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Time-dependent correlations in the exponential lattice.
I. Formal theory of response functions
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Time-dependent response functions of classical lattice systems are the object of this

study. A general representation for the displacement-displacement response function is

presented. In the special case of a linear lattice with exponential interaction potential

between adjacent particles this formula leads at low temperatures to a closed system of
integrodifferential equations governing the time dependence of the response functions.

Thus for this special type of lattice system which supports solutions with strong anharmon-

ic features, a systematic study of dynamical correlations at low temperatures is possible.

Numerical results will be presented in the accompanying paper.

I. INTRODUCTION

In recent years considerable attention has been
devoted to the investigation of strong anharmonic
phonon systems. Theories worked out within the
context of conventional phonon theory completely
fail to reproduce strong nonlinear features of solu-
tions which describe the system in certain important
regions of solution space. ' Current research ap-
proaches the problem at the level of phenomenologi-
cal models. Two important questions to be
answered on the basis of the model assumptions
concern the identification of elementary excitations
of the system and the extent to which they may be
considered independent within the frame of statisti-
cal mechanics. Krumhansl and Schrieffer have

provided —within the context of statistical
mechanics —basic ideas which proved successful up
to now. Since that time much effort has been devot-
ed to the identification of fundamental modes of
motion dominating the properties of the thermalized
system, and much quantitative insight has been

gained. %e11-known examples are the sine-Gordon
system ' and the "P " system. ' In these models
strong nonlinear localized modes are defined which
are separated from the ground state by an energy

gap. This characteristic facilitates the identification
of these solitons within the static properties of the
thermalized system. In the case of the linear ex-

ponential lattice, however, the energy of the corre-
sponding soliton modes continuously evolves out of
the ground-state energy. Identification seems more
difficult in the static properties of the chain.

Nevertheless, first attempts to construct a confi™
gurational phenomenology have been undertaken.

Solitons in the exponential lattice reveal some simi-

liarity with breather modes of the sine-Gordon sys-

tem; both are characterized by a failure of an energy
gap. It seems that breather solutions are most clear-

ly identified in the dynamical properties' of the sine-

Gordon chain: Recently it has been found' "that
not only solitons but also breathers give rise to
specific excitation branches in the thermalized sys-
tem. Results from inelastic neutron scattering ex-
periments are available. ' The observed central
peak in the dynamic structure factor has been inter-

preted in terms of localized modes of the corre-
sponding sine-Gordon system. ' "'

This investigation is concerned with the dynamics
of the exponential lattice. Dynamical correlation
functions are important quantities: important with

respect to their experimental significance and with

respect to what they express physically. They re-
veal detailed information on the excitation dynamics
of the system considered. Thus they provide an
ideal reference point against which calculations
based on models within the context of configuration-
al phenomenology can be calibrated. Exact pro-
cedures for the computation of dynamical correla-
tion functions do not exist, and approximate calcu-
lations based on some controllable analytic approxi-
mation procedure starting from first principles have
not been worked out. Only molecular dynamic
simulations are available, especially for the sine-
Gordon' "and the "P " system. '

In this (I) and the following (II) paper a new ap-
proach is developed which provides microscopic cal-
culations of dynamical correlation functions of clas-
sical lattice systems with exponential interaction po-
tential between the constituent particles. This paper
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will be concerned only with the formal procedure of
this approach. The linear lattice with next-neighbor
interaction is taken as an example to work out the
approximations which allow a first-principles calcu-
lation of the response functions of relative displace-
ments at low temperatures. The formalism
described is along the lines with that one applied re-
cently to the "P " system (Bunde and Diederich' ).

In Sec. II art exact expression for Kubo's
response function is derived, representing it in terms
of time-ordered products of correlations of the force
constants corresponding to instantaneous particle
positions. Up to this stage the calculation is valid

for an arbitrary interaction potential.
In Sec. III this general formula is applied to an

exponential lattice. Then the correlations of the
force constants can be expressed by the correlations
of the forces themselves, that, is, by time derivatives

of correlations of the particle positions. At low
temperatures correlations of higher than second or-
der may be neglected and rather involved time-
ordered products can be disentangled. This approx-
imation procedure leads us to a system of integrodif-
ferential equations involving time-dependent
memory functions. The memory kernels are ex-
pressed by the response functions themselves, thus
resulting in a coupled system of nonlinear equations.
In Sec. IV the conclusions are given.

In the following paper timeMependent relaxation
functions of relative displacements between adjacent
particles will be calculated numerically applying the
formalism described to the linear exponential lattice.
The dominant contributions to the corresponding
spectral densities will be interpreted in terms of ex-
act solutions of the equations of motion.

