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The electronic structure of InSb in the common zinc-blende-crystal phase and in a
rocksalt-crystal phase (which is metastable at standard temperature and pressure) are inves-

tigated using a self-consistent pseudopotential formalism including relativistic effects. For
the zinc-blende structure we find that a local s-p potential for the valence electrons yields,
in a self-consistent calculation for the solid, a charge density in excellent agreement with

previous calculations employing empirical nonlocal potentials. Relativistic effects are

found to be very important in order to obtain a good description of the band gap and

overall bandwidth. For the rocksalt phase we obtain a metallic solid, in agreement with ex-

periment, and observe (in comparison with the zinc-blende results) substantial changes in

the valence-band density of states. These results are in very good agreement with the ex-

perimental x-ray-photoemission-spectroscopy studies of these two phases. Unlike the situa-

tion for the covalently bonded zinc-blende crystal, we obtain very large charge transfer

from the cations to the anions (estimated to be 0.9e ) in the metallic rocksalt phase, which

we speculate helps to stabilize the solid. Band-structure, densities-of-states, charge-density,

and Fermi-surface results are presented.

I. INTRODUCTION

InSb is a rather unusual material. It has recently
been discovered that InSb can be grown in a metal-
lic rocksalt structure at normal pressures and tem- .

peratures. ' It is the only III-V compound found, to
date, that has this property. The growth procedure
involves sputtering on a cold substrate with the sub-

sequent formation of microcrystals aligned along the
[100] crystal axis.

The possibility of having a III-V compound grow
at STP into a rocksalt phase is a very surprising
result. The usual situation is that the covalent III-V
compounds (as well as the group IV's and more
ionic II-VI's) exist in a tetrahedrally bonded zinc-
blende structure. As the bonding in the (A "8 ")

semiconductors becomes more ionic, the zinc-blende

structure becomes unstable to an increase in coordi-
. nation number. One then finds most of the I-VII's
existing in a rocksalt phase. This transition from
covalent bonding and zinc blende to ionic bonding
and rocksalt is delineated in Phillips's ionicity
theory.

Under high pressures the zinc-blende materials
undergo various reversible structural transitions to
metallic phases. ' lt is interesting that again the
more ionic II-VI's revert to a rocksalt phase while

the III-V's transform into a P-Sn-like phase. In
both cases the coordination number increases since
the bonding is becoming more metallic under pres-
sure. Thus the rocksalt structure supports both
metallic and ionic bonding. It is interesting to note
at this point that InSb can also revert to the rocksalt
phase with only 13 kbar of pressure. In. this case,
however, the transition occurs from an amorphous
film, and is irreversible and metastable at STP. '

In order to attempt a first step in understanding

the electronic structure and nature of bonding in

InSb we have performed a comparative study of the
zinc-blende and rocksalt phases using a state-of-the-

art self-consistent pseudopotential approach. These
two materials present several computational compli-
cations for studies of their electronic structures.
First, both In and Sb are large-Z elements, hence
relativstic effects can be very important. In fact,
both spin-orbit splitting and Darwin mass correc-
tions are known to induce sizable shifts in the
valence electronic levels. These effects have only
been included in previous non-self-consistent calcu-
lations. ' In this work we incorporate spin-orbit

splitting in our self-consistent calculations following
a similar scheme. "and adopt a new scheme for
including relativistic s-wave corrections as well. The
latter are found to provide a very important correc-
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tion to the overall valence bandwidth in these com-
pounds.

Second, since the rocksalt phase is metallic, we
require an eAicient scheme for calculating
Brillouin-zone summations of the valence charge
density in the construction of sdf-consistently
screened pseudopotentials. Special point sampling
schemes' which are conventionally employed for
this purpose are only rigorously justified in the limit
of completely filled bands. They are, however, ex-

pected to be very adequate in situations where the
Fermi energy falls in a rather narrow band. The
rocksalt band structures satisfies neither of these cri-
teria, possessing a quite complicated Fermi surface
with the Fermi energy passing through both very
narrow and very dispersive bands. To obtain an ac-
curate valence charge density we make extensive use
of a k. p representation for the mixing of valence
eigenstates throughout the Brillouin zone. In this

way we tractably sample a mesh of k points in the
Brillouin zone during each iter'ation of the calcula-
tion.

