions
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The properties of surface plasmons excited by electron tunneling near metallic structures with dimensions of a few
hundred angstroms are examined. The excitations become localized by the microstructures, and the dependence of
the dominant frequencies of these localized modes on junction geometry, material, . and mode type is discussed. A
calculation of the excited modes for thin rod microstructures is presented within an equivalent-circuit
approximation. A complete calculation is given for surface plasmons localized by particles with curvature near the
junction, including the radiation spectrum of the system. A distribution of particle microstructures is examined
within an effective-medium theory, Comparison with experiments is made.

I. INTRODUCTION

New technologies have been developed in the
past decade for fabricating surface microstruc-
tures on the micrometer and submicrometer
scale. The potential for building precision struc-
tures a few hundred angstroms in size now exists,
and this will present an opportunity to study new
physical phenomena associated with them. ' In
particular, the possibility arises of modifying
and controlling well-known surface excitations
such as surface plasmons, phonons, polaritons,
and magndns. In this paper we study surface plas-
mons confined by microstructures on tunnel junc-
tions.

Nonradiative surface plasmons can propagate
along the smooth interface between a metal and
an insulator at frequencies below the bulk-plasma
frequency and above the conduction-electron re-
laxation frequency of the metal. The phase vel-
ocity of the modes parallel to the interface is
less than that of light and, because momentum
and energy cannot be simultaneously conserved
at the boundary, these excitations are not coupled
to free-space electromagnetic waves. Random
surface irregularities, or roughness, on the metal
have long been of interest because they can cause
the surface plasmon to be scattered into other
surface-plasmon states or radiate electromagnetic
energy. Lambe and McCarthy have observed light
emission from Al-metal tunnel junctions with
slightly roughened counterelectrodes (roughness
height typically 50 k) made of Ag, Au, Pb, or
In. ' They demonstrated that the excited fields
decay rapidly in the direction normal to the coun-
terelectrode and that the coupling to the emitted
radiation increases with roughness consistent
with the behavior of surface plasmons on a sur-
face with small-amplitude roughness. ' McCarthy
and Lambe later observed similar effects using

semiconducting Sn-doped indium oxide counter-
electr odes. 4

The physics of surface plasmons on rough sur-
faces has usually been handled theoretically by
assuming a surface roughness profile function
$(x„) characterized by a random (often Gaussian)
distribution of Fourier coefficients. ' Parameters
characterizing the surface can then be written
in terms of this distribution, such as the root-
mean-square deviation of the surface from flatness
5' [i.e. , ($'(0))= 5') and the transverse correlation
length a which gives a measure of the average dis-
tance between successive peaks and valleys on
the surface [i.e. , ($(x„)$(o))=5'exp(-x, ', /a')].
With use of these parameters, the surface roughness
is then treated as a perturbation which scatters a sur-
face plasmon, and the scattered electromagnetic
fields in both the solid and the region outside it
are calculated in a Born approximation. This
perturbation approach calculates the scattered
fields as if they were produced by surface currents
additional to those on a smooth surface, and to a
first approximation the rough surface is replaced
by a smooth one with an additional layer of cur-
rents whose amplitude is proportional to the
height of the roughness. The perturbation treat-
ments are valid only when a surface-plasmon
wavelength can contain many roughness peaks
and valleys (i.e., the surface irregularities are
rather densely packed), and when effects of the
roughness structure beyond those of a smooth
surface are not important. '

Recently experiments on light-emitting tunnel
junctions utilizing roughened counterelectrodes
in the form of evaporated Au particles (particle
size typically 300 A diameter) have been reported
by Hansma and Broida' and by Adams, Wyss,
and Hansma. ' The emission spectra of these junc-
tions is found to differ qualitatively from those
of junctions with small-scale roughness used by
Lambe and McCarthy. For junction bias voltages
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~ 2 V, the emission spectrum showed a resonant
structure near I'& = 1.9 eV. In a recent calculation
by the authors and B. Muhlschlegel, ' the physics
of the large-scale roughness junctions was inter-
preted by introducing the concept of a localized
surface plasmon. Extended surface plasmons
become trapped in the manner of a waveguide
beyond the cutoff formed beneath the metal parti-
cle. Localized plasmons may also play a role
in the experiments of Jain, Wagner, and Olson"
on Mg-Ag junctions where roughness on the Ag
electrode was on the scale of 10' L in height and
the experiments of McCarthy and Lambe4 on
junctions using counterelectrodes formed by
400 A Ag particles.

When coupling to the radiation field is neglected,
the dispersion relation cv(q) of a nonradiative sur-
face plasmon propagating between a perfectly
smooth metal surface and an insulator asymptot-
ically approaches a maximum frequency ~„as
q - due to polarization effects at the interface.
For a free-electron metal above vacuum, +„
= v, /v 2, where &u~ is the bulk-plasma frequency.
We can understand the qualitative effects on the
surface plasmons produced by surface irregulari-
ties by using a special form of roughness, that
of a periodic line grating on the metal surface
with spacing d. Two extreme approximations
are useful when, analyzing this situation. First,
if the grating lines are very shallow, the u&(q)

relationship is then similar to that of a smooth
surface, and the grating is only a small pertur-
bation so that the perturba, tion theories should
be applicable. The effect of the grating is to pro-
duce narrow forbidden-frequency bands near q
= nkvd/d within an otherwise continuous variation
of & with q. Ritchie et a/."have indeed found
evidence for such allowed and forbidden bands
for surface plasmons on an Au surface perturbed
by a diffraction line grating. Such band gaps can
even appear under certain conditions on surfaces
with small amplitude random roughness. "

A second extreme approximation is possible
if the grating lines are very thick and protrude
above the surface. Then the structure resembles
an assembly of resonant cavities weakly coupled
together. The resonant frequency of each cavity
is only slightly affected by its neighbors, and
only narrow allowed frequency bands, separated
by wide forbidden gaps, appear. The frequencies
of the allowed bands are near the resonant frequen-
cies of the cavities. If the structure of the surface
irregularities themselves could support resonan-
ces, as in the metal-particle tunnel junctions,
then we would still expect these same general
features even if the array of surface irregularities
were nonperiodic. A set of discrete resonant

cavity frequencies would lie below an upper sur-
face-plasmon frequency limit. This upper fre-
quency will in fact be the same limit as that found
in the smooth surface case „because the very
large wave vector modes will not feel the structure
of the roughness. It is this second resonant cavity
approximation in which localized surface-plasmon
solutions can be found that we are concerned with
in this paper.

Localized surface plasmons are expected to be
excited in a variety of physical situations which
involve surface microstructures, and thus an un-
derstanding of their properties and how these de-
pend on microstructure geometry is desirable.
In addition to the surface-plasmon resonant cavi-
ties formed on tunnel junctions by the random
distribution of metal particles, precisely engin-
eered surface-plasmon waveguides and cavity
structures will be made available by microfabri-
cation technology in the coming decade. ' Locali-
zed surface plasmons are also expected to play
a role in light-scattering experiments from metal
foils which have large-scale roughness. " The
localized surface-plasmon concept was found to
be important in a recent theoretical study of
modes associated with voids near the surface
of radiation-damaged metals. '4 Experimental
studies of surface-enhanced Raman scattering
(SERS) in an ultrahigh vacuum" have shown that
the enhancement is favored by roughness in the
form of metal spheroids approximately 500 A

0
' in size on the surface separated by 1500-3000 A.

The enhancement takes place for molecules po-
0

sitioned out to 100 A or more from the surface.
This has suggested to many workers that. locali-
zed surface plasmons may play an important role
in SERS. Recent theoretical studies have supported
this j.dea. ~ '

In Sec. IIA, we discuss the qualitative depen-
dence of the local mode frequencies on the micro-
structure geometry for some simple surface mi-
crostructures. Section IIB examines more closely
the excitation of a localized plasmon for the par-
ticular case of thin rodlike microstructures within
an equivalent circuit approximation. Section IIIA
presents a detailed calculation of tunneling exci-
tation of plasmons confined by microstructures
which have a finite curvature near the junction
surface. In Sec. IIIB, a random surface distri-
bution of these microstructures is examined within
an effective medium theory. Section IIIC discusses
the calculated radiation spectrum of this system
and compares it to the recent metal-par'ticle
tunneling experiments"' and to the recent theory
of light emission from roughened junctions by
Laks and Mills, "'"which use perturbation tech-
niques for treating the roughness.
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FIG. 1. Prototype microstructures on a tunnel junc-
tion. Shown are (a) a smooth metal layer, (b) a spheri-
cal particle, (c) a cylindrical slab, and (d) a cylindrical
rod,

II. MICROSTRUCTURE EXCITATIONS

A. General features

For purposes of making some physical estimates
and illustrating the basic ideas concerning the
excitation of surface plasmons near surface mi-
crostructures on tunnel junctions, we consider
some prototype microstructures in Figs. 1(b),
l(c}, and 1(d). These can be viewed as modifi-
cations of the smooth surface tunnel junction of
Fig. 1(a) in which the planar counterelectrode
is replaced by either a spherical particle, a
cylindrical slab, or a cylindrical rod. We assume
that the bottom electrode is extremely thick. If
these modified junctions are biased with a dc vol-
tage V„we expect to produce excitations with
energy & eV, in the vicinity of the microstructures
by electron tunneling. We will first confine our
attention to a single microstructure and in Sec.
III B we will examine a distribution of micro-
structures over the junction surface.