II. GENERAL THEORY OF THE
DISPLACEMENT-DISPLACEMENT

RESPONSE

%ith the present approach we are considering a
one-dimensional lattice of classical particles with

equal mass m and nearest-neighbor (NN) interaction

potential P(x; —x; &), x; denotes the position of
the particle at lattice site i (Cartesian coordinate).
Following Toda we introduce as the dynamical
variables of the theory the distances between adja-
cent particles R; = x; —x; ]. This leads to equa-

tions of motion

mR„= 2S„—S„+]—S„ i )

W= g y(R„) . (4)

As the next step we introduce canonically conjugate
variables Ak, A k of wave-vector space] 2

[—~ & k = (2m/Mj)& n; j integer]

M
Ak' —— g exp( —ikn)R„

M„

M

Ak = g exp( —ikn)S„
M „

and obtain equations of motion

(5)

Ak ——
BH

~k~k
~-k

(6)

'2
Ak ———BH BR'

The kinetic energy K is diagonal,

with

K = —, gA kAkIk
k

Ik = —[1 —cos(k)]
2

m

In what follows, the average (A ) of any function of
the generalized coordinates and momenta is defined

Denoting the natural distance between two adjacent
particles by D, Toda's exponential interaction poten-
tia1 may be written as

P(R) = (alb)exp[ —b(R —D)]+ a(R —D)

(2)

(a,b = const). For small values of R —D we ob.
tain the harmonic case with force constant ab.

- Imposing periodic boundary conditions

8) ——SM+), R )
——RM+i, etc., we obtain a finite

system of Eqs. (1) (n = 1, . . . , M) which may be
written in canonical form

R=aH S=— a
BS„' " BR„

with the Hamiltonian H = E + W:

M

g (Sn —Sn+1)
2m „]

S„=—P'(R„)
Tr[A exp( —PH)]

(A j=
Tr exp( —PH)
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where Tr denotes integration over the phase space of
the system and P = I/ks T, where ks is Boltz-
mann's constant.

In order to calculate Kubo's response functions'

—( [ Ak (t),A q(0) }) (a,P = 1,2) (10)

we derive a general representation for the Poisson
brackets' (PB)

aA;(t) aA', (o)—P& (t}—= [ Ak (t),A, (0) j = g
()Ap' 3A

aA, (t) aA~, (0)

BA q BA~'

If we differentiate (11) and use (6) and (7) together with basic properties of PB we obtain (P = 1,2)

QPq(t) = —Ik[Ak(t},A q(0) ] = Ikg~(t)

8 8'
aA '„' ' ', aA '„(t)aA,'(t) "

(12)

(13) '

Introducing the matrices

0(t) = [4~'(t)], h (t}= [~~'(t)l

with

(14a)

t
ance result in the following relations which connect
the various components of the response functions:

(4kk(t) ) + ('(tkk(t) ) (Nkk(t) )
Ik dt

8 8'
aA '

~A
''

h~ ——Ik5~12

I 22 I 11 p

(14b)

d2—(Pkk(t)) =, , (Pkk(t))

The response functions ((I)kk (t}) are odd in time:

(18)

(19)

6k denotes the Kronecker symbol: 6kk ——1,
5k = 0 for k +q.

The solution of the first-order linear difFerential
equations (15) is given by

- aP
t

P~(t) — Texp I h(r)dr P(0) . (16)

Eqs. (12) and (13) may be written in compact form:

Pk, (t) = ghkr(t)Pg(t) .
(4V(t)) = —(4k( —t})

Coming back now to our main line of argument we
perform the thermal average from Eqs. (16). (I)Q~(0}
is calculated from Eq. (11):

())kv(0) = (I()kt(0) = 0
(20)

—PtIq(0) = $~(0) = 5~
Thus we obtain the following explicit representations
for Kubo's response functions:

where we have introduced the usual T ordering
(T . ) which determines the order of the matrix
multiplication appearing in (16) (latest time to the
left). Equation (16}gives the desired general
representation of the Poisson brackets (11).