In this paper we will proceed as follows. In Sec.
II we briefly review our scheme for construction of
effective local valence pseudopotentials. In Sec. III
we briefly outline the procedure followed in the
self-consistent calculations in the solid and discuss
methods adopted to incorporate spin-orbit and
mass-velocity corrections. We also outline a scheme
which makes the k p approach very efficient for
such calculations on metallic systems. In Sec. IV
we present results for the zinc-blende and rocksalt
phases of InSb, comparing band structures, densities

of states, and charge densities. Finally, in Sec. V we
conclude with a further discussion of these results
and their relation to previous work.

II. POTENTIALS

As discussed extensively elsewhere, ' ' the pseu-

dopotential approach is founded on the assumption

that one may construct an effective one-electron
valence potential which retains the shape of an all-

electron potential away from the core region, but re-

places the singular all-electron potential near the
core with a smoother weaker potential. This "pseu-
dopotential" does not bind core states and relieves

the valence wave functions of the constraint of being
orthogonal to a rapidly spatially varying core wave

function. As a consequence this allows for a rapid-

ly convergent Fourier expansion of the valence
eigenstates. Following this prescription one expects

the pseudopotential to be l dependent since, in prin-

ciple, a different set of core wave functions are being
deleted for each angular momentum component
under consideration. In practice, however, Starkloff
and Joannopoulos (SJ) (Ref. 15) have observed that
for a wide variety of heavy elements (Si typically
marks the transition from light to heavy in this con-
text) a single effective ionic potential sufHces to
describe valence s- and p-valence eigenfunctions.
The SJ ionic potential is parametrized in the form

V~'„(r) = ( —Ze'/r)[(1 —e ")/(1+ e
" "' )],

which describes a rapid truncation of an ionic

( Ze /r) po—tential to zero near r = r, . A, and r,
are then chosen such that a self-consistent atomic
calculation employing this effective potential will

reproduce as closely as possible some predesignated
properties of a self-consistent all-electron calculation
on the atom. Typically, close attention is paid to
obtaining the correct valence s-state and p-state
valence eigenvalues in the neutral atom while ob-

taining the correct magnitude and location of peaks
in the radial charge density for these states.
Although the problem is clearly severely under-

determined, in practice the two parameters in the
model potential of Eq. (1) satisfy all of these condi-
tions reasonably well. The local nature of this po-
tential then makes it computationally convenient for
the self-consistent calculations to be described. In
particular, the k. p scheme we introduce becomes
especially efficient if the valence potential is I in-

dependent.
We note further, that considerable attention has

recently been paid to the norm-conserving charac-
ter of the pseudopotential, ' i.e., whether in addition
to achieving the correct shape of the valence wave

function away from the core, the effective potential
also yields the exact magmtude of the wave function
in this region. This is related to the energy range
over which the pseudopotential will correctly mimic
the all electron potential and hence characterizes the
validity of transfer of the effective potential from the
neutral atom (where it is fit) to the solid state.
Without foHowing the explicit guidelines recently
described for the construction of norm-conserving
nonlocal pseudopotentials, we find that the ionic lo-

ca/ potentials described by Eq. (1) are typically
norm-conserving to 1 —2 %.

In all the calculations discussed below we choose
a 1ocal exchange-correlation potential of the form

V„,(r) = —( —,ir)'~'3ap'r'(r) (2)
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TABLE I. a = 1 self-consistent atomic electronic structure data.

E
(eV)

A11 Electron
rmax

(a.u. ) (eV) ~

Pseudopotential

r,„rR(r)
~

(a.u. )

Sb 5s
Sb 5p
In Ss

In 5p

—14.81
—7.25

—10.13
—4.69

1.89
2.23
2.14
2.72

0.774
0.662
0.700
0.549 .

—14.47
—7.22
—9.98
—4.65

1.85
2.19
2.03
2.65

0.753
0.657
0.684,
0.539

Potential parameters
Z rc

(a.u. ) (a.u.-')

In
Sb

. 1.206
1.083

9.8420
5.2090

with a = 1. The coefficient a = 1 is arbitrarily
chosen since it has been our experience that a = 1

provides a better description of transition energies
near the gap than smaller values of a which are fit
to reproduce atomic total energies.

In Table I we list the results of all electron a = 1

calculations of valence s and p eigenstates of In and
Sb and the positions and magnitudes of the associat-
ed radial-wave-function maxima. The results of
self-consistent calculations for these elements using
the ionic potentials of Eq. (1) are also given for the
fitted values of A, and r, listed.