Surface plasmons in these structures can be
described classically and found as solutions of
Maxwell's equations. However, we do not need
to sol've these exactly, as can be seen from an
order-of-magnitude estimate. If we consider a
plasmon field of characteristic wavelength X„
then Maxwell's equations imply that H(&u)/c(&)E(&u)
-A.,/X, where X=2vc/(u, and H((u) and E((u) are the
Fourier components of the magnetic and electric
fields, respectively. Thus for X,/A. «1 the mag-
netic fields can be neglected. The implication
is that restoring forces for, oscillating surface
charges of the plasmon field come from charges
nearly compared to radiation wavelengths and
retardation can be neglected. We will be concerned
with microstructures with the largest dimensions
on the order of (2-5)x 10' A operating at optical
frequencies.

Neglecting retardation we look for a potential
satisfying

&le(x, ~)&4)= -4&p(x, ~) (2.1)

and fulfilling boundary conditions appropriate
to the microstructure. The tunneling charge fluc-
tuations p(x, &o) drive the surface plasmons. A
form for this is obtained in Appendix A and will
be needed in later sections, but at this point we
make some estimates of the dispersion relations
for the structures in Fig. 1. For purposes of the
discussion in this section we will take the substrate
and the microstructure counterelectrode to both
be described by the same dielectric function e(ur),
and we will take the dielectric constant of the ox-
ide tunneling barrier and the space surrounding
the microstructure to be unity.

The dispersion relation for the junction of Fig.
1(a) with the smooth planar counterelectrode is
easily found by Fourier transforming the spatial
dependence of the potential along the direction
of the interfaces (i.e. , the r direction, in cylin-
drical coordinates) and looking for solutions to
I aplace's equation in the different regions of
the form P(q, z) =A exp(-iq ~ r) exp(aqz). The con-
ditions that P and ed(/dz be continuous at the
interfaces are thus easily satisfied, and we find
these conditions require the following dispersion
relation:

d0=(a+1} etanh q- +1 tanh q —+&
2 2

-(1-c)'e "'tanh q
—

i2)
(2 2)

We now allow the junction materials to be free-
electron metals, c((u)=1-(sr~/+)', where ~~ is
the bulk-plasma frequency, in order to get a feel
for some limiting cases of this expression. The
imaginary part is neglected so that the use of a
single dispersion curve to discuss the plasmon
does not become ambiguous due to the presence
of damping. '

For the case where the surface-plasmon wave-
lengths of interest are much shorter than the
counterelectrode thickness, ql» 1, Eq. (2.2) has
the approximate solution

dl
&(q)=+~ tanh q

—
~

1+tanh q
—

~
. (2.3)

2j 2j

Equation (2,2) has another solution which lies
at higher frequencies and represents a radiative
surface plasmon which can couple to real photons. "
This second solution is thus drastically altered
at small q when retardation is included, but it
does not respond' effectively at optical frequencies
in the microstructures considered and is not of
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interest here. A third solution given by E = -1
corresponds to a surface plasmon at the counter-
electrode-vacuum interface. This lies at a single
q-independent frequency +~/v 2 due to neglect
of retardation. The effect of including retardation
for the nonradiative surface plasmon, Eq. (2.3),
would only be to push the u&(q) curve down slightly
at small q to ensure that it always lies below the
light line (u=qc. In this case Eq. (2.3} is changed
to

(u(q) = u)q tanhy~ q
— I'+ tanh~ yq —,(2.4)

where

the counterelectrode is broken causing the surface-
plasmon dependence on the wave vector to be
changed. 'The physical picture of the microstruc-
ture counterelectrode operating as a wave guide
beyond the cutoff suggests itself. For the case
in Fig. 1(b) of a spherical particle, we look for
a mode confined beneath the particle. 'The size
of a cavity formed in this way will depend on both
a and d, and for our estimate we characterize
the size by the distance out from the particle
bottom to the point where it has curved up a dis-
tance d, or L= (2ad)'~'. Here we have assumed
d/a«1. The wave vectors are then set by q-L '
and, by Eq. (2.7), the frequencies are of order

(2.5) (0 = (d (d/8a)' '=(u„(d/2a)' ' (2.10)

I w= [1+ (uP, —~')/(qc)']' '. (2.6)

Then we see that &u(q)-qc as q- 0 so that the long
wavelength surface plasmon becomes less local-
ized near the interface and begins to resemble
a photon. Note that if the wavelength is much
larger than the oxide thickness, qd/2«1, yet
still much shorter than the counterelectrode, Eq.
(2.3) reduces to

(2.7)

In another limit, we examine Eq. (2.2) in the
case that the wavelengths are comparable to the
counterelectrode thickness, ql-1. If the wave-
lengths are also much larger than the oxide thick-
ness, qd/2«1, we find the approximate solution

~(q) = (u, [qd tanhqI/(1+ tanhqf)]'~'

which reduces to Eq. (2.7) when ql » 1. In the
limit ql«1, this becomes linear in q,

In this picture, a set of discrete resonant frequen-
cies appears below the limiting surface plasmon
frequency „with the lowest given approximately
by Eq. (2.10). For oxide spacing d=20 A and par-
ticle radius a= 150 A, (d/2a)'~'= 0.51. The reso-
nances will move toward higher frequencies as
particle size decreases varying as a '~4, for the
free-electron metal considered here. Indeed,
we would expect that as the surface plasmons are
required to be corifined over smaller distances,
more high-frequency modes are required to form
a wave packet of corresponding extent under the
microstructure. Modes confined beneath the parti-
cle are sensitive to the local curvature near the
surface.

For the case in Fig. 1(c}of a cylindrical slab,
a surface plasmon localized across the width 2a
of the cylinder would have wave vectors set by
q- a '. First, when the cylinder thickness is
comparable to the width, l/a-1, the frequencies
are set by Eq. (2.8} to be of order

(2.9) &u, = nui„(d/a)'~', (2.11)

The plasmon field is now able to reach across
the top electrode and induce surface charges on
the outer surface. 'The character of the modes
becomes less that of a surface wave concentrated
at one boundary, as in Eq. (2.7), and begins to
resemble an excitation spread across the junction.
As q - 0, the dispersion relation approaches qc
due to retardation effects. The effect of a finite
counterelectrode thickness is to hasten this
changeover at small q from the -q' ' dispersion
characteristic of a two-dimensional mode to the
linear dispersion characteristic of a one-dimen-
sional mode.

he form of the surface plasmons in these differ-
ent limits gives insight into the modes which are
allowed when the planar counterelectrode is modi-
fied as shown in Figs. 1(b)-1(d). For these cases,
the translational invariance along the surface of

&o, = ~„(2dl)'~'/a. (2.12)

Here the allowed wavelengths of the localized
plasmon are much larger than the slab thickness,
and the geometric mean of the oxide and slab
thickness enters the relation rather than just the
oxide thickness. With I=d= 20 A and a=150 L,
the coefficient has the value (2dl)'~'/a= 0.19. This
compares with (d/a)'~'= 0.37 from Eq. (2.11) so
that the thick-slab mode frequency ~, is almost
twice that of the thin-slab mode frequency , .
Of course the localized surface plasmons will
be able to lose energy to electronic excitations

where is a constant of order unity. These modes
are more sensitive to microstructure size, vary-
ing as a '~', than the particle modes of EQ. (2.10).

If the slab were extremely thin, l/a«1, the
frequencies are given by Eq. (2.9) to be of order
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uP(q) = —~~2qd tanq/. (2.13)

In the next section we will obtain an approximate
solution for the fields excited in the thin rod mi-
crostructure in order to get some feeling for the
characteristics of localized modes. We will see
that the relation Eq. (2.13) is approximately valid
and that the wave vector is set by q- l '. There
is an additional weak dependence of q on the radius
a of the rod provided by the propagation of the
excitation along the sides of the rod which have a
curvature of 1/a. The localized plasmons con-
fined along the length of the thin rod have frequen-
cies which vary roughly as to~(d/l)'~'.

