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Energies of atoms, H through Ar, embedded in a homogeneous electron gas are calculat-

ed within the density-functional scheme as a function of the electron-gas density. The
energy-versus-density curves and the induced densities of states are analyzed and discussed

in terms of the interaction properties of an atom with its environment. The low-density

limit of the immersion energy is related to the electron-atom scattering length. The results

should prove useful in detailed investigations of the recently suggested "quasiatom" or
"effective-medium" approaches to chemical binding. The lowest-order estimates of the

binding energies of diatomic molecules and chemisorbed atoms are obtained.

I. INTRODUCTION

A number of properties of inhomogeneous elec-
tronic systems have been discussed from the
viewpoint of an atom embedded in an electron gas.
In this approach one generally focuses on a single
atom and examines its interaction with a host of ex-
tended. states using density functional methods. In
recent years, models of this type have been investi-

gated in, the context of, e.g., chemisorption on me-
tallic surfaces, ' impurities in bulk metals, optical
properties of pure metals, interionic forces, etc.
While it seems natural that the methods leaning
heavily on the existence of a continuum of plane-
wave-like states are best suited for systems based on
simple metals, their usefulness is by no means limit-

ed to them, at least in a qualitative sense. Many of
the crucial features of chemical binding that emerge
from the continuum-based models hold true also for
more complicated systems.

An accurate numerical solution or the problem of
an atom interacting with an electron gas can be
quite difficult, especially in cases where spatial sym-
metry is low. Quite recently, N@rskov and Lang,
and Stott and Zaremba ' have independently sug-

gested an alternative, simpler way of estimating
binding energies of atoms in electronic systems.
The Central quantity in this "effective-medium" or

"quasiatom" approach is the energy change
EE"' (no) accompanying the immersion of an
atom into a homogeneous electron gas of density no.
To a first approximation, the actual binding energy
15E of an atom is then simply given by hE"' (no),
where no is some suitably chosen average of the host

electron density over the region of the atom in ques-
tion. Systematic corrections can be derived, either
in terms of density gradients or response functions
describing the unperturbed host system. The ap-
proach, based on ideas not too different from those
behind the conventional local-density approxima-
tions for electronic exchange and correlation,
depends on the notion that the electronic structure
and total energy of any given (impurity) atom is pri-
marily determined by the immediate local environ-
ment in which it immersed. This reflects the ten-

dency to local charge neutrality (screening), which is

balanced by energy terms arising from orthogonality
and exchange and correlation.

The first applications of the effective-medium or
quasiatom theory of chemical binding for hydrogen
and oxygen chemisorption on jellium surfaces and
for substitutional hydrogen, helium, and lithium im-

- purities in simple metals ' were quite encouraging,
and reproduced the qualitative trends of more so-
phisticated model calculations. It is the purpose of
this paper to provide more data bases for this kind
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of comparison. In particular, we report b,E"' (no)
curves for atoms in the first three rows of the
Periodic Table, and examine the validity of the
theory presented in Refs. 8—10 in a number of
cases. Our general conclusion corroborates the ori-

ginal arguments: The theory, when properly ap-
plied, can be quite useful in achieving the highly
desirable goal of determining properties of compo-
site systems from those of their constituents. These,
of course, include a vast number of important phys-
ical problems ranging from construction of
potential-energy surfaces for impurity diffusion to
questions of alloy stability. We hope that the data
presented here will prove useful in further develop-
ment of a simpler approach to chemical binding.

The method of calculating bE"' (no) is briefly
described in Sec. II. Because achieving good nu-

merical convergence and accuracy is central to fur-

ther developments, the calculation techniques are
discussed iri some more detail in the Appendix. In
Sec. III we give the bE"' (no) curves and discuss
their systematics. The induced density of states and
its angular momentum decomposition are used in

further analysis of the trends. We also point out a
useful relation between the low-density slope of
hE"' (no) curve and the scattering length of an

electron scattering oA'a neutral atom. Section IV
contains a short discussion, where the results of
some simple applications of the efFective-medium or
quasiatom approach, are compared with exact cal-
culations.

[—2
V'+ u', tr(~)]l( (r) = efg,'(r) .

The effective spin-dependent potential u',a(r) is

(3)

5E„, n+, n
u:tr(r ) = P(r ) +

5n'(r )
(4)

where P(r) is the electrostatic potential of the sys-

tem, and the last term is the spin-dependent
exchange-correlation potential. The spin densities
are calculated as sums over occupied orbitals,

n'(r) = g ~lt,'(r) ~

From the spin densities the spin polarization g( r) is
obtained as

g(r) = [n +(r) —n (r)]/n(r) .