III. METHOD OF CALCULATION

A. General consideration

In these calculations the valence wave functions
are expanded in a set of plane waves, with the eigen-
values of the Hamiltonian I P(k) ) satisfying the sec-
ular equation

det
~ [ [+/2m (& + G)' —~«) 1&GG' + V(G —G')

I I

plane wave introduced through second-order pertur-
bation theory. After each iteration the eigenfunc-

tions with eigenvalues below the Fermi energy are
used to construct a valence charge density which in

turn is used to construct a screening potential. This
potential consists of an electrostatic part due to the
valence charge density

VH(G) = (4me /
i
G

i )p(G) (4)

B. k. p expansion

and a local exchange-correlation part of the form
given in Eq. (2). The charge density and screening
potential are expanded in the lowest 10 shells of
reciprocal-lattice vectors. These terms are added to
the bare ion pseudopotential to define the crystal
potential used in the next iteration. Following an
initial guess in which the self-consistent potential is

approximated by an empirical potential, S to 6 itera-
tions are generally required to achieve self-

consistency.

(3)

where V(q) is the Fourier transform of the fully
screened crystal potential and the I G I are the
reciprocal-lattice vectors. The computational
mechanics required to self-consistently solve (3) have
been discussed extensively elsewhere. ' Here we
merely note that a reasonably large set of plane
waves (typically 60—70) are directly "included" in
(3), augmented by an additional (typically & 150)

The time-limiting step in the procedure outlined
above is the diagonalization of a large matrix on a
mesh of k values in the Brillouin zone which is suf-

ficiently fine to provide a good description of the
valence charge density. In the semiconducting
zinc-blende structure this is not a serious problem
since a special points scheme' ' yields a well con-
verged integral over reciprocal space, requiring di-
agonalization of a large matrix at as few as two

points in the irreducible Brillouin zone. This
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$2
(keg„„,—2i k.V „„,) + E„(I )5„„C„(k)2'

where

=E„(k)C„(k),(6a)

(6b)

aild

(6c)

If the number of I u„r ] retained in the expan-

sion of Eq. (6a) were equal to the number of
reciprocal-lattice vectors included in the evaluation

of un r then (6) is essentially exact. The utility of
expression (6a), however, is that the expansion set

can be accurately truncated for reasonably small n.
Physically, the I un r J provide a local basis set of s,

p, d, ..., etc., symmetry which is well suited for ex-

pansion of t u„~ I at any other point in the Brillouin

zone. For eigenanalysis at arbitrary k which would

-typically require direct expansion in 60—70 plane

waves, we have been able to accurately obtain the

lowest six eigenvalues and eigenfunctions, limiting

the expansion to the lowest 26 I u„r I and treating

the remainder in Lowdin perturbation theory. '

The construction and solution of Eq. (6a) proceeds
as follows.

At the zone center we expand the Hamiltonian in

a finite set of M plane waves (treating an additional

set through Lowdin perturbation theory), saving (1)
the resultant eigenvalues I E„(I ), n = 1,2, .../if I,
(2) a subset of the lowest N eigenfunctions t un r,

scheme, however, breaks down for partially filled
bands and hence we desire a more eAicient pro-
cedure with which to study the metallic rocksalt
structure.

We proceed with a relatively straightforward

development of k - p representation for the periodic

part of the band Bloch functions satisfy the effec-

tive Schrodinger equation

[(fi /2m)(k2 —2~ ~' V —V2) + y(r)]u„(r)

E(k)u„~(r) . (5)

Clearly the set t u„ I, I labeled by band index n are
a complete orthonormal set of basis functions which

may be used to expand the periodic I u„ I, ] at any

other k' point in the Brillouin zone. For definite-

ness we will assume we have determined the I un r ]
at the zone center and wish to study the I u„k I at
some other point in the Brillouin zone. Using the

I u„r I as a basis we obtain

n = 1,2,...,N I, (3) a set of effective-dipole-transition

matrix elements coupling these N states to each oth-

er,

(8)nn = (n
~

V(eff)
~

n'& (n,n' = 1,2, ...N)
(7)

and (4) a set of second-order coefficients,

(n (
V(eff)