The values of the localized surface-plasmon
resonant frequencies and their dependence on
the junction geometry are quite sensitive to the

I

in the metals and thus each of the levels will be
broadened. In addition, the estimates in Eqs.
(2.11) and (2.12) must be further corrected by
factors of order unity. For example, the slab
modes would, to lowest order, have a wave vector
set by q—- r//a where q is the lowest zero of J',(x).
The potential of the lowest mode is described
approximately by J,(qr) and is described physically
by requiring the current associated with the mode
to be approximately zero at the sides of the slab.
These types of considerations are included for
the complete calculation presented in Sec. III.

A type of mode in which the fields are extended
across the thickness l of the slab is expected to
be more easily excited in the thin cylindrical rod
(f/a» 1) of Fig. 1(d). The thin rod also has ad-
vantages with respect to the emission of radiation.
The surface-plasmon solutions, Eqs. (2.7)-(2.9),
correspond to waves which propagate along the
interfaces as exp(iq ~ r) and decay in the direction
normal to the interfaces as exp(-qz). These sol-
utions therefore cannot be used directly to make
an estimate for a plasmon solution propagating
along the length of the rod, i.e., normal to the
oxide interface. However, in an attempt to make
such a correspondence we substitute q-iq in Eq.
(2.8):

microstructure under consideration and the type
of mode being examined. A great deal of control
over the localized mode frequency spectrum is
thus available by the choice of microstructure
geometry. The metal used for the microstructure
and substrate is also important because this de-
termines the overall scale &~ of the mode fre-
quencies. If different metals for microstructure
and substrate are used, a reduced-average plasma
frequency ~ sets the scale. An oxide dielectric
constant with a value greater than unity will lower
the frequencies due to the additional polarization
it creates. The damping of the localized surface
plasmons, set by the imaginary part of the metal
dielectric functions, is also important to the
character of the frequency spectrum.

B. Thin rod microstructures

In order to obtain an approximate form for the
surface plasmons confined along the length of the
thin rod of Fig. 1(d), we describe the metal of
the rod by the dielectric function e(cu), the oxide
layer by the dielectric constant ao, and treat the
substrate metal as a perfect conductor. The as-
sumption of a perfect conductor allows us to in-
clude the substrate by way of an image rod an-
tenna. Under these conditions the problem resem-
bles a dielectric dipole antenna of length 2(l+ d)
including an excitation gap of widthCd filled with
dielectric c, at the center. Solutions of Eq. (2.1)
for the fields in this structure are easily found
if we require the current to vanish at the ends
of the rod, z =z/. As discussed in Appendix A,
the tunneling excitation of the microstructure
plasmons is well described by a localized anti-
symmetric charge distribution,

p(x, ~)=, [5(z -d) -6(z+d)je(a —r). (2.14)Q(~)

Here the center of the oxide gap is chosen to be
the z = 0 plane and Q(+) describes the frequency
spectrum of the tunneling cha, rge fluctuations. The
solution for the potential of Eq. (2.1) 'is then found

for the lowest mode, in the region x& a, to be

sgn(z) cosq(lz
2 X

q&'[t, -e (&)tanql'tanqd] sinqz
cosqd'

where I,(qr) is a modified Bessel function. Here
the conditions that t/ be continuous and that the
discontinuity in -&dt//dz equal 4v times the surface
charge density at z =+d have been imposed.

Notice that in the special case of a free-electron
metal e(~)=1-(e~/&u)'= -(&u~/v)', e,=1, and
qd«1 the potential Eq. (2.15) has resonances at

(2.15)

I

frequencies given by Eq. (2.13). We see this
approximate form as a general feature charac-
teristic of a pla, smon mode excited across a gap
of width d into a structure of thickness /. How-
ever, for the case of a finite microstructure such
as the rod, there are additional boundary condi-
tions which further restrict the allowed values
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of q. At the sides of the rod, r=a, g and e-splsx
are required to be continuous. If we impose these
matching conditions in the approximation that
we neglect effects at the end of the rod and dis-
tortions of the field at the side gap, we find the
following relation between (d and q:

(2.16)a (&u)f, (qa)K, (qa}+K,(qa)fo(qa} = 0,
where K„(x) is a modified Bessel function of the
second type. For a free-electron metal the dis-
persion relation Eq. (2.16) can be written

m = e, [2qaI, (qa)KO(qa)]~~2, (2.17)

where &u„= &u, /M2. For plasmon wavelengths much
shorter than the rod radius qa» 1, the rod curva-
ture should appear small, and indeed we note
from Eq. (2.17) that &u=&u„ in this limit. In the
opposite limit of very long wavelengths qu«1,
the modes should only be sensitive to the direction
along the length of the rod, and we find approxi-
mately

~ = tu„qa[-In(qa/2) —y]'~' = vq, (2.18)

p( ) = '~, ' ' fdvz (2.19)

where Euler's constant has the value y= 0.577.
In this regime the logarithmic term will be slowly
varying, and the square-root factor will be of
order unity. Then for long wavelengths, v is
nearly constant, and the dispersion is linear in

Cf e

The localized surface-plasmon potential is
approximately given, for the lowest mode, by
Eq. (2.15) where the allowed values of q obey Eq.
(2.16). The dipole moment induced by these fields
will be directed approximately along the length of
the rod. This can be found using the relation

(2.21)

We are interested in exciting the localized
plasmon resonances at optical frequencies, say
~ =2.0 eV. This puts a constraint on the shape
of the rod I/a. For a rod mode of a free-electron
materi'al such as Al where (d„-—11.0 eV, Eq.
(2.21) would require l/a= 10. For an Au rod
where &„[in this case defined by s(&u, ) = —eo]
lies at the upper end of the free-electron conduc-
tion region at 2.4 eV, this would require I/a= 2.
This does not represent an extremely thin rod, and
we see that very thin Au rods are more easily excited
in the infrared. The constraints are actually not
as tight as Eq. (2.18) would lead us to believe, and
we can obtain optical resonances in Au from Eqs.
(2.20) and (2.16) with I/a= 7 -3. To obtain these
solutions, we use optically measured complex
dielectric functions for Au, "take the oxide ma-.

terial to have a dielectric constant cp 3 cor-
responding to Al,O„and use the qa «1 limit of
Eq. . (2.16). In the optical regime the quantity
[- ln(qc/2) -y ]' ' remains within a few percent
of unity. The magnitude of the dipole, Eq. (2.20),
is plotted as a function of frequency in Fig. 2 for
several values of I/a. This represents, for each
value of I/s, the lowest localized mode, and we
see that it consists of a broadened resonance peak
lying below w„. The resonance frequency de-
creases as l becomes larger and the plasmon
becomes less locabzed. With d/l fixed we expect
the frequency to vary as a/l by Eq. (2.21). With
a/l fixed we expect it to vary as (d/l)'~' from Eq.
(2.13) for free-electron materials. However the
magnitude of the dipole at resonance increases
with l. In addition, the strong damping due to
interband transitions quenches the amplitude of

Performing the integral for these fields over the
rod above the conducting substrate we find

P((o) = —tanqd
Q(&o) [(1 -e) cosqd+(c -c,) cosq/]

(e, cosql -c sinq/tanqd)

(2.20)

Note that this is a complex quantity because the
dielectric function for a real material has a dis-
sipative part. Owing to our approximation that
the currents vanish at the end of the rod, the
dipole solution for the lowest plasmon mode is
expected to resonate for an allowed value of q
near v/2l. However, we see from Eq. (2.13) that
the wave vector is required to be slightly above
this value, q =(1+6)v/2l, to find real frequencies.
The actual value of 6 is determined by the cur-
vature of the rod by Eq. (2.16). For q =v/2/, Eq.
(2.18) gives approximately

l2 C/a=6

CV

O
/—8o

3

43
Cl

0
l.5 l.7 l.9

%m (eV)
2. I 2.5

I

2.5

FIG. 2. Plot of the absolute square of thy dipole for a
Au rod microstructure with length-to-radius ratio l /a.
The oxide has dielectric constant eo =3 and thickness
d =0.2a.
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the induced dipole as w increases above 2 eV. %e
see from Eq. (2.20) that for q near m/2l, P(&)
becomes proportional to Q(~)E as the oscillating
currents fill up the rod.