The set of equations (3)—(5) is solved self-

consistently.
In the local-density approximation the exchange-

correlation potential is

present case the external potential is due to an (im-

purity) point charge and a uniform jellium back-
ground. The corresponding positive charge is

n+(r) = no+ Z5(7),

where na ——3/4nr, is the uniform background den-

sity and Z is the nuclear charge of the atom in

question.
In the Kohn-Sham method a set of eigenfunctions

is solved from the one-electron Schrodinger equa-
tions:

II. ATOMS IN JELLIUM

In the spin-density-functional formalism" the

ground-state energy of a system of electrons is writ-

ten as functional of the electron-spin densities n (r)
(s= +or —):

5E„,[n+,n ]
5n+-(r)

+= Pxc

B6'„BF„,= e„,+ n
"' —(g+ I)

+ E„,[n+,n ]+g I V' '(nr)dr .

Here n(r) = n+(r) + n (r) is the total density.
T[n+,n ] is the kinetic energy of noninteracting
electrons and the second term on the right-hand side
is the electrostatic Hartree energy of the electrons.
E„,[n+,n ] is the exchange-correlation energy, and
the last term is the energy originating from the in-

teraction with an external potential V'. In the

where e„, is the exchange-correlation energy per
electron in a uniform polarized electron gas of den-

sity n(r) and polarization g(r). For the exchange-
correlation energy we have used the interpolation
formula presented by Gunnarsson and Lundqvist. '

This frequently used interpolation formula does not
exactly reproduce the most regent values for the
electron gas correlation energy. ' ' To see the sensi-

tivity of the result to the specific interpolation for-
mula, we calculated the immersion energy
hE"' (no) (see below) for F, also using a more re-
cent interpolation formula' for p„,. The results for
AE"' departed from those calculated using the
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Gunnarsson-Lundqvist formula by less than 0.2 eV.
In practice the zero of energy in Eqs. (3)—(5} is

defined so that the total efFective potential vanishes
far away from the atom. In the jellium model this
means that the term p'„,(no, go) has to be subtracted
from the potential (4). Here go is the polarization of
the bulk electron gas. The technique of the iterative
solution of Eqs. (3)—(5) is discussed in the Appen-
dix.

If we exclude external magnetic fields, the energy
E"' of an atom immersed in an electron gas con-
sists of kinetic, Coulomb, and exchange-correlation
terms as

Ehom g z

where the kinetic energy AT can be written as

hT = g &f + g eF(2l + 1)5f(eF)
i,s l,s

EF——g f de(2l + 1)51'(e)

As shown by Stott and Zaremba, ' the slope of
hE"' (no) can be related via the Hellmann-
Feynman theorem to the mean Coulomb potential,
i.e.,

d gE ham( & = —fdr P(r) .
dn0

(14)

This relation immediately implies a negative infinite

slope at no
——0 in cases where the free negative ion

is stable, since the integral over the Coulomb poten-
tial diverges. On the other hand, Eq. (14) as such
does not hold when no is equal to zero; a relation
which ties the slope of bE"' (no} near the origin to
the atomic properties will be discussed in Sec. III.

The atom-induced change in the density-of-spin
states bD'(e) is also of interest. If we assume that
the Kohn-Sham eigenfunctions P give a reasonable
description of the one-particle states, a simple for-
mula for hD'(e) is obtained. It consists of discrete
peaks at the bound-state energies and a continuum
part

—g f dr 4mr v err n'(r ),
S

86I'
hD'(e) = —g (2l + 1) . (15)

where the first term is a sum over the bound states

e,' & 0 below the bottom of the band, ez is the Fer-
mi kinetic energy for spin s, and 5I' is the scattering
phase shift. The Friedel sum rule requires that

The angular momentum decomposition of hD (e)
can be used in analyzing the various partial-wave
contributions to the screening of the embedded
atom.

—g (21 + 1)si(eF ) = Z .
VT

(10)
III. RESULTS

The Coulomb energy is

00

5E& ———, dr4mr [n(r) —n +(r)]0

z
X (((r) ——

r

and the exchange-correlation energy is

AE„, = f dr 4m [n(r )e„,(n (r ),g(r) )

—nor„,(no,go)] . (12)

The calculated neutral free-atom energies E„,
are given in Table I. The calculated energies of im-
mersion hE"' (no) are displayed in Figs. 1 —4 for
elements H through Ar (with the exception of P
and S, for which a satisfactory convergence
throughout the density range of interest was not
achieved). The no ——0 intercepts of the curves are
drawn to the affinities' of the negative ions when
stable.

