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It is shown that in the classical Heisenberg linear chain-with arbitrary nearest-neighbor in-
teractions and nonzero but otherwise arbitrary next-nearest-neighbor interactions there are no
metastable states. Since these models include examples with random and strongly competing
exchange interactions (i.e., model spin-glasses), this result tends to run counter to the rather
widely held notion that such competition aided by randomness causes the existence of a large
number of low-energy local minima. In addition, some explicit metastable states are exhibited
for a nonrandom planar spin model, and remarks on previous work are given which show that
the question of the existence of a large number of low-lying local minima in two- and three-
dimensional vector-spin model spin-glasses remains unanswered.

I. INTRODUCTION

The question of the number of local minima in
classical vector models of spin-glasses was considered
by Edwards and Anderson.! Interest in this question
and the closely related one concerning metastable
states (local minima lying above the ground-state en-
ergy) continues.?”® It is widely believed® that random
competing exchange interactions (frustration effects),
thought to be essential to spin-glass behavior, cause
the existence of a large number of such states of low
energy. In addition to the possible implications for
equilibrium thermodynamic properties, %8 there is
also the possibility* that such states might give rise to
the unusual dynamic properties observed® in some
spin-glasses. .

In this paper, a rigorous calculation of the number
of metastable states is given for a class of one-
dimensional classical Heisenberg models which in-
cludes examples with random exchange interactions
having arbitrarily large competition or frustration.
The number found is zero, showing that large com-
petition plus randomness does not automatically im-
ply the existence of a large number of metastable
states. As far as I am aware, this is the first calcula-
tion of the number of metastable states in any spin
model involving many interacting spins, let alone
models with the complexity (random, competing in-
teractions) of those considered here.'® Although
one-dimensional models are, of course, special, and
the results often do not generalize to two and three
dimensions, exact solutions to problems always of
course have at least the utility that they serve as
check points for methods designed for more general
applicability. In addition, a thermodynamically small
number of metastable states is exhibited for a system
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with lattice translational symmetry. This is of some
interest because rigorously demonstrated metastable
states are rare and because it shows that they are not
limited to random systems. Finally, earlier state-
ments" ¥ claiming a large number of low-lying mini-
ma or important ground-state degeneracy in certain
vector-spin models of various dimensionalities (in-
cluding one), with randomness and/or frustration, are
shown to be either erroneous or without foundation.
Thus these papers leave unanswered the question of
the existence of large numbers of low-lying local
minima in two- and three-dimensional vector-spin
model spin-glasses.

II. COUNTING OF METASTABLE STATES
FOR HEISENBERG CHAINS

Central to the calculations for the spin-glass is a
theorem stated without exhibiting the proof by Lyons
and Kaplan'' (LK). Because of its importance here |
restate the theorem and present the proof. This LK
theorem is, in words differing slightly from the origi-
nal: Within the classical Heisenberg model, any lo-
cally stable coplanar state must be a ground state.
The precise definitions of the terms used are as fol-
lows. The energy in the classical Heisenberg model is

E=-3U,S,-S,=E{S,} , (1)
ij

where the spins §,- are real three-dimensional unit
vectors,

Si=3s2=1, 2
with m =3, and J,; =J;, J,=0, J; are real. A locally
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stable state {S'} (i.e., a local minimum), is defined
as one that has the property

E{S})-E(S')=0 (3)

for sufficiently small, but otherwise arbitrary S ,0

for all j.'? A coplanar state is one that has the prop-
erty y - SO—O for all /, with ¥ being a smgle real
nonzero three vector (in other words the S, are all
parallel to one plane, the normal to whichis ). A
ground state is one for which E { §?} is the absolute
or “‘global’” minimum of E [i.e., Eq. (3) holds for all
sets { S, ) satisfying Eq. (2)]. We note that Eq. (3)
implies that a local minimum must be a stationary
state, i.e.,

_OE

- 4)
5| =0 (

0

subject to Eq. (2).
The proof is as follows. Put

$,=S5'+%, . (5)