The approximate solution, Eqs. (2.20) and (2.16),
neglects some features. The currents are not
identically zero at the end of the dielectric rods.
The cavity waves would then be required to fit
into some effective length E + &L. The rod ends
and the gap have been ignored in deriving the
relation Eq. (2.16). The dispersion relation will
have some correction for the finite length of the
rod, and the fields in the gap will also be altered.
The details would be given by the solution to a
full boundary-value problem. The approximations
leading to Eq. (2.20) are in fact equivalent to re-
placing the rod microstructure above a tunnel
junction by the equivalent circuit shown in Fig. 3
in the limit qa «1, &0=1. A current generator
I(~) = —iarQ(ay) will cause current to flow along the
rod. A capacitance C = ma '/8' in parallel with the
impedance Z(&) of this generator requires a cur-
rent given by

sinq(E -s)
sing/+(i+/4') cosql/qd '

where 0 is the conductivity of the metal and the
currents are required to vanish at z =l. The di-
pole of this antenna is found from

(2.23)

Using the relation 4~a/iw =1 -e, we obtain a
dipole equal to Eq. (2.20) in the limit qd«1, e,
=1.

The equivalent circuit approximation describes
the general features of surface plasmons localized
by thin rods on tunnel junctions with good con-

0

ducting substr ates. Free-standing 120-A-dia-
meter Au wires have already been fabricated. "

0
Such wires with lengths of about 400 A are ex-
pected to contain optical localized plasmons when
excited by electron tunneling. If the rods are
spaced so that they do not strongly couple with
each other, the radiation spectrum from these
localized modes will be dominated by the structure
shown in Fig. 2. Note that the tunneling current
has a very local spatial coherence so that the
current driving different rods is incoherent. The
equivalent circuit solution for the rod is pre-
sented in this section to illustrate the dependence
of the excited spectrum of a microstructure on
the parameters of the problem. A more complete
microstructure solution, for the case of the
spherical particle in Fig. 1(b), including the ra-
diation spectrum is presented in the following
sections.

III. SPHERICAL PARTICLE MICROSTRUCTURES

A. Solution for a single particle

For the calculation of surface plasmons lo-
calized by a spherical particle on a tunnel junc-
tion, we use a model based on the geometry of
Fig. 4. These modes are mostly confined un-
derneath the particle near the oxide layer and
do not extend into the space surrounding the par-
ticle. Therefore it is a good approximation to
allow the material of the entire space to be de-
scribed by the dielectric constant of the oxide
layer, E '. This is only in error for the limit
d/a» 1 which is not realized in junction structures
of interest here. The estimate in Sec. IIA in-
dicates that the surface plasmons would be con-
fined by the particle to a region of order L
=(2ad)' '. For d =20 A and a =150 A, L -80 A and
we can neglect retardation for particles of this
size. This estimate was based on a modification

(4))

(p& po)

FIG. 3. Equivalent circuit for the approximate rod
microstructure solution.

FIG. 4. Geometry of a spherical metal particle above
a metal film used to calculate localized modes. Cylin-
drical coordinates (z, r) and bispherical coordinates
(cv, p) are indicated.
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of the smooth junction surface-plasmon solutions
to account for the geometry of the microstructure.
For the detailed calculations here, we do not use
eigenfunctions of the extended surface plasmons
but use different ones in which the microstruc-
ture modifications can be handled exactly.

We need to solve Eq. (2.1), where z(x, &) takes
on the value c ' in the substrate, & in the oxide,
and a ' in the particle. As discussed in Appendix
A, a localized antisymmetric charge distribution
p gives a good description of the tunneling ex-
citation by

p(x, (o)=q(u))[5(z -d) -5(z)] . (3.1)
27rr

'

Here the bottom of the oxide layer is chosen to
be the z =0 plane and as before p(~) describes
the frequency spectrum of the tunneling charge
fluctuations. Equation (2.1) can be solved in our
geometry by using bispherical coordinates" u, P, &&&&

shown in Fig. 4 in which

c sinu c sinhP
8

coshP - cosu ' coshP —cosa ' (3.2)

where c =(d'+zad)'~'. Note that c= (2ad)'~' for
d/a «1 so that these coordinates have a measure
of the characteristic localization length built into
them. A surface of constant P, say P„repre-
sents a sphere with center at a distance (a+d)
above the z =0 plane, where

d
coshP =1+ —.a' (3 3)

For d/a «1, p, = (2d/a)' '. The coordinate u is
an angular coordinate which sweeps over the P
spheres by taking on values between 0 and m. For
the case of cylindrical symmetry, the potential &I&

will be independent of the azimuthal coordinate.
Laplace's equation can be separated in these

coordinates apart from a factor E(u, p) =[2(coshp
—cosu)]'~'. The cylindrically symmetric po-
tentials in the three regions take the form

g"'(u, p) =E(u, p) g fA„exp [-(n+~)(p -p, )]+B„exp[(n+-,')(p —p, )])P„(»), 0& p& p,
n=p

(3 4)

g"'(u, p) =E(u, p) g (A„exp[(n+2)p, ]+B„exp[-(n+~)po])exp[(n+2)p]P„(»), p&0
n=O

(3.5)

g"'(u, p) =E(u, p) Q (A„+B„)exp[- (n+-,')(p —p )]P„(»,), p) p,
n=O

(3 6)

where p —= cosn. Here the coefficients have been chosen to make the potentials continuous at the boun-
daries P =0 and P =P, . A second boundary condition requires that the discontinuity in the normal com-
ponent in D is equal to 4n times the surface charge density at the interfaces. The surface charge densi-
ties corresponding to Eq. (3.1) written in bispherical coordinates are

o "'(u) = [-2Q(e)/&Tc']5(cosu +1), p =0

o "'(u) = [2&&&((g)/&&c '] [(coshpo+1)/2]'5(cosu +1), p =
po

where the 5 function can be written

(3 'f)

(3.8)

V(& +1) = g (-1)"(n+-,') P„(& ) .
n=0

We apply the second boundary condition on the z =0 plane (p =0) and obtain the relation

(3 9)

(O) (].)
A„=I"„+ «, &

B„exp[-(2n+1)p, ]c'" +&'"

with

Q(~)/c
z'„= 2( 1)" &,& &,&exp[- (n+ —,') po].

(3.10)

(3.11)

Applications of the boundary condition on the sphere (P ~P, ) produces, after using Eq. (3.10) and the re-
cursion relation of the Legendre polynomials, the equation

Un+n + ~n+n- j. +~n+n+1 n p

where

(3.12)
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B.=B./[e( )/ ], (3.13)

U„= -g [(y, "{1+y'"exp[- (2n+1)Po]] ) sinhPo+(2n+1)(l -)('")('"exp[- (2n+1)Po]] coshPo], (3.14)

V„= -gn(1 —y'"X'" exp[- (2n —1)Po]], (3.15)

W„= -g(n+1) (1 -X' "y'" exp[- (2n+ 3)Po]), (3.16)

(3.17)

S„=2(-1)"((e'"+e'")2(2n+1)[(coshPo+1)/2]'~'+(a'" —&'")f[sinhPo —(2n+1) coshPo]exp[-(n+-, ')Po]

—nexp[-(n --,')Po] —(n+1) exp[-(n+-,')po]].),
(3.18)

&;) -( &o& ((&)/( (o&+ &&&) (3.19)

x g (n+-,')B„exp[-(n+-,')Po].
n=p

(3.20)

The monopole term can also be identified and,
since this should vanish identically, leads to the
condition

2c ' g B„exp[-(n+ ~)Po] = 1 . (3.21)

Alternatively Eq. (3.21) can be derived, without
assuming the monopole vanishes, by writing
down the Po matching condition for D and inte-
grating it over the surface of the sphere. This
sum rule adjusts the coefficients so as to keep

Equation (3.12) is an inhomogeneous second-order
linear difference equation for the coefficients B„
of the nth mode of the potential &t&. Solutions to
equations of this form can be found in terms of
infinitely continued fractions by applying a Green's
function technique for difference equations. " How-
ever, a direct numerical approach has been found
to be more convenient here for evaluating the
coefficients. Equation (3.12) is also equivalent
to a tridiagonal matrix equation of infinite order.
If a cutoff is introduced to reduce the equation to
a finite matrix relation, the solutions are found
to have good convergence properties as a function
of the cutoff.

