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The Gaspari-Gyorffy theory for calculating the electron-phonon interaction A, is extended

to incorporate a correction to the rigid-muAin-tin approximation (RMTA). This correction

is achieved by constructing a potential which has the correct asymptotic behavior at large

distances and reduces to essentially a uniform potential well inside the muffin-tin sphere.

This method is particularly applicable to the simple metals where the usual RMTA un-

derestimates k. The results obtained without any adjustable parameter are in better agree-

ment with the experimental data than those obtained by the RMTA.

I. INTRODUCTION

The Gaspari-Gyorffy (GG} theory' has been
successful ' in calculating the phonon-mediated
electron-electron interaction for transition metals in

terms of first-principles band-structure results.
However, application of the theory to simple metals
gives a systematic underestimation of the electron-
electron attraction. To trace out the sources of
this discrepancy one must examine the various ap-
proximations entering the derivation of the GG
theory. The first such approximation is the so-
called spherical approximation (SA) which assumes
a spherical averaging of the Fermi-surface integrals.
The SA has been tested and shown to contribute
insignificant errors (2% or less) to the calculation.
Another approximation is the so-called local ap-
proximation (LA} which neglects the phonon-
mediated attraction between two electrons from dif-

ferent atoms. Recently, Rietschel examined the
validity of the local approximation in detail. The
conclusion from Rietschel's work is that the LA is

adequate when the umklapp electron-phonon
scattering is large, while for normal processes the
LA overestimates the electron-electron attraction.
Thus the corrections to the LA will tend to further
increase the discrepancy between theoretical results
and experimental data. Hence, one has to conclude
that the theoretical underestimation of the electron-

electron attraction in simple metals is mainly due to
the rigid-muAin-tin approximation (RMTA), in

which the local environment of a vibrating atom is

approximated by rigidly displacing the muffin-tin

potential for that atom.

II. THEORY
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In Eq. (1), EP is the free-electron Fermi level, EF is

the Fermi energy n~, n.I' ' are the partial density of
states at the Fermi level for the solid and the free
scatterer, respectively, and n, is the total density of
states per spin per atom; At i+ i(EF) is given by

In order to proceed with our theory for removing

the RMTA we will recall that Rietschel expressed
the Eliashberg function a (to)F(to) in terms of an in-

tegral in q space involving an on-Fermi-sphere
electron-ion pseudopotential V(q) given, in atomic
units, by

' 1/2

V(q) =
n, (EF ) EF.
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dU
Al 1+1(EF}= dr r Rl Rl+1,0 dr

(2)

where U, (r) is the total periodic crystalline poten-
tial, r is the position vector of the electron, and R;
is the equilibrium position vector of the ith ion.
Furthermore, Heine et al, have proved by employ-

ing linear response theory that

lim V(q) =- z
q o2n!(EF), (4)

where Z is the valency. It must be noted that Eq.
(4) remains true even if many-body effects are in-

cluded. ,For real anisotropic solids, where in gen-
eral V is a function of two wave vectors k and q,
Eq. (4} remains valid on the average, i.e.,

lim 2+Vk(q)5(Ek EF)= —Z .—
k

Thus any approximation which produces a k-
independent V(q) must satisfy Eq. (4). On the oth-
er hand, Eq. (4) being a linear response result may
not be valid if the potential U is very strong as, e.g.,
in the case of transition metals. '

The RMTA assumes that U is equal to the
muffin-tin potential UMT determined usually by an

augmented plane wave (APW) or Korringa-Kohn-
Rostoker (KKR) band-structure calculation. By
setting U = UMT in Eq. (2) one obtains' that

RMTA~l!~1 s (5I 51+1}

where 5~ are phase shifts at E=E~ corresponding
to the muffin-tin potential UMT. It must be pointed
out that the RMTA choice for U automatically sa-

tisfies Eq. (3). However, the RMTA does not in

general satisfy Eq. (4). The physical reason for this
failure is the following: The q =0 condition [Eq.
(4)I reflects the fact that at large distance