Since S, and S, both satisfy Eq. (2) we have
25 € +€l=0, (6)

which gives
E(S;) —22 2 2 €€, @)

where Eo=E (S} It is easy to see that the neces-
sary and sufficient condition for stationarity of { S; },
i.e., for Eq. (4), is

EJ,, ;= . (8)

all i, where A are scalars [Egs. (8) and (2) imply

=5/ DI S, which is + or — the magnitude of
the ‘mean or molecular field”’ 21 i §,/9E X, at spin
il. Equation (7) with Egs. (6) and (8) gives

A=E(S,) Eo—z €€, 9
exactly, where
W,=n\8,—J; . 10)

Introduce a Cartesian coordinate system for each i
with orthonormal vectors X;,y,,Z;, choosing

3=5" (11)
and write
€, =X€yt+Y€, +ie, . (12)

For small |S,— S/|, Eq. (6) gives

€; ———(e,x+e,%,)+O((e,x+e,§)2) , (13)

SO

A= W, Kenen +5, Peye,
+2% - Jiene,) +0 () (14)

where O (€*) means third order in the small quanti-
ties €, and €,. Suppose now the S; are coplanar;
choose X; to lie in, i.e., parallel to, this plane. Then

Y=y, independent of i, so that Eq. (14) becomes,

for the coplanar case,
A=3 W;(% Xe e, +eye,) +0() . (15)
i

It follows that if the coplanar state { §,O} is locally
stable, W must be a positive semidefinite matrix
[choose in Eq. (15) €, =0 for all /. But this with
Eq. (9) shows that A =0 for all allowed €,, and
therefore £ { S} is the absolute minimum of E(S,).
That is, this LK theorem is proved.

Consider now an open linear chain with first- and
second-neighbor interactions J; only, containing N
spins:

N-—-1 o N-2 .
E==-2 z*li(l)si'Sl+l_22‘li(2)si'si+2 . (16)

i=1 i=1

This, with the J,” chosen according to some
probability distribution, defines the class of one-
dimensional spin-glasses (and nonglasses) that will be
studied here.!3 Since both positive and negative
values of J;'") and J,2) are allowed, the model is seen
to contain important competition between different ex-
change interactions.!""'* For example if /" and

J{) have the same sign and J,¥ < 0, the spins

S, S,H, S.., cannot be chosen to minimize each
““bond”’ individually, that is, each of the three terms
_Jl(1)§I : § i+l T i(+ll) §i+| * §i+2’ —Ji(Z)_S-‘i : §1+2' It
is this competition that is thought to be an essential
ingredient in giving so-called spin-glass behavior, the
other essential ingredient being randomness.> %68 15
Recently a new word, ‘‘frustration,”” has been intro-
duced?® (attributed'® to Anderson) and claimed to
represent a new concept.® ! In fact the concept
described'> '® was not new, being identical to the idea
of competition studied extensively'"'*'7 in 1959 and
the early 60’s—see in particular the detailed descrip-
tion of the concept in the introduction of the Lyons-
Kaplan paper cited in Ref. 14.

It will now be shown that in every stationary state
for our linear chain the spins must be coplanar for all
distributions with zero probability of a zero value of
the second-neighbor interaction J‘2). Let spins S,
and S, in a particular stationary state define a plane
P (if they are collinear the plane will not be unique).
The mean field acting on S; is X\;=J{" S, +J{? §,
and therefore Eq. (8) with i =1 demands S; must be
in P (for J{¥ #0). Similarly X,=J{" §,
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+J4V §34752 S, so that Eq. (8) forces S, to be in
P (for J§¥ #0). Now X; involves the four spins

5., S, S4, S, three of which are coplanar; since X3
is parallel to S3, also in P, it follows (for J{?) = 0)
that Ss is in P. This process obviously continues (for
J2 20 all n), since for i =3 the general case where
X, is a linear combination of at most four spins
holds. (In the case where S, and S, are collinear the
above considerations show that the spins must all be
collinear.)