For particles with diameter a few hundred ang-
stroms, the excitation spectrum at optical fre-
quencies is dominated by the dipole moment of
the modes. An expression for the dipole can be
found from a multipole expansion of Eq. (3.4). The
bispherical surface P =0 is a sphere of infinite
radius resting on the z =0 plane. Large distances
from the origin lie on the P =0 surface at o. =0.
Equation (3.2) shows that at infinity s approaches
2c/P. Using this we expand at large distances
above the particle. After using Eq. (3.10), we can
identify the dipole term as

8~(&)( )
P((d) 'Q((o)c ~&o) ~~(&)( )

e, ((u) = -c'"/tanh(n+-, ')Po. (3.23)

For e, (o)) =1 —((o), /&d)', a free-electron material,
this condition becomes

~ =~,(tanh(n+-, ')Po/[~(o&+tanh(n+-, ')Po]] '".
(3.24)

For the lowest mode, n=0, we see the corres-
pondence of the localized mode frequency Eq.
(3.24) with P, = (2d/a)'~' and the extended surface-
plasmon frequency Eq. (2.3) with the wave vector
set by q-(2ad) '~'. To lowest order, when d/a
«1 and e =1, Eq. (3.24) reduces to our previous
estimate Eq. (2.10) within a factor of order unity.
The d/a «1 limit should best represent surface
plasmons confined beneath the particle and will
closely correspond to the perfectly conducting
particle approximation where the fields do not
penetrate the particle. In the general case, the
fields of the localized plasmon always penetrate
the particle to some extent and begin to reach
across the particle when d/a o l. Also, if the

the system neutral and is extremely useful for
checking the numerical cutoff procedure when
calculating the coefficients B„.

Numerical solutions for the dipole show that
each B„has a resonance peak centered at a cer-
tain frequency. To examine some of the features
of these resonant modes, we consider the simpler
case where the particle is perfectly conducting,

In this case the complicated boundary
condition on the surface of the sphere can be
avoided and exact solutions for the B„can be
found. ' The B„h aevresonant denominators &„(&g)

given by

&„(&d) =&'" cosh(n+-,')go+&'"((o) sinh(n+-, ')Po.

(3.22)

At optical frequencies, the complex substrate
dielectric e '

((o) =e, (&d) +i&,((o) can have a negative
real part. The dipole can then have a resonance
at frequencies determined approximately by
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particle dielectric responds within the frequency
range of interest, proper treatment of the particle
becomes crucial for the solution of the modes
even for small values of d/a. Below we will con-
sider Au particles, which can excite surface
plasmons at optical frequencies, and Al film sub-
strates which do not. The factor I/(e ' +g ") in
Eq. (3.20) represents the excitation of a surface
plasmon at the substrate-oxide interface and
will not contribute structure in the case of Al.

Surface plasmons localized by spherical par-
ticles are represented by an infinite set of dis-
crete levels lying below the planar surface-plas-
mon frequency of the particle material. The
imaginary parts of the dielectric functions cause
these levels to broaden and possibly overlap. The
positions of the levels are determined by the ratio
of oxide spacing to particle radius as measured
by Po= (2d/a)'i'. If the oxide spacing is given,
then P, is a measure of the size of the spherical
particle. However, for d/a (1, the confined
fields probe mostly the underside of the particle,
and therefore only its geometry in this region
should affect the solutions. Therefore the para-
meter P, will describe the curvature of the particle
near the substrate even if it is not spherical. The
curvature becomes flatter as P, decreases. Modes
confined by particles of arbitrary shape can be
described by the spherical particle model as long
as the fields probe only the local curvature.

We consider Au particles on an Al substrate with

Al,O, as oxide. We take e'" =3 for the oxide" and

use optically measured data for the Al and Au

dielectric functions. " The dipole coefficients 8„
were calculated from Eq. (3.12) for several par-
ticle curvatures using the numerical cutoff tech-
nique. The calculated B„are complex numbers
which tend to alternate in sign with n reflecting
the alternating charge source distributions Eqs.
(3.7) and (3.8). The magnitude of the calculated
dipole moments is shown in Fig. 5 as a function
of frequency. As shown by Eq. (3.20), the higher-
order modes are suppressed exponentially in the
dipole, but the number of modes which contributes
depends on the size of the particle. High-order
modes have a less-localized character and more
of these are necessary to describe the fields as
the confinement area spreads out. Therefore,
more terms are needed in the dipole sum as the
size of the particle increases or the local cur-
vature decreases. The localized mode equations
describe confinement very well but are less ef-
fective as the modes spread out. For P, =0.3, a
cutoff on the matrix equation for the 8„'s at n =25
and summing 15 terms satisfies the sum rule
Eq. (3.21) to about 5%. A cutoff at n = 30 and sum-
ming 20 terms satisfies it to about 190. The value

20

l6

l23

3
8

0 I I I . l

I.5 1.7 I.9 2.3
%u (eV)

FIG. 5. Plot of the magnitude of the dipole moment for
a Au particle above an Al substrate. Here e', =3 and

Po —-(2d/a) gives a measure of the curvature of the
particle near the surface.

2.I

&
= ——(coshP —cosn) &&(

sli
BP

(3.25)

of the imaginary part of the dielectric function
of the particle material &, determines the damping
of each mode and can thus also effect the magni-
tude of the 8„'s. If &, decreases sufficiently fast
with frequency, some of the higher-order modes
can in fact be stronger than the lowest few modes.

The particle resonant frequencies decrease with
increasing particle size as we argued earlier.
We note also that the size of the dipole increases
with particle size. These features were shared
qualitatively with the modes of the thin rod in
Fig. 2. The P, =0.4 plot is a sum of the 20 lowest
modes which lie in the region from S~—-1.95 eV
to the surface-plasmon limiting frequency of the
Al,O, -Au interface at K&@„-—2.4 eV. The modes
are close enough together to overlap and form
a broad peak centered near k~ =1.95 eV. For the

P, =0.3 case, the contributing modes are spread
over an extra electron volt in energy and the re-
sulting separation between the lowest few modes
and the other higher-order modes shows up as a
slight structure near k~ =2.1 eV. The modes
for the P, =0.2 case are spread out enough to
actually show a small second peak near 8 =2.2
eV. The onset of interband damping" in Au occurs
above S~= 2 eV and helps to further suppress
the localized plasmon resonances.

The a and P components of the electric field
are obtained from
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Cylindrical coordinate components E, and E„are
found by applying the chain rule with these equa-
tions. We use these to calculate the fields for the
Au particle calculation. In Fig. 6, we show the
envelope of the magnitude of the z component of
the electric field along the z and x directions under
the particle for krd =1.85 eV and P, =0.3. We see
in Fig. 6(b) that the field ha. s a 90% falloff within
a distance of (2ad)'~' from a point directly be-
neath the particle in agreement with the estimate
of Sec. II A. This estimate should be applicable
here since Pa =0.3 corresponds to rf/a —0.045.

(a)

I
I

.BOTTOM OF
PARTICLE

Q
i) 30
N~

UJ 2

B. Surface distribution of particles

The dipole moment for surface plasmons con-
fined by a single particle on a tunnel junction
was calculated in the previous section. We now
deal with a distribution of microstructures over
the junction surface in order to calculate the ra-
diation from such a system. The particles are
assumed to be spaced far enough apart so that
interactions between particles do not affect the
calculated moments. From the shot-noise picture
of tunneling discussed in Appendix A, we do not
expect any correlation between the excitation of
different particles. The particles are then ex-
pected to radiate incoherently, and we can simply
multiply the expression for the tunneling current
power spectrum given by Eq. (A5) by the number
of particles. This has the effect of changing A,
to the total junction resistance and hence V/Ra

to the total current.
The localized mode solutions neglected re-

tardation, and thus the radiated fields are not
part of our solution. These can be found by
treating the fluctuating microstructure dipole as a
radiating current source above a substrate. In
this situation a reciprocity relation is useful be-
cause it treats in a natural way the question of
properly including near-field effects due to the
existence of the substrate. Let the current of a
single dipole be J~(x~) and the field radiated to a
distant observation point be E~(x,). Suppose a
point source J,(x,) =86(x -x,) is located at the
observation point, and it radiates a field Ea(x~) to
the position of the dipole, as shown in Fig. V.

Then the reciprocity theorem states"

(3.26)

Thus the problem of calculating the field radiated
by J~ is related to the simpler problem of finding
the field at the dipole from a hypothetical point
source at the observation point. This theorem
is based on the physical fact that the transmitting
and receiving radiation patterns of an antenna
are the same. The radiated field E~ will only
have a 8 component because the source J~ from the
calculated localized modes points only in the
z direction. Thus it can only emit P-polarized
radiation. This is a consequence of confining
attention to current fluctuations normal to the
junction. Due to asymmetries in particle shape
and the local particle distribution, a small com-
ponent of s-polarized radiation may also be emit-
ted.