I
r —R; I

the ionic potential U is behaving (at least in the

where RI is the radial wave function and U is the
potential associated with each moving ion. An
equivalent expression for the electron-phonon pseu-
dopotential V(q) has been obtained by Allen and
Lee. In this formalism the LA is equivalent to the
replacement (in the expression for a F) of a
phonon-dependent factor by an appropriate average
value. The calculation of the potential U is a very
diAicult problem because it requires the knowledge
of the electronic response to the motion of one (or
more) ions. It has been shown that U must satisfy
the sum rule

U, ( r )=g U( r —R; )+const,

weak limit} as a screened Coulomb potential, i.e.,

11m
lr —Z,. ~~~

&rF

U(r R—;)=—

where q TF is the Thomas-Fermi wave vector given

by (in atomic units)

qT'F =(»«ws}nt«F),
where rws is the Wigner-Seitz radius. Actually, the
Fourier transform of the rhs of Eq. (7), divided by
the atomic volume 4mws/3, gives in the limit q~0
just Z/2—n, (EF) if C is chosen, in atomic units, as
2Z. The RMTA, by assuming that UMT ——0 for

I
r —R;

I
& r MT (where r MT is the muffin-tin ra-

dius), does not have the correct behavior for large

I
r —R;

I
and hence is not expected to produce a

V(q) which will behave correctly at q =0. Note
that one can write

U(r) = UMT(r)+ U, (r)+ U, (r), (10)

where

(r} UpI(r/»MT}exp[qTF(» »MT}1+ 1I (11)

U, (r) is a simple function which, for qTF(rMT —r)
~g 1, reduces to a constant-potential well of depth

Up, while, for qT„(r rMT )» 1, behaves a—s the

rhs of Eq. (7). Because of the tail in U, (r), the
sum UMT(r)+ U, (r} does not satisfy Eq. (3). The
last term in Eq. (10), U1(r), has been added as to
ensure the validity of Eq. (3). Without loss of gen-

erality we took U1 (r) =0 for r & rMT and U1(0)=0.
We found that the contribution of the term U1(r)
to our final results is of the order of 5% or less.

U= UMT+ Uc

where U,'(r —R;)=const for r —R; within the
Wigner-Seitz cell and zero outside, without violating
Eq. (3). This freedom of the additive constant has
been employed "' in the literature to improve the
RMTA in conjunction with the additional simplify-
ing approximation of replacing the Wigner-Seitz cell
by a muffin-tin sphere. A variant of this approach
that utilizes phase shifts fitted to the Fermi-surface
measurements was recently proposed by
Coleridge. ' A different point of view to treat
screening in transition rather than simple metals was
taken by Pettifor. '"

In the present work we combine the idea of ad-
ding a constant-potential well to the muAin tin, with
the correct asymptotic behavior given by Eq. (7).
Thus we write (by taking from now on R; equal to
zero)
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Thus in what follows we omit the contribution of
U, (r) by taking it as zero.

Combining Eqs. (2), (10), and (11) we obtain

dU,
&) )+(=sin(5) —5i+))+ dr r R( R&+( . (12)

0 dT

The yet undetermined parameter Uo, which
characterizes the strength of the correction to the
RMTA, will be obtained by requiring the validity
of Eq. (4). Combining Eqs. (1), (4), (11), and (12)
we obtain the following linear equation for Uo.