Combining this result with the LK theorem gives
the result, an open-ended one-dimensional Heisen-
berg model with only nearest neighbor J;'!’, and
second-nearest-neighbor interactions J;'> such that
none of the J? are zero (but J'' and J?) are other-
wise arbitrary) has no metastable states.

It is interesting to note that if there are (in addi-
tion) third neighbor interactions, or periodic boun-
dary conditions, the above proof that all stationary
states are coplanar fails.

One can easily prove the following similar theorem
by a very slightly different argument for coplanarity.
A one-dimensional Heisenberg (open or closed)
chain with nearest-neighbor interactions only, none
of which are zero, has no metastable states. The
open ended case here has no competing interactions,
of course.

1II. EXPLICIT METASTABLE STATES
FOR A PLANAR MODEL

Having exhibited a class of models in which there
are no metastable states, I now present some explicit
metastable states for a particular model. Consider
the (classical) planar-spin model (the spins are co-
planar by definition), with energy (1) which can be
written

E=—3Jcos(d,—¢,) , an

where the ¢;, whose range is 0 to 2, are the an-
gles made by the spins relative to an axis fixed in the
spin plane. Further put the spin-sites i =1, ... , N
on a regular linear chain with periodic boundary con-
ditions and take the J; =J > 0 for nearest neighbors,
zero otherwise (the ground state is ferromagnetic).
Clearly any simple spiral, i.e., any state with the an-
gles ¢? = OR,, is stationary (the periodic boundary
conditions require Q =2mn/N, where nis an in-
teger). Local stability requires the matrix

O —2J,,cos(pl—2), p#s
30,00, 0= 23 Jycos(p)—90), p=s (18)

to be positive semidefinite. But the eigenvalues of

Eq. (18) are easily found to be
A =2J (1 —cosk ) cosQ (19)

where k =27m /M, m =0, 1, . . .. Thus any spiral
with |Q| < 7/2 is locally stable. Since the energy of
such a spiral is £(Q) =—2NJ cosQ, it follows that
spirals with 0 < Q < %w are metastable. Although

these metastable states clearly owe their existence to
the boundary conditions, and are therefore not of in-
terest in connection with bulk properties, they
nevertheless are of some interest. Aside from their
mere existence (interesting because rigorously
demonstrated metastable states in infinite systems are
very rare), they probably are relevant to calculations
for finite systems.2 518

1IV. COMMENTS ON PREVIOUS WORK

The number of locally stable states in the planar
spin model was calculated by Edwards and Ander-
son'; they found a very large number (=2") for ran-
dom J;;, independent of lattice structure and dimen-
sionality. However there is a series of errors, which I
now note, which invalidates their argument. The
first error is the statement including their Eq. (3.2),
namely, that a stationary state {¢%} will be a
minimum if' (in the notation of the present paper)
3, Jicos(¢?—¢?) >0. The latter is simply the re-
quirement that A2, Eq. (8) above, be positive; i.e.,
each spin points in the same direction as the mean
field X, at its site. A counterexample is ¢° =0 for
all /i on a linear chain with strong ferromagnetic 2nd
neighbor J; and weak antiferromagnetic nearest
neighbor J; (an infinitesimal uniform rotation of ail
even-numbered spins will lower the energy, and yet
A'=3,J,>0). In fact A" > 0 is a necessary but not
always sufficient condition for local stability, 2\? be-
ing a diagonal element of Eq. (18) (A2 > 0 is the
condition for stability under deviation, small or large,
of one spin at a time).2® The next error is the state-
ment, below their Eq. (3.14), to the effect that for
any stationary solution {¢?}, there are 2" solutions
based on combinations of choices like ¢ and 7 — ¢°.
This statement is easily seen to be incorrect for a col-
linear spin state with ¢ = ¢° independent of i and
nonzero. Probably ¢?— 7 + ¢ was intended since in
this case their statement is correct for collinear spin
states; however, then the statement is easily seen to
be incorrect by considering a spiral with general Q.
The last error to be discussed here is the statement
(page 1934 of Ref. 1) that there are 4" stationary
states, contradicting the result N, = 2" obtained just
previously! by the authors. It seems that they have
assumed that their earlier ‘‘result’’ [that there are 2V
solutions for each solution of Eq. (3.3)] says to mul-
tiply N, by 2" to obtain the number of stationary
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states— however this is not so since their counting
formula, (3.15), includes all solutions.

