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The critical exponents of a class of transitions observable in adsorbed systems have been

predicted to be nonuniversal. The extent of this variation for physical systems is of obvious ex-

perimental interest. We calculate this extent in a model which exhibits such a transition and

which may be appropriate to physisorption on square substrates, a lattice gas with nearest-

neighbor exclusion and second-neighbor repulsion. We apply phenornenological scaling methods
1

to strips of finite width and find an ordered phase near density —characterized by a thermal ex-
4

ponent yT which varies with density from 0.9 to at least 1.5. For completeness, the case of a

second-neighbor attraction is also considered. The expected universality of the resultant transi-

tion is obtained and its tricritical point located.

I. INTRODUCTION

Adsorbed systems provide physical realizations of
many theoretical models and thereby permit experi-
mental verification of current ideas of critical
phenomena. ' One of the most unusual models which
can be realized in this way is the two-dimensional x-y
model with cubic anisotropy which is of particular in-
terest due to the nonuniversality of its critical ex-
ponents. ' Thus the critical exponents of an adsorbed
system which undergoes a transition in this class
depend upon the interactions within the system and
the external pressure.

Recent activities in chemisorption studies en-
courage the belief that experiments to detect this
variation in critical exponents are feasible. These ac-
tivities include the studies of 0 chemisorbed on
W(110) in which continuous transitions are observed
which are predicted' to be in the above universality
class and the low-energy-electron-diffraction studies'
of 0 chemisorbed on Ni(111) which show that mea-
surement of critical exponents in chemisorbed sys-
tems is possible.

A crucial factor in the observability of the variation
in the critical exponents is the extent of this varia-
tion. This will of course depend upon the interac-
tions and thus the particular system of interest.
Preparatory to the calculation of this magnitude in
the 0/W(110) system characterized by a centered-
rectangular (C2 mm) substrate and interactions
which extend to third or fourth neighbors, we have
considered the simpler system of particles adsorbed
on a square (P4 mm) substrate with nearest-neighbor

where the first sum is over all pairs of sites, i ~ j, n;

is the occupation number of the ith site and takes the
values 0, 1 a-nd the interaction w„" is given by

w„" ~, t;j nearest neighbors

w, ij next nearest neighbors
w(g= '

0, otherwise.

(1.2)

This model has the virtue that it may be applicable to
physisorption on square substrates such as MgO, and
that some aspects of it have been studied previous-
ly, ' ' In particular, Binder and Landau' have stud-
ied a more general version of the above model in

which the nearest-neighbor repulsion is taken to be
finite. If the ratio of the second- to first-neighbor in-
teraction be denoted R, the problems we have stud-
ied correspond to lim R 0+ or lim R 0—depend-
ing on whether w is repulsive or attractive. In the
former case one expects qualitatively the same
features as obtained in Ref. 7 for R = —.At low

coverages corresponding to negative values of p, the
system is disordered at all temperatures. For larger
chemical potentials in the range 4w & p, & 0 and suf-
ficiently low temperatures the system is ordered. At
zero temperature this order is characterized by rows

exclusion and second-neighbor repulsion. The Ham-
iltonian of the lattice gas, subject to a chemical po-
tential p, , is

0 = $ w„n; n) —p, $"n;
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or columns in which every otQer site is occupied al-

ternating with empty rows or columns. There is no
long-range order between the half-filled rows so that
the system has an entropy of order A ' ' where A is
the number of lattice sites. Although this entropy is
infinite in the thermodynamic limit, it is not exten-
sive. We shall denote this state (2 x 1). It is the
transition to this state from the disordered state
which is predicted to be nonuniversal' and which is
of greatest interest to us. For all p, & 4~ and suffi-
ciently low temperatures a simpler ordered phase ex-
ists in which second-neighbor sites are preferentially
occupied. This state is denoted (Z2 x J2). The
transition to it from the disordered state is in the
universality class of the ferromagnetic Ising model. '

For the case of attractive second-neighbor interac-
tions, the only ordered phase which exists is the
(J2 x Z2) phase which occurs for 0 & )M, & 2w at suf-
ficiently low temperatures. The transition is continu-
ous and in the ferromagnetic Ising class for small