~

n" &(n"
~

V(eff)
~

n'&
nn E „(I')

where E is an average band energy of the system.
The operator V(eff) differs slightly from the true di-

pole operator due to the k dependence of the
second-order perturbation-theory corrections intro-
duced by plane waves outside the direct expansion
set for the u„z. Expanding these corrections to
lowest in k we obtain

G(eff) = G + g ' (G —G')
fi ~ [G —(G') ]

where 6 is inside the direct Lowdin sphere and 6'
is outside. Thus the effective dipole operator in-

cludes the lowest-order gradient corrections from

plane waves outside the original expansion set.
(This is found to be important for calculations in-

volving the lowest-lying conduction bands. )

Having determined these matrices at a single

point in the Brillouin zone, (our choice of the zone
center is an optimum one since we avoid the task of
having to symmetrize these various coefficients), the

reduced Hamiltonian at any k is then

H„„(k)= E„(I )5„„

+ iii' /2m(k Inn

—2ik B~n + k T„„"k) . (10)

All of the information about the crystal potential is

contained in the E„(I")and the matrices 8 and T
which are specified at a single point in the Brillouin
zone. This reduced Hamiltonian can now be quick-

ly diagonalized, and the resulting eigenvectors back-
transformed to a plane-wave basis from which a
charge density can be calculated. As the evaluation

of the charge density can itself be a time-consuming

proposition we have followed a procedure whereby
the integral of the charge density over a partially
filled band is initially approximated by a special
point summation. Subsequently the sum is modified
in only those regions of the Brillouin zone where a
mostly filled (empty) band is fourid to move above

(below) the Fermi energy. In all, no more than 16
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points in the irreducible Brillouin zone are em-

ployed for this improved integration.
troduces two non-symmetry-breaking terms into the
one-electron Schrodinger equation,

C. Spin-orbit coupling H = —p /8m c + (1' /gm c )V V (13)

As noted in the Introduction, since both In and
Sb are heavy elements we must be concerned with
relativistic corrections to the one-electron Hamil-
tonian of the system. The most serious such correc-
tions are spin-orbit terms which in general lower the
symmetry. of the spin-free one-electron solutions.
For zinc-blende InSb, they introduce level splittings
near the band gap which typically exceed the band

gap by a factor of 3. In the solid, the spin-orbit
Hamiltonian may be written

H„= (fi/4m c )LT (V V && p) (11)

where the cr are the Fauli spin matrices. This
operator is dominated by the crystal volume close to
the atomic cores, i.e., where V' V is large. This, un-

fortunately, is where the smooth pseudo-wave-
function is a poor approximation to the rapidly os-

cillating all-electron wave function for the solid. In
empirical pseudopotential theory~ the usual response
to this problem has been to project the valence
pseudo-wave-function onto the core states. Follow-
ing the work of Chelikowsky and Cohen we obtain
a spin-orbit Hamiltonian

H„(k;G,G') = i(k + 6)
X(k + 6') ~oP(G —6'). , (12)

where P(G) is a Fourier transform of a linear su-

perposition of site-centered core states with relative
weights fixed to the ratio of free-atom spin-orbit
splitting for valence states. For the case of InSb the
sum is accurately obtained by including only the
outermost p core level. The coupling strength p is
then taken as an adjustable parameter and is chosen
to fit the spin-orbit gap at the valence-band max-
imum in the zinc-blende phase. In calculations on
the rocksalt structure p is adjusted only for the
change in unit-cell volume. To include the spin-
orbit contribution in the calculation, we iso1ate the
ten lowest-lying spin-free states (obtained as
described in the preceding section), expand the basis
set to include spin degrees of freedom, transform
(12) to the band representation and solve for the
eigenspectrum of the resulting 20&(20 problem.

While these terms are implicitly included in an em-
pirical pseudopotential for the crystal, the ionic
pseudopotentials of Sec. II are fit to nonrelativistic
all-electron atomic calculations and hence do not in-
clude these corrections. As with the spin-orbit
terms, these additions to the Hamiltonian are dom-
inated by the crystal volume near the atomic cores.
From atomic calculations one expects these correc-
tions to be strong (- 1 eV) for s states of row-5 ele-

ments and negligible for the p states, and higher-

lying excited states.
The importance of these corrections for the

valence electron states can be seen by noting that a
self-consistent calculation ignoring these relativistic
effects (but including spin-orbit coupling) typically
yields a valence-band width of 9.2 eV (instead of
10.8 eV) and a band gap of -0.7 eV (instead of
0.23 eV); i.e., the lowest two s-like bands lie sys-