Before developing our theory further let us point
out some general relations for the response functions
(10), which mainly follow from the symmetry prop-
erties of the system. '

(pk (t) ) is real and diagonal
in k,q because of translational invariance of the lat-
tice:

(ykk(t) ) Uk (t} (4kk(t)) = Uk (t)

(4kk(t) ) Uk (t}e (Pkk(t) ) Uk (t)

—Uk (t)
Ik

Uk (t)

with
g

. . aP
Ue (()= ( Tee)e J deh(e)

Taking into account Eqs. (18), (19), and (21) the
matrix Uk(t) = [Uk (t)] can be written as

(21)

(22}

(PP (t) ) = —5&( [ Ak (t),A ~k(0) [ ) . (17)

Equation (6) together with time translational invari-

Uk(t) = [Uk (t)] =
2 Uk (t) —Uk (t)

Ik

(23)
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All functions appearing in (21) and (23) are ex-

pressed by (Pkk(t) ) = Uk' (t), which is the response
function of relative displacements transformed to
wave-vector space. Equation (22) together with
(14a) and (14b) gives a general expression for this

function, which is valid for any NN interaction po-
tential P(x; —x; i).' The response of the system
is determined by correlations of the second deriva-,
tives of the potential energy with respect to the
coordinates RJ, i.e., correlations of the force con-
stants for instantaneous particle positions.

III. THE EXPONENTIAL LATTICE
IN LOW-TEMPERATURE APPROXIMATION

t
Uk' (t) = exp f (h(r))dr

12

(24)

The approximation of the response function
described by this formula corresponds to the renor-
malized harmonic approximation. This result sug-

gests an expansion in terms of cumulants of hk (t).
Applying Kubo's generalized cumulant expan-

sion' we obtain from (22)

temperatures. Firstly, we perform the lowest-order
decoupling approximation with respect to h (t). We
obtain from (22} for a = 1,P = 2:

Proceeding from the general representation (22),
we work out an approximation scheme valid at low

Uk(t) = [TV(t,O)]kk

where we have defined

(25)

t tl
V(t,O) = exp f (h(ti))dti+ f dti f dt2(h(ti}h(t2)),

t tI t2
+ f dt, f dt, f dt3(h(ti)h(t2)h(t3))g+

(26)

The symbol ( . ), signifies the cumulant average with respect to the matrix elements of h. This averaging
operation preserves the matrix character of h (t). Thus the T symbol in (25) must be retained to determine the
order of the matrix multiplications in the exponential series (26).

At low temperatures cumulants higher than second order in hk r may be neglected. Thus we obtain from
(26)

t t t)
V(t,O) = exp f (h(t. i))dti+ f dti f dt2(h(ti)h(t2)), (27)

We shall now show this equation leads to an integrodifYerential equation for the determination of Uk' (t} at low
temperatures.

First we form the derivative of Eq. (25) with (27):
t-

Uk(t) = g(h(t))k [TV(t,O)]~„+ f dr+( ht(t)[TV(t, O)h( )r]~„), (28)
P

I

For 0 ( ~ & t holds

t T t) t tl t Tf dt, f dt, = f dt, f dt, + f dt, f dt2 + f dtif, dt2
1

Qne can therefore write the expression (27) in the following way:
t

V(t,O) = V(t,r) V(r, O) exp f dt i f dt2(h(t i)h(t2) ), , (29a)

We will see below that (h (t i)h (t2)), is proportional to ksT at low temperatures. Thus in this region the ex-
ponential in Eq. (29) may be set at unity and the time-ordered product [TV(t,O)h (r)] in Eq. (28) may be ap-
proximated as '

[TV(t,O)h (r)] = [TV(t,r)]h (r)[TV(r,0)],
known as the "disentangling" approximation.

Following this procedure with (28) we obtain
t

Uk (t) = g(h(t)kkr) Ukr (t) + f dr+ (hk r(t —r)Up~ (t —r)hqk'(0)Uk~(r)),
r p~r

5,v

(29b)

(30)
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Uk (t) = IkUp(t)

Uk (t) = (hkk ) Uk~(t)
t

—J Cr mk(t —r) Uk (r),1P

0

where the kernel mk(s) is defined as

(31)

(32)

In this reduction we used the diagonality of
[TV(t,O)] in wave vec-tor space, [TV(r,O)] qg = 5~k

X Uk+ (r), together with time translational invari-

ance.
The quantities Uz" in (30) are constants in phase

space. The only nonvanishing cumularit

(h/ (t —r)hzk'(0}), is the one with a = tI = 2,

y = v = 1. This is a direct consequence of the de-

finition (14b), only the matrix elements hp' may be

nontrivial functions in phase space. Therefore Eqs.
(30) are reduced to the following set of equations

(P= 1,2):

Uk (t)
Uk' (t) =

Ik

It should be noted at this point that all the exact
equations summarized in (23) are satisfied by our
approximate solution for low temperatures. This
solution is obtained by the second-order cumulant
approach together with the disentangling approxi-
mation (29b). Thus the approximation procedure is
consistent with the symmetry properties of the sys-
tem.