A related question concerns a statement made by
José.! Namely, the spins in a frustrated plaquette do
not have a unique way of lowering their energy by
changing their orientations. A plaquette is a square
with a spin at each corner; a frustrated plaquette is
one in which the product of the four (nearest-
neighbor) exchange interactions J is negative. The
model considered® is either the classical Heisenberg
or the planar model. It is clear from the context that
the nonuniqueness intended is only nonuniqueness
beyond that implied by (the trivial) uniform spin rota-
tions, which occurs even in nonfrustrated systems.

In fact the claim of nonuniqueness is incorrect as
seen by an example, the Heisenberg model with three
of the /’s=1, the fourth one =—1. Let the spins be
labeled S}, S, S3, S, going successively clockwise
around the square. That the spins are coplanar in the
ground state follows from the discussion above. Let
S, and S, share the antiferromagnetic bond and ¢ be
the angle between them. If 9, is the angle made by
S, with S, +5, , 50 8, =3¢ =—6,, the minimum en-
ergy occurs when?! 6,=—60;= %¢> and ¢ = %317. The
uniqueness follows from the fact the (only) other
solution, ¢=—%31r, is merely a uniform rotation of

the spins from the first. (For the planar model, this
does yield a true twofold degeneracy beyond uni-
form rotations, as described by the two-valued
“‘chirality”> 72!; nevertheless, even in this case the
ground-state degeneracy for a macroscopic square net
is probably insignificant— Villain® argues that there is
merely a twofold degeneracy.)

A similar statement is the one by Marland and
Betts’ to the effect that the ground state is highly de-
generate in classical spin systems (which includes ac-
cording to them the § =% Ising model and the planar

model) with competing interactions. A particular ex-
ample with competing interactions discussed’ is the
triangular lattice (in either the planar or Heisenberg
models) with nearest-neighbor antiferromagnetic in-.
teractions. However, it is known!! that the ground
state for the classical planar and Heisenberg models
in this case is a spiral (the turn angle between
nearest-neighbor spins is 120°). Furthermore, one
can show that this state is essentially nondegenerate
(no thermodynamically significant degeneracy beyond
that due to uniform rotations) by means of an argu-
ment along the lines of the one used by Villain® to
prove the nondegeneracy for his ‘‘odd-rule’’ square

net. Thus, the statement’ that the classical ground
state is highly degenerate is incorrect. It follows that
the general import of that paper,’ that it is quantum
effects which are responsible for the lack of degen-
eracy in the ground state, is without foundation.??

V. SUMMARY

In summary, I have demonstrated errors in state-
ments in the literature which claim for spin-glasses a
large number of low-lying local minima or a large
ground-state degeneracy. I have presented the first
calculation of the number of metastable states in
any spin model; the models considered are one-
dimensional, and include a class of spin-glasses
(Heisenberg models with random competing interac-
tions). The number of metastable states was found
to be zero in all those models. I also exhibited some
metastable states for a model with translational sym-
metry. It should not be concluded from this that, in
general, vector spin-glasses possess no metastable
states—numerical work? !® has already indicated the
existence of some. A proper conclusion is that ran-
dom competing exchange interactions alone are not suffi-
cient to cause the existence of metastable states. In any
case I would remark that obviously the important re-
lated question is not whether a spin-glass model has
low-lying local minima, but rather, if it does, how
does the number and nature of these states compare
with similar states that might exist in crystalline spin
models (which presumably show ‘‘ordinary’’ phase
transitions, differing profoundly from observed spin-
glass behavior) for which the question of the ex-
istence of local minima is unanswered, to my
knowledge.

An interesting question remaining with the one-
dimensional spin-glass model studied above is the
ground-state degeneracy. Preliminary considerations
suggest there is none of thermodynamic
significance—but the problem has not yet been
solved.
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