tematically too high in energy. Some of this
discrepancy could in principle be attributed to the
general diAiculties characterizing one-electron calcu-
lations using approximate exchange-correlation po-
tentials for the excited states of the system. It is
more probable, however, that the error is largely as-
sociated with the absence of s-wave corrections in
the Hamiltonian. To eliminate this difficulty we
construct an empirical scheme with parameters
chosen consistent with the magnitude of these
corrections in both the isolated atom limit and the
crystalline zinc-blende phase. In this way the calcu-
lation on the rocksalt structure will be free from ad-
ditional parameters.

We proceed by writing a nonlocal operator which
induces specified shifts of 5& ——1 eV at the valence-
band minimum and A2 ———0.33 ev at the conduc-
tion band minimum.

(14)

Assuming that the levels are spanned by a basis of
valence s-like orbitals, and taking the relative admix-
tures a of these functions from the calculated wave
functions for I"6, we construct the 2X 2 unitary
operator which will transform H to the localized s-
orbital basis

D. Mass velocity and Darwin corrections

Aside from the spin-orbit corrections described in
the previous section, the relativistic Hamiltonian in- so that

1 u
[1/( 1 + 2)1/2] (15)
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Vaa = —0.93 eV,

V„= ——0.47 eV,

Vac = 0.27e eV,
—p(b —bo)

(17)

correctly describe these relativistic effects in the lim-

it b +bo (the zi—nc-blende bond length) and b ~ ao

(isolated atoms). The constant P ' is not fixed by
these considerations and assumes the value of the
Bohr radius.

It will be recalled that the crystal potential enters

the calculation at any arbitrary point in the Bril-
1ouin zone through the eigenvalues and eigenvectors

at I . Hence, the correct specification of these rela-

tivistic adjustments at the zone center uniquely

specifies them throughout the full Brillouin zone.

IU. RESULTS

The valence bands and low-lying conduction

bands obtained in these calculations are plotted

Vaa Vaa
U+HU =

ac ce

The diagonal terms in (16) describe a correction that
is independent of the size of the crystal. The off-

diagonal terms denote a relativistic "interaction"
between anions and cations and should vanish ex-

ponentially as the crystal becomes infinite. %e find
the choices

along principle symmetry axes in the Brillouin zone
in Fig. 1. The results for the zinc-blende phase
show the familiar structure common to all III-V's:
a bonding s-like band, localized primarily on the
anions, splits away from the rest of the valence band
near —10 eV, and a cation s and p hybridized band
extends from —5.5 eV to the valence-band maximum
where it is spin-orbit split from two unhybridized
less dispersive p-like bands. In this calculation we
obtain a band gap of 0.26 eV.

The lattice constant for the rocksalt crystal struc-
ture at STP is 6.12 A. ' ' The overall valence band
structure of' this phase is similar to that obtained in
the zinc-blende structure, with some notable differ-
ences. Again an s-like bonding band localized pri-
marily on the Sb sites, splits away from the main
valence band. The calculated width of this band is
30% larger than the zinc-blende s band. Though
the InSb nearest-neighbor distance actually increases
in the more dense rocksalt phase, the increased
coordination more than compensates for this dila-
tion of nearest-neighbor distance, yielding a more
dispersive s band. The s-p hybridized band which
extends from —6 eV to just below the Fermi energy
is also found to be slightly more dispersive than the
corresponding band in the zinc-blende phase. The
most profound differences between the two struc-
tures clearly occur within several eV of the Fermi
energy. In agreement with experiment, the rocksalt
structure is found to be metallic. Moreover, we find

L
X7
X6

4p 2
LU

L6

&~ -2
X6

LU

X6

X7
x6
X6
x6

FIG. 1. Band structure along principal symmetry axes to zinc-blende InSb (a = 6.47 A, left) and rocksalt InSb

{a = 6.12 A, right).
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that the Fermi energy crosses two relatively un-

dispersive p-like bands and a strongly dispersive
"conduction" band. The latter dips slightly below
the Fermi energy at I and then plunges 3 eV below
the Fermi energy at X. This band may be crudely
identified with the lowest conduction band calculat-
ed in the zinc-blende structure. In this case X is
an antibonding state -locating virtual charge "be-
hind"' the bonds oriented along the equivalent [111]
directions. ' The rocksalt structure which does not
possess such directed bonds will have the equivalent
"antibonding" level filled as valence electrons at-
tempt to spread out and become more free-
electron-like. This qualitative argument also ex-
plains the upward shift of the bonding counterpart
of this level which is found at —4 eV in the rocksalt
structure. To compensate for the extra charge
donated into this additional dispersive band which
crosses the Fermi energy, the two higher-lying p
bands are slightly depleted, moving above the Fermi
energy at L,.