~ p,
~

and first order for large
~ p, ~. A tricritical point

separates the two regimes. The transition to this
phase has been studied by Runnels, Salvant, and
Streiffer. They proceeded by calculating from the
largest eigenvalue of the transfer matrix the thermo-
dynamic properties of a sequence of semi-infinite
strips of width M and then inferring the behavior of
the infinite width system. At the time, there was no
theory to guide these inferences. Subsequently, such
a theory of finite-size scaling was developed. "
Nightingale" has recently employed it to extract ex-
cellent estimates of the thermodynamic functions of
the infinite system from transfer-matrix calculations
such as those of Runnels et al. It is this approach,
called phenomenological scaling, which we have em-
ployed with strips of width M «14. Accounts of
general transfer-matrix methods' and phenomeno-
logical scaling" are available in the literature as well

as a description of the particular methods we have
employed. " Therefore we simply restate the few
relevant formulas here.

From the largest and second-largest eigenvalues in
magnitude of the transfer matrix of a semi-infinite
strip of width M, AP) and A)™,the lattice-gas den-
sity n(T, ju, ) and correlation length gM(T, P, ) are ob-
tained from

(1.3)

g
—) ln( A[M)/A(M)

( (1.4)

gM(T„P, )/M =g (T„P,)/M' (1.5)

Here T and JM, are the reduced temperature and chem-
ical potential T = T/w, P,

—= p/w, and Boltzmann's
constant has been set to unity. An approximation to
the phase boundary T, (P, ) of the infinite system is
obtained from the solution of

where M and M' are different strip widths. The ap-
proximation improves with. increasing M and M'.
The thermal exponent y~ follows from

T (lf ( T p) t)( &(T, P, )

0T 8T
(1.6)

where the partial derivatives are evaluated at T, (P,).

II. RESULTS

A. Transition to the (J2 x v2) phase

The transition to the (J2 && J2) structure is first
order for sufficiently large negative chemical potential
and continuous otherwise. The first-order nature of
the transition is quite apparent from isotherms n (p, )
calculated from Eq. (1.3), at least for temperatures
sufficiently below the tricritical point which divides
the regions of first-order and continuous transitions.
It is seen from the abrupt increase in the compressi-
bility upon entering the two-phase coexistence re-
gime. The value of the chemical potential on the
phase boundary for a given temperature can be deter-
mined from the value at which the calcufated
compressibility, which is always finite for a finite sys-
tem, reaches it maximum. A series of isotherms are
shown in Fig. 1 of Ref. 8. The phase-boundary in
the region of continuous transition is obtained from
Eq. (1.5). The combined results of Ref. 8 and of our
calculation for the phase boundary are shown in Fig.
1. Note that the point w/T =0, p/T = 1.333 corre-
sponds to the hard-square model with nearest-
neighbor exclusion only. " Values for the critical ex-
ponent are obtained from Eq. (1.6). The results for
temperatures near the tricritical point obtained from
comparing strip widths M'/M of

6
and —

ta are shown

in Fig. 2. The values of y~ obtained in that region in
which the transition is actually first order are mean-
ingless, however, as the assumption of long-range
correlations which underlies the derivation of Eqs.
(1.4) and (1.5) is invalid. In the limit of infinite strip
width we expect y& to be equal to unity, the fer-
romagnetic Ising value, for all temperatures down to
the tricritical point and then to jump discontinuously
to the larger tricritical value which is strongly indicat-
ed' to be 1.8. Figure 2 shows how this behavior is
approximated. It is interesting to observe the im-
provement in the approximation with increasing strip
width, an improvement which causes the curves ob-
tained from different values M'/M to cross. We
identify the value at which these curves cross as an
approximate value of the tricritical thermal exponent
y~. The coordinates of the intersection of the —,0 and

» results (not shown) are ye =1.7 and w/T =—1.6210

which is the tricritical temperature shown in Fig. 1 in-
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FIG. 2. Results for the thermal exponent from two ap-
proximations are shown for negative I4 and for temperatures
near the tricritical point.
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FIG, 1, Phase diagram of the square lattice gas with
nearest-neighbor exclusion and second-neighbor interaction
&. Solid lines denote continuous transitions, the dashed line
a first-order transition, and the cross the tricritical point.