The response function Uk' (t) is the solution of
the integrodifferential equations (34) and (33}with
initial condition (35b), and can be determined if the
cumulants (hkk') and (hP (s)h~~(0}), in Eq. (33)
are known. In the special case of an exponential in-

teraction potential (2), these cumulants can easily be
calculated. Following Eqs. (14b), (4), and (5), hk

'
is

given by
mk(s) = —Q (hgq'(s)h/k'(0) ), U/,

' (s) (33)
21

A further reduction of this set of Eqs. (31) and (32)
together with (33) may be made. First we note that
the two equations (31) (P = 1,2) are already con-

tained in (23). Then, utilizing (31) we eliminate U P

from (32) and obtain
"

1P
21 . IP= (hkk)Uk (t)

Ik

t
—I Crim/, (t —t, )Uk' (t, ) . (34)

We see that Uk" (t} and Uk' (t) are solutions of the

same differential equation, differing only with

respect to the initial conditions. From (22) and (23)
these initial conditions are given by

(37)

hk/, (t) = —ab&/ —(b/&M)Ak, (t) . (39)

With this expression for hptp'(t) we can reduce the
cumulants (hkk') and (hp'(t)h~~'(0) ), to known
quantities:

(hkk ) = —ab (40)

According to Eqs. (2) and (1) for the Toda lattice,

y"(R„)= ah+ bS„

holds, so that we obtain

Uk"(0) = 1, Up (0) = 0 ,

Uk' (0) = 0, Uk (0) = Ik

(35a)

(35b)

b d
(hk '(t)h~p'(0) ),= — (Ak p(t)Ap k(D) ) .I dt'

(41)

—Uk" (t)
dt

c Uk (t)
dt Ik t=0

The two functions are, in fact, identical. This fol-

lows from (34) for P = 2 by differentiation:

Uk (t)/Ik and U~"(t) are solutions of the same dif-

ferential equation. Thus we obtain

Applymg (34) for p = 2 we see that the two func-
tions Uk (t) and Uk (t)/Ik coincide with respect to
the initial conditions:

Uk"(0) .

U,"(0)=

The frequencies

cok ——( —Ik (hkk') )' = (abIk)'

in Eq. (34) are identical with those obtained from
the self-consistent phonon theory. For the Toda lat-
tice the frequencies are temperature independent at
a given pressure (p = 0 in our case). According to
Eq. (41) the second-order cumulants are proportion-
al to the correlations of the generalized forces Ak

d2
(Ak /, (t)AP k(0)) = —

2 (Ak ~(t)A~ k(0))
dt

(42)
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Employing Eq. (6) and the fluctuation-dissipation
theorem' in its classical version,

P(Ak q(t)Aq' k(0)) = —Ut,
'

p(t)

we obtain from Eq. (41}

2

(hk~'(t)ht, k'(0)), = —
~

Uk' p(t) . (43)
MIk

Equation (43} does not make sense for k —p = 0.
The right-hand side is not defined for k = p
[Uo (t)/Io = 0/0]. The corresponding contribu-
tion to the kernel (33) is of order 1/M. We shall

neglect it, assuming that it is su6iciently small in
our calculations. This restricts the applicability of
the approximation procedure developed to systems
with a very large number of particles.

The final equations for the determination of the
response functions Uk' (t) can be formulated as fol-
lows:
"'

12
Uk (t)

+ abU, (t) + f dr mk(t —r) Uk (~) = 012

Ik 0

(44)

with

mk(s) = g 2 U& (s}Uk &(s)
kB~ 1 ' 12

M ~kIk p

(45)

They are valid for the Toda lattice in the low-

temperature region.
A few summarizing remarks may be added. The

response of the generalized coordinate Ak' at time
t ( & 0) in reaction to a small perturbation
A ~~(0)5(t) which contributes only at time t = 0 is

given by the Poisson bracket

5Ak'(t) =
I Ak'(t), A~q(0) I = —pg~(t)

The quantity 5Ak'(t} represents the change in the
variable Ak (t) with respect to the value in which it
evolves due to the natural motion of the system.
Once this deviation has been set up, the system
reacts with the, generation of a restoring force
—g hk 'Pg which is calculated according to clas-

sical mechanics. Following Newton's law this force
determines the time evolution of the quantity

5Ak(t). The corresponding dynamical equations are
summarized in (15). The solution (16) of these
equations allows one to calculate the thermal aver-
age (5Ak'(t)) = —(Pk (t)) in terms of correlations
of the instantaneous force constants of the system.
In the present case of the exponential lattice, the
force constants can be expressed by the forces them-

selves, i.e., the second time derivatives of the gen-
eralized coordinates. Therefore, the correlations of
the instantaneous force constants are given by the
fourth time derivatives of the correlations of the gen-
eralized coordinates. In this way we obtain the
self-consistent system of Eqs. (44) and (45) to deter-
mine Uk' (t)