The densities of state calculated in these two
structures are shown in Fig. 2 where they are com-
pared with the x-ray photoelectron spectroscopy
(XPS) spectra obtained by Minomura et al. The
results for the zinc-blende phase are in generally

XPS

CO

O
O

XPS

I I I

- I6.0 -l2.0 -8.0 -4.0 0.0 4,0 8.0 l2.0 l6.0
(eV }

FIG. 2. Densities of states and x-ray photoemission
spectra from zinc-blende InSb (top) and rocksaIt InSb
(bottom).

good agreement with the experimental spectra. %e
obtain an overall bandwidth of 10.7 eV which,
though in good agreement with relativistic orthogo-
nalized plane-wave (OPW) calculations (10.5 eV) is
smaller than the 11.7 eV obtained using nonlocal
empirical pseudopotentials.

The valence-band spectrum changes quite signifi-

cantly as we proceed to the rocksalt phase. The in-

creased dispersion of the lowest s-like band which
we noted previously seems to be also observed ex-
perimentally. This effect and the increased disper-
sion of the next-higher-lying sp-like band cause an
effective narrowing of the heteropolar gap near —7
eV which is also evident by comparing the two ex-
perimental traces. Van Hove singularities attribut-
able to the minima in two bands at the X point near
—4 eV contribute to the filling in of this region in the
density of states. Finally, the shapes of the upper p
bands are strongly modified; a sharp edge emerges
at —2 eV and the Fermi energy which fills in a re-

gion of high state density produces a sharp cutoff in
the XPS spectrum. %e also note that the bending
over of the dispersive conduction band obtained in
the rocksalt structure contributes some rather in-

teresting structure in the density of states above the
Fermi energy. This could be observable, possibly,
in a high-resolution x-ray-absorption study.

In Fig. 3 we compare the self-consistent valence
charge density obtained for the two structures. Both
maps are given in the nonpolar planes of their
respective crytals, i.e., (110) for zinc blende and
(100) for rocksalt. The normalization is in units of
e /0, where 0, is the unit-cell volume. For the
zinc-blende structure a well-defined bond charge is
obtained, displaced slightly towards the anion. The
results are quite reminiscent of the charge profiles
obtained by Chelikowsky and Cohen for InSb using
an empirical nonlocal pseudopotential. These au-
thors found that a local empirical pseudopotential
for InSb gave a valence charge density which over-
estimated the magnitudes of the bond charge and
charge transfer from In to Sb (in comparison with
estimates obtained from analyses of x-ray reflection
intensities ). The success of the present results us-

ing a local potential indicate that the discrepancy
should be attributed to the approximate form factors
employed in the local empirical potential and not
specifically to its local character. It is also worth
noting that the charge density is not affected appre-
ciably by the relativistic effects discussed in Sec. III.

As expected, there are very significant qualitative
changes in the self-consistent charge density calcu-
lated for the metallic rocksalt Dhase. As shown in
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FIG. 3. Top: valence charge density in units of e /0,
for zinc blende InSb in the (110) plane. Bottom: valence

charge density in units of e /0, for rocksalt shown in
(100) plane.

Fig. 3(b) we find the valence charge much more
strongly localized on the anions, with a slight rem-
nant of a bond charge persisting along the [100]
directions. There is, in fact, a minimum in the
valence charge density on the cations in this struc-
ture. It is diAicult to construct a reliable quantita-
tive estimate of the charge transfer in such a calcu-
lation. On may proceed, nevertheless, by partition-

ing the charge by the ratio of charges enclosed
within touching spheres of equal radii centered on
the anions and cations. In the zinc-blende structure
we find a charge transfer of 0.24e from In to Sb
whereas in the rocksalt phase the transfer is 0.87e