Since the point source radiates plane waves and
the dimensions of the microstructure are much
smaller than the observation distance, Eq. (3.26)
is approximated by

0
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FIG. 6. Plot of the envelope of the z component of the
electric field beneath the Au particle along the z and r
axes. Here Po =0.3, Ro =1.85 eV, and ~'0 =3

FIG. 7. Schematic of the geometry used to calculate
radiation from a microstructure using the reciprocity
theorem. Here J& and E& are the current and radiated
field of the microstructure, vrhile, J& and Eo are the cur-
rent and radiated field of a distant hypothetical point
source.
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E,(0)=, sin8g((d, 8) .
c

(3.28)

The factor g(~, 8) is included to account for the
scattering of the incoming plane wave by the
layer of particles and the substrate. If we could
neglect the effect of the particles on the plane
waves, it would equal [1+1'(m, 8)], where I'(&, 8)
is the familiar Fresnel reflection coefficient for
P-polarized waves on the oxide-substrate system.
In general the distribution of mierostructures

(3.27)

The field E,(0) is the z component of the p-polari-
zed plane wave emitted by the point source and

located under the particle. The form for this is
well known,

cannot be neglected in the function g(&o, 8) and is
important for the angular distribution of the ra-
diation and for the absolute magnitude of the in-
tensity spectrum.

Equation (3.27) is used to calculate the power
radiated per unit angle &0 and per unit frequency
&w by the usual methods of electromagnetism.
We find

s(8, (u)&(o&A=
3

(u sin 8 ~g((o, 8)
~

4(d&A.
I p((d) I

'
8nc

(3.29)

If the power has been time. averaged, the current
source for the dipole will be C(&o) of Eq. (A5) and

Eq. (3.29) becomes

&(e &)~&~((=l('4( ) I «) Iq )' II( '$)H("el((&'&)I (3.30)

P= d+ dAS e~ .
0

(3.31)

Then an overall efficiency & for the conversion
of dc energy into radiation is given by

e =P/IV. (3.32)

We use the dipole calculated for the Au-Al, Q,-Al
system and shown in Fig. 5 to get an order-of-
magnitude estimate. For an oxide spacing of

d = 20 A, pa= 0.3 corresponds to a confinement
length of (2ad)' '= 130 A and Po= 0.4 to (2ad)' '
= 100 A. For a bias voltage of V = 2.5 V and a
surface factor g (8) = 2, we find e = 1.5x 10 ' at
pa=0. 3 and e—- 3.5x10 ' at pa=0. 4. The coupling
improves as the particle size increases. We con-
sider the shape of the emission spectrum in rela-
tion to experimental evidence after, discussing
a model for the surface distribution of spherical
particles.

The surface distribution function g(8, +) can be

Here c =(d'+2ad)' ' is the bispherical confinement
length, 1V is the dc power dissipated in the
biased tunnel junction, A.„-=h c/eV is the wave-
length corresponding to the tunneling current
cutoff, and the tunneling power spectrum re-
stricts the frequencies to 0&@&& eV. The fine-
structure constant n appears as a scale because
we are expressing the confinement length in Units
of A.~ and the photon energy in eV. The factor
(c k~/A. „eV)' is the usual (kL)' part of the dipole
radiation formula.

The total emitted power can be calculated from
Eq. (3.30),

e((o) =co 1+ 4m'
1 —

3 Fn~)
(3.33)

Here n is the volume density of the dipoles and o.
is the polarizability of a dipole by the local field

found by calculating the g component of the g field
under the particles from an incident plane wave at
angle 8. The problem of plane-wave reflection
from a surface covered with metal particles is
quite difficult. A simple approximation to this
problem which may capture some of the general
features is to treat the distribution of particles
as a layer of material with an effective dielectric
constant. If the inhomogeneities in a dielectric
material are on a sufficiently large scale so that
in each part of space the behavior of the material
is controlled by macroscopic constitutive equa-
tions, we need only find a reasonable way to aver-
age over the statistical variations of the material.
The averaging is particularly simple if the inhomo-
geneities are not large enough and dense enough
that we must consider fluctuations of the field
throughout the material. The treatment of dielec-
tric materials under these conditions has been
closely connected with the development of the
molecular field concept. Many extensions of these
theories have been developed in recent years. "

Here we will use a version based on the Claus-.
ius-Mossotti relation with explicit account taken
of the plasmon resonant structure associated with
the particles. For a random distribution of iso-
tropic dipoles within a medium of dielectric con-
stant go, the Clausius-Mossotti relation for the
effective dielectric function of the system is
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e ((al) —e ()

e ((d) + 260
(3.34)

We consider a free-electron metal and q, = 1. An
isolated sphere thus has a plasmon resonance near
the frequency &p„=a&~/ 3. In this case Eq. (3.33}
can be rewritten as

where &v~2 =~~(1+2f)/3, e'r=e~(l —f)/3, and f
is the fraction of total volume occupied by the
spheres. This effective dielectric function is
similar in form to that of a crystal with two atoms
per unit cell and transverse and longitudinal op-
tical phonon frequencies~mr and a~. Re e(+) & 0
for &~& & & u~, that is, between the pole &~ and
the zero ~~ of e(ar). As f increases and the
spheres begin to fill up the bulk of the medium,
&or approaches zero. As f approaches zero, &or
reaches the value of the isolated sphere resonance
frequency &„. Our mean-field-type approximation
is, however, expected to be valid only for rather
small f. We schematically show the form of e(&u)

in Fig. 8.
The case of spherical particles above a sub-

strate is worked out in the same way. The needed

FIG. 8. Schematic of the real and imaginary parts of
the dielectric function of an effective medium layer of
free-electron metal spheres in vacuum.

within a spherical hole surrounding the dipole.
If the distribution is not too dense, we expect that
a dipole finds itself, on the average, surrounded
by, other dipoles in what would be a good approxi-
mation to a spherical hole.

We propose to use the polarizability of the spher-
ical particle-substrate system in Eq. (3.33) and
obtain an expression for the effective dielectric
function of the layer of particles. The'general
features of Eq. (3.33) can first be illustrated using
a simpler example, that of isolated spheres made
of dielectric material e(&o}. An isolated sphere
of radius p has polarizability given by

polarizability is actually a tensor and the incom-
ing plane wave could induce several components
of polarization in the particles. The most im-
portant component is assumed to be normal to
the substrate. We then apply a uniform electric
field normal to the junction surface and work out
the induced dipole of the spherical particle-sub-
strate system. The potentials can be written in
the form of Eqs. (3.4)-(3.6) with the addition of
extra terms to represent the electric field in the
absence of the particle. These extra terms are

(tx P)= —D 8/e & 0&P&P

ay" &(a, p) = D,z/-2'&, p& 0

&P"&(n, P) = -D,z/d", P) P,.

(3.36)

(3.37)

Here D, is the uniform displacement normal to
the substrate. We can then carry out the process
of matching the boundary conditions as in Sec.
IIIA, except here there is no external tunneling
charge. There is a condition identical to Eq. (3.10)
except with I"„=o. Using this, one finds a set of
equations similar to Eq. (3.12) from which the
coefficients B„=B„/(2cD,/e"&) of the dipole can
be obtained. The dipole is given by Eq. (3.20) ex-
cept with Q(e)c replaced by (2D~'/e&'&) Due t.o
the absence of external charge 'for this case the
sum rule is given by

g B„exp[- (n ')+P,] = 0.
n=0

(3.38)

The polarizability is found from n (a&) =p(&o)/(D, /
e"&). In the special case of a perfectly conducting
particle, the B„can be found exactly and they
are found to have the same resonance denominators.
as the coefficients for the tunneling resonance
given by Eq. (3.22).

We calculate the polarizability for Au particles,
Al substrate, q"&=3 and P, =0.3. With these para-
meters we can combine the results with the dipole
calculation from Sec. III A. The calcul. ated polari-
zability has a resonance near 8& = 1.85 eV which
is the same as found for the tunnel-excited Po= 0.3
particle in Fig. 5. In Figs. 9(a) and 9(b), we plot
the real and imaginary parts of e(up) computed
from Eq. (3.33) using the calculated polarizability.
We look for qualitative features similar to those
found in the simpler free-electron isolated sphere
case of Eq. (3.35) and Fig. 8. The value of &u~,
where Ree(&) goes through zero, is seen to in-
crease with f as expected from the isolated sphere
example. The large peak in Im e(+), correspond-
ing to +r, moves towards zero as f increases
also as expected. However, the structure in Fig.
9 is more complicated due to the use of experi-
mentally measured dielectric functions and the
more complex nature of the particle-substrate



SURFACE PLAS MONS CONFINED BY MICROSTRUCTURES ON. . . 3289

polarizability. This model of an effective dielec-
tric layer of spherical particle-substrate plasmon
resonators can now be applied to calculate features
of the radiation spectrum.
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FIG. 9. (a) Plot of the real part of the dielectric func-
tion of an effective medium layer of Au particle —Al sub-
strate resonators at several values of the particle vol-
ume fraction f. Here Po =0.3 and the surrounding med-
ium is vacuum. (b) Plot of the imaginary part of the di-
electric function corresponding to Fig. 9(a).