IV. CONCLUSIONS

This paper contributes to the theory of thermally
excited phonon systems with strong nonlinear
characteristics. The response functions correspond-
ing to the canonically conjugate variables of the sys-
tem have been represented in terms of correlations
of the force constants of the lattice (defined with
respect to instantaneous particle positions). A cal-
culation of the response functions generally implies
an approximate treatment of these correlations, e.g.,
a decoupling procedure. In the special case of an
exponential restoring force between adjacent parti-
cles the force constants corresponding to instantane-
ous particle positions can be expressed by time
derivatives of the canonical momenta themselves.
This result again illuminates the role of the linear
exponential lattice within the theory of strong
anharmonic phonon systems: The time-dependent
response functions of the lattice are determined by
correlations of the forces themselves. A self-
consistent system of equations is valid at low tem-
peratures which allows a calculation of the response
functions of the therm@ized system.

ACKNOWLEDGMENT

It is a pleasure to thank W. Biem and H. Bol-
terauer for many helpful discussions. I would also
like to thank H. Horner for useful comments.



S. DIEDERICH 24

'A. R. Bishop, in Proceedings of the International Confer
ence on Lattice Dynamics, Paris 1977, edited by M.
Balkanski (Flammarion, Paris, 4978), p. 144.

J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11,
3535 (1975).

3J. F. Currier, M. B. Fogel, and F. L Palmer, Phys. Rev.
A 16, 796 (1977).

4A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger,
Physica D1, 1 (1980).

5T. R. Koehler, A. R. Bishop, J. A. Krumhansl, and J.
R. Schrieffer, Solid State Commun. 17, 1515 (1975).

N. Theodorakopoulos, J. Phys. A 12, L211 (1979).
M. Toda, Phys. Rep. 18, 1 (1975).

8H. Buttner and F. 6. Mertens, Solid State Commun.
29, 663 (1979).

9R. Rennie, Phys. Lett. 72A, 287 (1979).
' T. Schneider and E. Stoll, Phys. Rev. Lett. 41, 1429

{1978).
"E.Stoll, T. Schneider, and A. R. Bishop, Phys. Rev.

Lett. 42, 937 (1979).
J. K. Kjems, and M. Steiner, Phys. Rev. Lett. 41,
1137 (1978).

' H. J. Mikeska, J. Phys. C 11, L29 {1978).
'

' S. Aubry, J. Chem. Phys. 64, 3392 (1976).
' A. Bunde and S. Diederich, Phys. Rev. 8 19, 4069

(1979).
~6R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
' The transformation A~'{t),A p(t) ~Ap(0) A p(0) is

canonical and the PB's are invariant with respect to
canonical transformations. Therefore the time depen-

dence of the independent variables A~', A ~ in Eq.
(11) do not need specification.
In the general case of an arbitrary lattice system a simi-

lar representation is valid for the response function of
the commonly used coordinates.

'9R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).
onth-order cumulants may be estimated by their equal-

time values. Because displacements rj = RJ —D at
different sites of the lattice are uncorrelated at equal
time, third-order cumulants (to give an example) con-
tribute according to the formula

(h (0)h (0)h (0) ), —(P"(R )(("(R)(("(R) ),
= (ab)'[ (exp( —3br))

—3( exp( —2br)) + 2]

This is a direct implication from Eqs. (2) and (37). ~e
calculate the thermal averages ( exp( —nbr) ) with the
help of the partition function {Ref. 7) and obtain

(h(0)h (0)h (0) ), —2(ab)3(ke Tb/a)'

(h(0)h(0)), —(ab) ksTb/a

Thus higher-order cumulants lead to higher-order contri-
butions with respect to the temperature.

Corrections to this approximation can be obtained by a
Taylor expansion of the exponential in Eq. (29a). The
corresponding additional terms to (29b) provide
higher-order contributions with respect to temperature.

M. Blume and J. Hubbard, Phys. Rev. B 1, 3815
{1970)

We have formulated the periodicity condition in the
following way: SI ——Sm+I, RI = Rm+I for any index l.
The periodicity condition at defined periodicity length
L is given by X~+I —XI ——L. It corresponds to a
ring of M particles with the total length L. The dis-
placements R ~, . . . , R~ in this case are not dynami-
cally independent (g„,R„=I.). The calculations

will be only slightly different, resulting in a different
value of the term p = k which contributes to the ker-
nel mk(s). Again, however, the final equations (44)
and (45) remain valid if there are sufficient particles in
the ring so that we can neglect the contribution p = k.