It would appear dificult, at first, to reconcile the
persistence of this large charge transfer with the me-
tallic character of the rocksalt phase. This apparent
contradiction is settled by an examination of the
charge densities of the various bands that cross the
Fermi energy (and are hence responsible for the
screening properties of the system). The charge
density for the very dispersive band is given in Fig.
4(a) near the X point of the Brillouin zone. The

FIG. 4. Top: charge density for conduction band at
X in (100) plane of rocksalt InSb. Normalization is
( le /0, ). Bottom: charge density for conduction band
at L in (100) plane of rocksalt InSb. Normalization is
( le /0, ).

change is nearly uniformly dispersived throughout
the unit cell explaining the large dispersion of this

band. This band is primarily responsible for the
metallic nature of this structure. By contrast in Fig.
4(b} the charge density of the band crossing the Fer-
mi energy near I. is given. The electrons are found

to be p-like and strongly localized on the anions.

Moreover the density of states at the Fermi energy
is dominated by these carriers. These very heavy

electrons contribute less efhciently to the metallic
character of the crystal and are certainly incapable
of screening the positive ions left on the cation sites.

We thus conclude that states near the Fermi energy
ar'e of two types: (1) very heavy carriers get local-

ized on the anion sites explaining the large charge
transfer from In to Sb in this structure and (2} a
smaller number of light electrons are nearly uni-

formly spread throughout the unit cell forming a
strongly dispersive band explaining the metallic na-

ture of the phase.
Finally, in Fig. 5, we show the intersections of the

Fermi surfaces for these various bands with the
I LE plane and the I Ll. plane. The Fermi surface
is clearly a complex multisheeted structure. %"e

note briefly that the light dispersive electrons, previ-
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FIG. 5. Fermi surfaces for rocksalt InSb in I XL
plane (top) and I XE plane (bottom}. The numbers iden-

tify bands in order of increasing energy at the I point of
the Brillouin zone.

ously alluded to, are located in sizable pockets cen-
tered at the L points of the Brillouin zone and a
tiny pocket at the zone center. The "heavy" bands
are characterized by pockets of holes at the L point
and zone center, and an open orbit nearly parallel
to the I -L axis.

V. SUMMARY AND DISCUSSION

The present results complement a previous empir-
ical study of the band structures of zinc-blende and
rocksalt InSb using extended Huckel theory.
Several features obtained in this very simple theory
are consistent with the present more realistic calcu-
lations. In particular the transition from the sem-
iconducting to the metallic state and the location of
the dispersive band near the L point of the Brillouin
zone are also obtained in the Huckel calculations.
The present results, however, provide a generally
more satisfying description of the XPS spectrum for

the metallic phase. In addition, these self-consistent
calculations identify an interesting transition in char-
acter of the valence charge in these structures. In
the zinc-blende crystal we obtain, as expected, a
partially ionic yet well defined covalent bond con-
necting the In and Sb sites. On the other hand, the
rocksalt structure, though metallic, is characterized
by charge transfer near unity from the cation to
anion sites. This charge transfer is attributable to
the presence of p-like bands near the Fermi level

which are primarily localized on the anion sites. It
has previously been suggested, however, that the
charge transfers in the zinc-blende and rocksalt
structures are nearly equivalent. This was based on
core-level spectroscopy of the In and Sb 4d levels.
Our results are clearly inconsistent with this con-
clusion. The discrepancy may be attributable to the
inability of core-level spectroscopy to distinguish

between and separate the on-site Coulomb contribu-
tion from the lattice Madelung contribution to the
chemical shifts.

The large charge transfer predicted from these
calculations presumably helps to stabilize the ionic
rocksalt crystal structure. It is curious that InSb,
which is considered to be as covalent as the proto-
typical covalent heteropolar semiconductor GaAs,
can be prepared in a rocksalt structure at all. As
noted in the Introduction a 13-Sn-like metallic
phase is generally obtained by pressurizing com-
pounds in the zinc-blende crystal structure (includ-
ing InSb). This leads one to speculate that the
sputtered and amorphous InSb films that yields the
rocksalt structure may be systematically more ionic
than their zinc-blende counterparts. This may re-
flect an increase in charge transfer that would be
expected in internal surfaces, voids, or defects.

In any case the metastability of the rocksalt struc-
ture at STP is consistent with the fact that InSb is
the most metallic tetrahedrally coordinated semicon-
ductor (other than Sn). Following this argument
GaSb and A1Sb may be expected to exhibit similar
anomalous behavior.
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