' 1/2
F

& ( + )'
(i) +(i)~ (g ) n (i)n (i)

1/2

sin(5( —5&+, ) —U~~„

X g(1+1)'
I

(&) (&)
71I

1/2 ~~ -~MT~(1+q rFr )e /r Mi.

l(«rM~)e '+ I]'

(13)
2n, (EF )

In the first summation the I & 3 terms are negligible
due to the fact that 5I -0 for l g 3. In the second
summation one has to include terms up to l = 10 in
order to obtain convergence for all cases. Thus we
need the ratios nI/nI'" for I & 3 as well. These
quantities were not given in Ref. 3 (the results of
which are used in the present study), and are usual-

ly not available from band-structure calculations.
We have calculated nl/nI"' for I y 3 assuming
plane-wave behavior of the wave functions. This as-

sumption, following Rietschel, leads to the formula

rors of less than S~o. Also, since by construction
our potential U, produces significant correction
only near rM~, it was suAiciently accurate to start
the integration at the value r Mq —1/q~F and ter-
minte it at r = 10 a.u.

Having determined Uo we see that the correction
to the RMTA is achieved by replacing sin(5(
—5i+ i) with &()+ ( as given by Eq. (12). This re-
placement is now made in the original GG formula
for the electron-mass-enhancement factor, i.e.,

with

n( n, (EF )

n,(E,)
(14)

A, = i)/ni (p)' ), (17a)

E~ 2(l + 1)ninI+ i

(, ) (, ) Al i+( . (17b)
~n, (Z,), n, n„,

n p(EF) = EF)n
4 X

where V/N is the unit-cell volume.
Equation (14) probably underestimates the ratio

nI/nI"', which as a result, produces an overestima-
tion of Up. In the integral of Eq. (13) we have ap-
proximated R~ by the following expression:

Rl( MTkF) J1(kF MT) cos5I

+x((kFr MT)»n5i (16)

where kF ——EF and jI, yI are spherical Bessel and
Newmann functions, respectively. We have
checked this approximation in Na, K, and Pb by
using the actual APW wave function and found er-

III. RESULTS AND DISCUSSION

The Fermi energy E~, the total density of state
(DOS) n, (EF ), the partial DOS ratios nilni'', and,
the phase shift functions Ai )+ i

——sin(5) —5i+ i) re-
quired for the present calculations were taken from
Refs. 3 and 5 and are reproduced in Table I for the
15 metals indicated. In Table I we also show the
present results for the plasmon energy Q~, for q&F
and Uo, and for the intermediate quantities AI I+ i

given by Eq. (12).
Using these results and Eq. (17b) we obtain the

quantity g shown in the second column of Table II.
In the first column we reproduced for comparison
the results of i)aMrz. The values of m(p) ) were
obtained by using a parabolic a ((o)F(co) approxi-
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TABLE I. Input and intermediate quantities entering in the present calculations. Symbols are defined in the text.

Metal
Ep

(Ry)
n,

(Ry/atom spin)
Qp

(eV) O'TF
(1)n, /n, (1)

np /tip nd /nd
(1)

ny/n~
(&)

n, /no

Li
Na
K
Rb
Mg
Ca
Be
Zn
Cd
Al
Ga
Pb
In
CU

Ag

0.290
0.247
0.159
0.146
0.402
0.286
0.814
0.611
0.512
0.618
0.525
0.365
0.409
0.598
0.517

3.40
3.04
5.26
6.44
3.18

12.26
0.44
2.14
2.48
2.39
1.85
3.48
2.27
1.96
1.74

6.53
7.53
4.19
3.71
8.83
2.69
3.00

10.85
9.32

12.33
11.82
9.02
9.93
8.97
9.23

1.091
0.818
0.738
0.737
1.006
1.480
0.631
1.063
0.951
1.046
0.880
0.924
0.798
1.113
0.879

0.955
1.005
1.200
1.441
0.905
0.230
0.502
1.262
1.336
0.960
1.239
1.164
1.299
0.564
0.602

1.751
1.137
1.178
1.141
0.988
3.881
0.089
0.733
0.718
0.591
0.444
0.698
0.434
0.862
0.951

1.450
1.075
1.037
1.159
1.515
1.888
0.626
1.462
1.381
1.296
0.769
1.158
0.739
0.928
0.776

3.167
).120
0.934
0.848
1.738
3.942
0.083
1.417
1.146
1.762
1.938
1.933
1.880
0.842
0.529