C. Radiation spectrum of particles

For purposes of calculating the surface distribu-
tion function g(&o, 8), we consider a system con-
sisting of an infinitely thick Al substrate, an A1,03
layer of thickness d, a layer of thickness $ de-
scribed by the effective dielectric function e(&u)

of particle-substrate resonances, and vacuum.
The z component of the electric field beneath the
effective dielectric layer from a p-polarized in-
cident plane wave of unit amplitude can be identi-
fied with g(&u, 8) in this modeL This is straight-
forward to evaluate and is given by Eq. (B1) in
Appendix B. The thickness of the effective dielec-
tric layer is taken to be equal to the diameter of

the particles. For a distribution of different sized
particles, we might use some average or weighted
thickness. With oxide thickness d = 20 A, then

P, = 0.3 corresponds to a = 250 A. According to
the spherical particle model, when d/a« 1, tI,
is a measur'e of the curvature of the bottom of
the particle, and the modes are insensitive to the
actual thickness normal to the junction. Then
for a description of an actual distribution of parti-
cles on a tunnel junction, the thickness of the
spherical particle corresponding to P, and the
effective dielectric layer thickness need not be
the same. Here to illustrate general features
we take them to be equal.

Using the effective dielectric model for the sur-
face distribution and the spherical particle model
for localized surface plasmons, we compare the
results of the calculated radiation emission, Eq.
(3.30), with experimental data reported by Hansma
and Broida' and Adams, Wyss, and Hansma. '
They observed light emission from tunnel. junctions
in which Au particles have been evaporated onto
an oxidized Al substrate. Estimates from electron
micrographs show a typical Au particle to be of
order 300 A in diameter. Agglomeration of parti-
cles into clusters was noted along with some iso-
lated particles. Particle coverage on the surface
was oi' order 10%.

The observed emission intensity as a function
of photon energy took the form of a broad spec-
trum which, for bias voltages s 2 volts, was char-
acterized by an upper linear frequency cutoff given
by ~„=eV/k. However, for larger voltages, a
strong, broad peak appears in the spectrum near
1.9 eV and was independent of the bias voltage
as the voltage was raised. The observed light
remained red at higher voltages until the junction
burned out. This feature suggests that localized
surface plasmons are playing a role, and this
interpretation was taken by Adams et al...

' based
on comparisons with, the spherical particle theory. '

The efficiencies of the experimental junctions
were measured to be within the range (0.5-5)
x10 '. Qur estimated efficiencies from Sec. IIIB
were within this range for P, =0.3-0.4. From
the calculated dipoles of localized plasmons in
Fig. 5 we see that P, = 0.3-0.4 correspond to reso-
nant peaks near 1.9 eV in agreement with the ob-
served spectrum. For an oxide spacing of d=20 A,
these P, values correspond to a particle radius
between 250 and 440 A. Recall that the spherical
particle model interprets Po as a measure of the
curvature of the bottom of the particles. This
curvature is difficult to obtain from electron mic-
rographs. The distributions of particles on the
experimental junctions were quite complex; how-
ever we estimate that a typical radius of curvature
near the oxide was of order g- 300 A.

The observed light emission was found to be
partially polarized. At 8=0 the s and p compo-
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nents of the intensity were found to be equal and
nonzero. At g = 90' both components were essen-
tially zero. For other angles the p-polarized com-
ponent dominated. In Fig. 10(a) we plot the shape
of the calculated angular dependence ~g(&y, 8)~'sin'8
of the radiation intensity, Eq. (3.30), for 5&= 2.0
eV, P, =0.3 and a 10% coverage of particles. In
the absence of the substrate ~g(co, 8)['=I and the
angular pattern would consist of a lobe peaked
at g = 90 from the g axis. The presence of the
substrate below the particle has the effect of lifting
the peak from 6) = 90' to an angle above the sub-
strate. Since our model confines attention to the
dominant g-directed current, our spectrum is
entirely p polarized. However, our intensity
vanishes at 0= 0 in contrast to the observed p
component of Adams ef al. ' shown in Fig. 10(b).
Adams et a/. note that the difference between the

p and g components produced a lobe peaked near
8 = 55 similar to the localized plasmon prediction.
A physical interpretation is that dipole oscillations
in the plane of the junction can contribute both s-
and p-polarized light while oscillations perpen-
dicular to the junction can only contribute p polar-
ization. The difference between p and g is the
excess p polarization from perpendicular current
oscillations expected in the localized plasmon
theory.

Oo

FIG. 10, (a) Plot of the shape of the calculated angular
distribution of the Au particle intensity at hen =2.0 eV.
Here Po =0.3 and e =3. (b) Plot of the experimental
angular distribution for the Au particle junction of Ref.
8. The bias viltage is 2.3 volts.

This interpretation finds further support from
the calculations of Laks and Mills. " They have
worked out a detailed theory of light emission
from slightly roughened tunnel junctions using
the perturbation methods of surface roughness.
mentioned in Sec. I. There is no large-scale
"geometrical" roughness in this theory which can
localize surface plasmons. Instead a Gaussian
distribution of random surface roughness plays
the role of coupling the surface plasmons to the
radiation field. Surface plasmons radiate most
efficiently when the wave vector is of order q- z ',
where g is the transverse correlation length of
the random roughness. Their results agree well
with the experiments of Lambe and Mccarthy"
on small-scale roughness junctions. Laks and
Mil. ls also point out that their theory should be
relevant to the junctions used by Adams et al."
Small amplitude roughness is also expected to
play a role in these junctions. Indeed, Laks and
Mills find roughly equal contributions from z and p
polarization. Their calculated angular distribu-
tions for both components are virtually identical
to the s component measured by Adams et al. '
and shown in Fig. 10(b). Therefore, Adams et al.
seem to be observing g- and p-polarized radiation
from plasmons coupled by small amplitude rough-
ness along with a p-polarized component from
plasmons localized by large-scale roughness.
The localized modes may also emit a small &-
polar ized component. '

The localized plasmons show -striking directional
properties. The position of the calculated lobe
peak at 0=. 55 is not sensitive to the particle cov-
erage for f = 0.1—0.5. The lobe becomes slightly
narrower as f increases. The calculated angular
dependence agrees well with experiment in shape
and peak position although it must-be emphasized
that the effective medium treatment of the particles
is not a complete description of this part of the
problem. The angular dependence calculated by
ignoring the particles and using the reflection
coefficient for a flat surface to calculate g(&u, 8)
results in a lobe at 0= 70 below the normal. Some
consideration of the layer of particles is evidently
needed to raise the lobe above the substrate to the
observed value.

In Fig. 11(a) we plot the shape of the calculated
frequency dependence of the radiation intensity,
Eq. (3.30), for 8=60', P, =0.3, and a 10% coverage
of particles. This shows the localized plasmon
resonance characteristic of a P, =0.3 particle
near @~=1.9 eV. As discussed in Sec. IIIB, the
effective dielectric layer has a characteristic
resonant absorption frequency ~~ which lies below
the resonant frequency of the localized modes by
an amount which depends on the particle coverage
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f. This effective medium absorption provides
additional suppression of the dipole emission at
low frequencies. The factor ) g(&a, 8) ~' is frequency
dependent but does not affect the strong resonant
structure of the localized surface plasmons. It
runs from - 0.3 at S~ = 1.5 eV to - 3.3 at I~ = 1.9
eV. Damping of the surface plasmons by interband
transitions in Au for the h~ a 2 eV provides fur-
ther suppression above the peak. "

The measured spectrum of Adams et al."for
the p —g polarization component is shown. in Fig.
11(b), along with the smaller s component. The
excess p polarization measured by the p —s compo-
nent is, again, expected to correspond to localized
plasmon emission. The observed resonant peak
is broader than the calculated one, but the calcu-
lated intensity shown in Fig. 11(a) corresponds
to particles of only one size. A weighted distribu-
tion of particle sizes would broaden the spectrum.
The observed s-polarized component shows only
a very meak peak near S~ = 1.9 eV indicating that
small-scale roughness is not dominant here. We

believe this is strong evidence that localized sur-
face plasmons are excited in these junctions. In