B. Transition to the (2 x1) phase

The transition to the (2 x I) phase is everywhere
continuous and the phase boundary obtained from
Eq. (1.5) is shown in Fig. 1. We find the asymptote
on the left, which corresponds to the logarithm of the
critical fugacity of a gas with first- and second-
neighbor exclusion to be given by g/T =4.70. The
corresponding density is n =0.240. Again we believe
these results obtained with transfer-matrix methods
and the benefit of finite-size scaling to be more accu-
rate than the eariier results of 5.3 and 0.238 ob-
tained by transfer-matrix methods alone. Parentheti-
cally we remark that the power of the phenomenolog-
ical scaling approach is demonstrated by the ease with
which the existence of a transition in this particular
system is ascertained, an existence which had previ-
ously been in some doubt. ' Further, the fact that
the second largest eigenvalue of the transfer matrix
occurs in the subblock spanned by functions which

dicated by a cross. %e believe this to be an improve-
ment over the tricritical temperature w/T = —0.4 in-
ferred in Ref. 8.

transform as the unit representation identifies the or-
dered state as (2 x I) rather than (2& 2).

The region of large chemical potentials where the
two different ordered phases are in proximity is also
of interest. We find the (2 & I) phase boundary
asymptote to be w = p/4+0. 84 while that of the
( J2 x J2) phase to be w = p, /4 —0.21. Thus the
disordered phase between them extends down to zero
temperature as anticipated in Ref. 7. This region in
the temperature-density plane is shown in Fig. 3(a).
Note that the disordered phase exists over a finite-
density range contrary to the expectation expressed"
in Ref. 7. Also of interest in Fig. 3(a) is the decrease
of the density at the (J2 && J2) phase boundary with
increasing temperature. This is a consequence of our
result that the transition to this phase at T =0 occurs
at a density n =0.3987. For T && w the critical den-
sity must approach that of the gas with nearest-
neighbor exclusion only which is'5 n =0.3678, hence
the negative slope.

The thermal exponent yr obtained from Eq. (1.6)
is shown in Fig. 4 versus p/w. For the (W2 && J2)
transition, p/w )4, results for increasing strip width
approach unity. In particular„as p, /w 4+, yr ob-
tained from strip widths —„equals unity to within

0.1%. Further, the variation of the approximate yT
with p, /w is small. In the case of nearest-neighbor
exclusion only, the same approach also yields unity to
excellent accuracy. " Thus the expected universality
is obtained.

Results for the exponent of the transition to the
(2 x I) phase are completely different. Convergence
of the successive approximations is rapid for small
values of p/w but becomes slower as this ratio ap-
proaches 4 —.The asymptotic values of yT are
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FIG. 4. Sequence of approximations for the thermal ex-
ponent of the nonuniversal transition vs reduced chemical

12
potential ~ Four values obtained by comparing widths —are

14
sho~n by triangles. Only a single approximation for the
universal transition is shown for clarity.

FIG. 3. (a) Phase diagram in the temperature-density
plane. Note the break in the density scale. (b) Values of
the thermal exponent obtained from comparison of strips of

10
width —

2
vs density. In contrast to the nonuniversal values

obtained for the (2 && 1) phase, note the universal value ob-
tained at the right for the (J2 && 821 phase.

nonuniversal as predicted. ' For the case of first- and
second-neighbor exclusion, p/w 0+, yr 0.92S
which produces a cusp in the compressibility in agree-
ment with the results of Ref. 9. The thermal ex-
ponent of the infinite system increases initially with

p/w but, as is clear from Fig. 4, its value becomes in-

creasingly difficult to extract from our approximate
calculations. It is possible that yT increases monoton-
ically with p, /w and approaches the value 2 indicative
of a first-order transition as p/w approaches 4 corre-
sponding to the zero-temperature transition of
n =0.262 of Fig. 3(a). That no first-order transition
occurs at finite temperature, however, has been as-

certained by examining the isotherms. The results
for yT obtained from strip widths —, are shown

versus density in Fig. 3(b). Even if yr does not ex-
tend to 2 as surmised above but has only the varia-
tion shown in Fig. 3(b), it is clear that the corre-
sponding variation in v =yT, from 1.09 to 0.66, and
in,a =2(1 —v), from —0.17 to 0.68, should be
measurable in scattering or specific-heat experiments,
respectively. We are thus encouraged to carry out a
similar study on a system under current experimental
study, such as 0/W(110).
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