1.73
1.06
1.07
1.12
1.25
3.22
0.35
1.13
0.99
1.09
0.84
1.11
0.78
1.26
0.84

mation which leads to

(Q7 )—
OH

2 1 2

where SD is the Debye temperature. For Pb and
In we used also the accurate values of (co ) based'
on the experimental determination of a (co)F(co)
from tunneling data. Comparison of these accurate
values with the ones based on Eq. (18) shows a
discrepancy of about 25%%uo which is a typical mea-
sure of the errors in the m (co ) column in Table II.
Although for some of the materials in Table II one
can use an F(~) based on experimentally deter-
mined dispersion relations, we have not done so be-
cause in order to reveal certain trends we think that
one must use consistent values for all the metals ex-
amined. However, one must keep in mind these
possible errors in m (co ), comparing theoretical
values of A, with experimental ones.

In the next three columns of Table II we present
theoretically determined values of X: kRMT& is the
RMTA value resulting from the division of gRMT~
by m (co ); A,",~„,is our present result found from

i)~«~„,and m (co ); k'""„dpresents results based on
pseudopotential calculations summarized and re-
viewed in Ref. 16, except for Be which was taken
from Ref. 17. It must be pointed out that when
APW pseudopotentials are used a correction of the
type shown in Eq. (9) has been employed. ' "
However, in this approach, the correction of U,

*

has been treated as a correction to the crystalline
muffin-tin potential, which shifts Ez to a new value
such that Eq. (4) is satisfied. This shifting of Ez

produces a respective change in the wave functions,
in contrast to our method where the wave functions
remain unchanged.

The last two columns of Table II present "experi-
mental" values of A,. The column labeled AM, M;~~,„

was obtained' by inverting the McMillan formula'
for T, and by taking T, from experiment. for Pb
and In we also show the values of A, obtained' by
directly integrating the experimentally determined
value of a (co)F(co). In the last column we present
A,'," ' which is obtained from resistivity measure-
ments as follows':

II'
Sdk

(19)

p is the resistivity, T is the temperature, k is the
Boltzmann constant, and Q~ is the plasma frequen-
cy corresponding to the optical effective mass and
given (in eV) by'

Qp ——19.59(( I F )n, )'~

where VF is the Fermi velocity calculated from the
band-structure results of Refs. 3 and 5. The quan-
tity A,,',""' is not identical to A, because it contains an
extra transport factor of 1—cos8, which is integrat-
ed over the angle 0, where 0 and q are related by

q = 2k~ sin(9/2). In obtaining A,;,""' we have used
Eqs. (19) and (20) with the quantities appearing on
its rhs determined from band-structure results.
Where no reliable value of Qz based on Eq. (20)
was available, we have employed either free-
electron values of Q~, or experimentally determined
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TABLE I. (Continued ).

g RMTA g RMTA
pd g RMTA

df

Up

(Ry)

Li
Na
K
Rb
Mg
Ca
Be
Zn
Cd
Al
Ga
Pb
In
Cu
Ag

—0.355
—0.130
—0.139
—0.131
—. 0.016
—0.225
—0.504
—0.009
—0.050
—0.092

0.171
0.404

—0.155
—0.154
—0.212

0.144
0.026

—0.059
—0.120

0.176
—0.176

0.416
0.292
0.280
0.363
0.536
0.796
0.539
0.239
0.173

0.004
0.009
0.032
0.046
0.029
0.154
0.015

—0.040
—0.064

0.062
0.011

—0.004
—0.002
—0.146
—0.151

—0.172
0.112
0.128
0.136
0.162

—0.122
0.252
0.177
0.147
0.078
0.338
0.242
0.344
0.141
0.043

0.220
0.164
0.106
0.057
0.337

—0.090
0.815
0.454
0.450
0.580
0.810
1.133
0.860
0.361
0.298

0.021
0.051
0.079
0.096
0.085
0.175
0.294
0.038
0.028
0.165
0.164
0.185
0.172

—0.079
—0.072

0.003
0.010
0.010
0.011
0.016
0.005
0.149
0.028
0.037.
0.036
0.058
0.058
0.063
0.025
0.036

—0.092
—0.120
—0.086
—0.079
—0.162
—0.050
—1.091
—0.290
—0.267
—0.309
—0.453
—0.436
—0.383
—0.356
—0.284

TABLE II. Results of the present calculations and comparison with experimental values. Symbols are defined in the
text.