Fig. 12 we plot the calculated spectrum for several
bias voltages. Here we see excitation of the local-
ized plasmon as inelastic tunneling channels open

up. Note the linear cutof f due to the tunneling
power spectrum. at &=1.9 volts. The relative
spacings of the curves are comparable to those
observed by Hansma and Broida. '

Laks and Mills" find that if they choose a trans-
verse correlation length for their model random
surface roughness on the order of 50&, the sur-
face plasmons can radiate efficiently in the visible
spectrum and produce a peak in the spectrum
near k~ =1.9 eV. Thus surface plasmons coupled
to small-amplitude roughness can produce spec-
tral features similar to surface plasmons local-
ized by microstructures if the transverse correla-
tion length is comparable to the localized mode
confinement region. However, the angular dis-
tribution of the radiation calculated by Laks and
Mills is most intense along the normal to the film
and decreases smoothly to zero as the emission
angle increases. This is in distinct contrast with
the lobe structure of the angular distribution of
the p-polarized radiation, Fig. 10(a), obtained
from the model discussed in this section. In addi-
tion, the surface roughness model gives about
an equal admixture of z- and p-polarized radiation.
From electron micrographs it is clear that the
present geometries consist of both particles and
agglomerate regions so that the observed radia-
tion should contain both types of radiation.

The radiation spectrum should depend on the
density of the particles distributed over the surface
of the junction in two mays. The tunneling current
can excite more particles as more are added, and
the current will then increase as f. Secondly,
we expect the layer of particles to act more and
more like a solid metal film as particles are added
and the emitted radiation to be screened. For
particle densities low enough to leave the localized
plasmon dipole unaffected, the intensity depend-
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FIG. 11. (a) Plot of the calculated Au particle inten-
sity spectrum at g =60' and at a bias voltage of 2.7 volts.
Here PO=0.3, e'' =3, and f=0.1. (b) Plot of the mea-
sure intensity spectrum for the Au particle junction of
Ref. 8. Here 8 =60' and the bias voltage is 2.7 volts.
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FIG. 12. Plot of the calculated Au particle intensity
spectrum for several bias voltages. Here 8 =60', Pp
=0.3, ~"&=3, andf =0.1.
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ence on f will be

&(f) =f I g(f)l',
where the function g(~, 8) depends on f. Within
the effective medium model for the particle layer
we find, at the peak frequency, that the slope of

S(f ) decreases slightly for f = 0.1-0.4 indicating
that the intensity may in fact be starting to saturate
with density. However no actual saturation or
optimum density is seen for the small values of f
allowed by the effective medium theory. In addi-
tion, the structure of the localized plasmons will
begin to alter when particles approach one another
within a distance of about one radius. The details
of this phenomenon must be handled by a more
complete theory of the surface distribution. A
related phenomenon has been observed by Mc-
Carthy and Lambe, ' where light emission from
roughened junctions saturated as the roughness
was increased. Laks and Mills"" have examined
this within their perturbation theory and have
found a trend towards such a saturation.

As noted, for the present evaporated particle
tunnel junctions, the intensity contains contribu-
tions from both localized pl4smons and small-
scale roughness. It would be interesting to study
more controlled situations using, for instance,
precisely microfabricated structures in which the
different-order plasmon modes could be displayed.
At least a partial separation of modes can be
obtained using a Ag spherical particle. The cal-
culated dipole is shown in Fig. 13, and we note
the contrast to the case of Au. Here we see a
peak near A~ =1.9 eV and a second larger peak
near k~ = 2.6 eV. -The imaginary part of the di-
electric function of Ag decreases in this region
so as to make several of the higher modes more
important than the first few. In addition, the use
of alternate materials could prove interesting.
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APPENDIX A: TUNNELING CURRENT
FLUCTUATIONS

A dc bias voltage p across a tunnel junction
causes a dc current to flow across the oxide bar-
rier. It is the time dependent fluctuations about
this current, J (x, t), that drive the surface plas-
mons. Davis, " in his treatment of surface-plas-
mon excitation in tunnel junctions, has argued
that these current fluctuations are spatially ex-
tended structures in the direction parallel to the
junction interfaces. However, because of the
effect of impurity, phonon and interface scatter-
ing, it is more likely that a localized picture is
relevant for realistic tunnel junctions. The trans-
verse correlation length I. of the current fluctua-
tions will have an upper limit set by the electron
mean-free path. For the cases of interest in this
paper there will be an additional limit set by the
spatial extent of the microstructures. We argue
that the fluctuations have the character of shot
noise and that only the frequency spectrum is of
importance for tunneling into microstructures.

The time-averaged power absorbed by the sur-
face plasmons is given by the classical electro-
magnetism formula

T T t
P = — dt d'x E(R, t) J (X, t) = — dt d'x dt' d'x'K(x x', t —t')(J'(-x', t') J'(x, t))27 - ' ' 2T-

d g d g x-x dTK x-x, y d~e ., i Ii(~)l'
2' 2T (Ai)
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Here K is some appropriate kernal relating the
plasmon field to the current, and we have dropped
all dyadic notation for illustrative purposes. Our
tunneling currents must be quantum-mechanical
objects so we introduce the necessary averaging
brackets. The current correlation is assumed
to factor into a spatial part represented by

f (x -x') and a time-dependent part (1($ ')I(t)).
The Fourier transform of the time-dependent part
of the current correlation C(+) is the tunneling-
current power spectrum

1 l&(~)l'
(A2)

This is easily evaluated within the tunneling Ham-
iltonian formalism" "and is given at zero tem-
perature by

C(u)) =2(e/@)'ITI'&'(0)(«-+~). (As)

Here ~T~ is a suitable average of the tunneling
matrix element, &(e) is the density of states, and
the frequencies are restricted by 0& h+ &8&. The
dc tunneling current can be evaluated in a similar
manner with the result

f (V) = 2~e/~)'IT I'X'(0)2~V = V/Ro -(A4)

for a localized current fluctuation imply that the r
dependence of o(~, ~) will not be relevant here.
The frequency dependence will be given by Eq.
(A5).

APPENDIX B: SURFACE DISTRIBUTION
FUNCTION

(.x d
~~+, 8) = IE; exp —

~

i—n, —Los8,
c 2

cf+E, exp i —n, —cos8, sin8, ,
C

(B1)

where

E, = T„exp — i—l+—

In Sec. IIIC, the z component of the electric
field beneath the effective dielectric layer of a
p-polarized incident plane wave of unit amplitude
was identified as the surface distribution function
g(~~, 8). This can be computed in a straightforward
manner by matching fields at the interfaces of
vacuum, effective medium, oxide, and substrate.
The result is

where g, is the dc junction resistance. If the tun-
neling matrix elements for these two processes
were the same, we could then write

-1
x 1+Xii„E„exp 2i —n, E cos8, (B2)

c( )
ev (2&80 ( eV

(A5)

In fact, the matrix element will be different in
the inelastic case due to the spatial dependence
of the wave functions in the z direction. In Eq.
(A5) ft, would be replaced by a larger effective
resistance. However, Eq. (A5) as it stands gives
the dominant frequency dependence of the tunnel-
ing-current fluctuations and leads to a useful es-
timate of the radiation spectrum by Eq. (3.30).

The low-energy nonradiative branch of surface
plasmons which we deal with in this paper and
modify using microstructures is excited by the
antisymmetric part of the tunneling charge distri-
bution so that we use

p(x, ur) =v(~, ur)[6(z —d) —6(z)] (A6)

as the plasmon driving source in Eq. (2.1). Here d
is the oxide barrier thickness. Our arguments

E, = E;Q„exp — 2i —n, —cos8,
~

d

. (d CfF Rgo + Rp4 exp 4i—rs, —cos8,
2

I

(BS)

( . (dx 1+R„R04exp
~

4i —n, —cos8, , (B4)

A»=(n, cos8& —n&cos8, )(n, cos8, + n,. cos8,) ',

T,, =2n& cos8,(n, cos8, +n, cos8,) ',
cos8,. = [1—(n, /n, .)' sin'8, ]"',
n = [~"'(cu)]"'

(B5)

(B6)

(B7)

(BB)

Here region (0) is the oxide, (1) is the metal
substrate, (2) is the effective medium layer, and

{3)is the vacuum region above the junction.
Thus 8, is equal to the angle of incidence 8.
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