Metal QRMTA

gpresent m (to )
(ev/A )

theor
~RMTA

q theor
«present

q theor
«pseud

q expt
McMillan

gexpt
tr

Li
Na
K
Rb
Mg

Ca

Be

Zn
Cd
Al

Pb

CU

Ag

0.265
0.017
0.011
0.016
0.123

0.239

0.560

0.544
0.359
0.590

0.595

1.199

0.355

0.456
0.288

0.250
0.072
0.021
0.016
0.53

0.19

1.79

1.36
0.91
1.84

1.93

2.46

1.21

0.71
0.42.

0.73
0.52
0.28
0.24
3.42

1.87

16.47

6.18
4.38
4.37

6.33

2.01
1 55'
1.19
1.61'
6.61
4.88

0.363
0.033
0.040
0.068
0.036

0.128

0.034

0.088
0.082
0.135

0.094

0.597
0.773'

0.298

0.069
0.059

0.34
0.14
0.08
0.07
0.15

0.10

0.11

0.22
0.21
0.42

0.30

1.22
1.59'
1.02
0 75'
0.11
0.09

0.41+0.15
0.16+0.04
0.13+0.03
0.16+0.04
0.35+0.04

0.25+0.04

0.26'

0.42+0.01
0.32+0.11
0.49+0.05

0.24+0.03

1.47+0.30'

0.94+0.15'

0.13+0.04
0.10+0.04

0.24+0.01

0.43+0.05
0.42+0.04
0.39+0.02
0.42+0.03
1.9+0.3"
1.30+0.20
1 55'
0.8+0.05
0.805'

0.40
0.16'
0.14
0.19
0.32
0.02
0 19"
0.05
2 Pa, b

0.67
0.51
0.41

1.93

1.79

0.85

0.13
0.13

'Q~ from the experimental value for the plasmon frequency.

Q~ froIn free-electron formula.
'From Ref. 17.
Value for amorphous Ga.

'Value based on tunneling data (see Ref. 15).
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Pseudopotentiols for Li ond No Pseudopotentiols for AI ond Zn

Q.IO-

0.05

0 QQ

O

-0.05

O.OO
00 02 04 06 0.8 l.o

q/2kF
-0.05

Q F%

-Q.I0

0.0—

—-0.2—

0.8 I.O

/2kF

0.2—

0.0
tL

&-O2

"0.8 I.O

q/2kF

-0.Io

-O.I5

-O. l 5

Al

-Q4

FIG. 1. Plot of the pseudopotential V(q) for Li and

Na. Dotted line: RMTA. Solid line: V(q) corrected.
FIG. 3. Plot of the pseudopotential V(q) for Al and

Zn. Dotted line: RMTA. Solid line: V(q) corrected.

values for the plasmon frequency as indicated.
The main conclusion to be drawn from the

results of Table II is that our correction substan-
tially improves the R,MTA. The agreement
between the present results and experimental values
is particularly impressive for Pb and In, where
there is very little uncertainty because of the
availabilty of the tunneling data. Good agreement
seems to exist also for Al, Ga (within experimental
uncertainty), Cu, Ag, Na, and Li. This agreement
could worsen if corrections to the LA and accurate
phonon-spectra averages (instead of the Debye tem-
perature) would be incorporated. However, these
two types of corrections tend to cancel each other
so that the results are not expected to change ap-
preciably. For Pb, where the correct phonon aver-
ages were used and where the LA is adequate (due
to the large umklapp scattering), the agreement
between our theoretical result and the experiment
is especially impressive. Li seems to be the excep-
tion in the sense that our correction slightly
reduces the value of A,~MT& instead of increasing it
as in most cases. Similar anomalous behavior is
also shown by Rb and Ca. For the rest of the met-
als, K, Mg, Be, Zn, and Cd, although there is a
substantial improvement over the RMTA results,
still our values of A, seem to be low. A possible ex-
planation for this remaining discrepancy is that the

band structure for Mg, Be, Zn, and Cd was calcu-
lated, not in the actual crystal lattice, but in an
"equivalent" fcc one. Part of the discrepancy may
be also attributed to the uncertainties in the
m (co') values.

Some physical insight may be gained by calculat-

ing the pseudopotential V(q) as given by Eqs. (1)
and (12). In Figs. 1 and 2 we present results for the
alkalis, and in Figs. 3 and 4, for some other charac-
teristic cases. One must keep in mind that A,

depends strongly on the values of V(q) for large q
(due to a q factor in the integrand ). On the other
hand, our correction to the RMTA value of V(q)
for large q is not expected to be reliable. The
reason is that our method is physically justified for
distances greater than rMT, while inside the muAin-
tin sphere (where it simply adds an essentially con-
stant potential), it cannot be expected to realistically
determine the correction to the RMTA. This
behavior in real space implies that our correction is
realistic for small q but it cannot be considered reli-
able for large q. As a result of the above arguments
we expect that our method will work better when
the large-q corrections to the RMTA values of V(q)
are small. This is actually the case as shown in
Figs. 3 and 4 for In, Al, and Ag, where our method
works very well. The situation is similar for Ga,
Pb, and Cu. Figure 3 shows that the large-q correc-

Pseudopotentiols for K ond Rb Pseudopotentiols for Ag ond In

& -0.05

0.03—

I

O.~'I.O

q/2kF

—-0.05

-0.06

Q.I5—

0.00
0

0.15

0.4 0,6---"
I

.8 I.O

q/2kF

0.0 I I ~ ~l
8 I.O

~-0.2
tt:
U'

' -0.4

-O.IO—

FIG. 2. Plot of the pseudopotential V(q) for K and

Rb. Dotted line: RMTA. Solid line: V(q) corrected.
FIG. 4. Plot of the pseudopotential V(q) for Ag and

In. Dotted line: RMTA. Solid line: V(q) corrected.
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tion to V(q) for Zn is small; yet our corrected value
of )(,, although an improvement over the RMTA, is
still low. As was mentioned before, we attribute
this discrepancy for Zn (as well as for Mg, Be, and

Cd, where a similar situation appears) to be the fact
that the band structure of these materials was calcu-
lated not for the actual lattice structure but for an
equivalent fcc one.

Figures 1 and 2 show that for large q the correc-
tion to the RMTA values of V(q) for the alkalis is
not small. This implies that the RMTA does not
reproduce the ionic potential correctly even within

the muffin-tin sphere. Furthermore, our essentially

constant-potential correction within the muffin-tin

sphere [and consequently our correction to V(q) for
large q] cannot be considered realistic. Because the
large-q region contributes strongly to the value of l,
we expect that our correction will not work con-
sistently well for all the alkalis. Indeed, for Na, it
works much better than K.

Finally, we have applied our method to transi-
tion metals such as V and Nb. We found no signi-
ficant correction. to the RMTA results. This is to

be expected since for transition metals, as opposed
to simple metals, the electron-phonon scattering
takes place almost exclusively within the muAin-tin

sphere, and what is happening outside the muAin-

tin sphere is of little consequence. Thus, the fact
that the RMTA omits the screened potential tail
has very little effect on the value of k.

In conclusion we have developed a simple
method to correct the RMTA in nontransition
metals. The method is producing results in better
than the RMTA agreement with experimental data
for several metals without using any adjustable
parameter.
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