TABLE I. Free-atom energies E,t, {eV).

b,E"' (no) = E"' (no) —E.~. (13)

Some numerical points important for an accurate
determination of E"' are discussed in the Appen-
dix.

The free-atom energy E„, ' is obtained via a
spin-polarized neutral-atom calculation, using the
same exchange-correlation functional. The energy
of immersion is defined as the difFerence

H
He
Li
Be
B
C

—13.3860 N
—77.8328 0

—200.887 F
—394.538 Ne
—664.630 Na

—1021.90 Mg

—1475.98 A1
—2031.33 Si
—2700.92 C1
—3493.94 Ar
—4398.16
—5424. 14

—6572.23
—7849.29

—12489.0
—14 320.3

Atom Energy Atom
'

Energy Atom Energy
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FIG. 1. Immersion energy EEh' as a function of
electron gas density no for H, He, Li, and Be. p is the

internal chemical potential of the electron gas.

As discussed earlier, ' the curves AE"' (no) fall

into two classes: those with a negative minimum
and those without. The former are associated with

atoms with stable free negative ions, which implies
through Eq. (14) an infinite negative slope at no ——0.
To the latter belong inert atoms, notably rare gases,
and they refIect the basically repulsive interactions
of such atoms with any electronic environment.
For high enough densities, b,E"' (no) for all atoms
become positive and approximately linearly rising,
which reflects the increasing repulsion connected
with the increase in kinetic energy due to orthogo-
nalization or exclusion from the occupied core
states. Figure 5 shows the high-density slope
(evaluated at no = 0.03 or r, = 2) of the b,E"' (no)
curves as a function of the atomic number Z.

As suggested by Stott and Zaremba, ' it is in-

structive to decompose AE"' into terms that can
be associated with (i) chemical potential effects due

)
l

I
l

I

10

dgghom
ZeA'

d+p dip
(17)

50

0 0.01 0.02 0.03
n (q.u. )

FIG. 3. Immersion energy hE"' for F, Ne, Na, and Mg.

to addition of Z electrons on the Fermi level in
embedding the (neutral) atoms and (ii) relaxation ef-

fects due to improved screening in the metallic en-
vironment. That is, AE"' is written as

AE"' (no) = ZP(no) + EE&(no),

where p = eF +p„, is the internal chemical poten-
tial of the electron gas and b,Ez is (by definition)
the relaxation or rearrangement energy. Figure l
also shows P(no) in the Gunnarsson-Lundqvist'
approximation. One's prejudice is that at high
densities the relaxation energy ATE& is only weakly
dependent on density [in the extremely-high-
density limit RPA gives AE+(no) ~ no j and will

act to compensate the rapid increase ( c:Zno ) in

the chemical potential term. This suggests a defin-
ition of Z,~, the effective number of electrons in an
atom sensitive to environment, as

6

I
E0
LLj 2

40

~30

LLI 20

10

OQ30 0.01 0.02
n, (a.u. )

FIG. 2. Immersion energy AEh' for B, C, N, and O.

0 0.01 OQ2 0.03
ll, (q.u. )

FIG. 4. Immersion energy hE"' for Al, Si, Cl, and Ar.
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FIG. 5. The high-density (r, = 2) slope of the

hE"' (no) curve as a function of the atomic number.

TABLE II. The number of electrons, Z,ff, sensitive to
the environment as defined by Eq. (17).

Z,ir, evaluated at the linear portion (rio ——Q.Q3) is

given in Table II.
The depths and positions of the minima of the

b,E"' (no) curves are tabulated in Table III. These
are simple but important parameters of the quasia-

tom description, and we will discuss their applicabil-

ity to treatment of chemical binding in Sec. IV. In
the cases of Li, Be, Na, Mg, and Si where the
minimum occurs at a very low density, we were
able to estimate accurately only the upper limits for
the minimum energies and the corresponding densi-

ties.

The curves for H, He, Li, and 0 have been re-

ported previously. For H, our results agree well

with those of N@rskov and Lang and of Stott and
Zaremba. ' For Li our result essentially coincides
with that of Stott and Zaremba, ' and for 0 the

agreement with Ref. 8 is also satisfactory. Differ-
ences with Ref. 17 arise, however, in the case of He
(Fig. 1). For high densities, the slope of our result

(275 eV/a. u.) agrees rather well with Stott and
Zaremba' but is much less than the value

375 eV/a. u. reported by Esbjerg and N@rskov. ' In
particular, we find no high-slope ( =750 eV/a. u. )

region for r, ) 10, as reported in Ref. 17. For the

other two rare gases considered, Ne and Ar, a curve

H
Li
Be
B
C
N
0
F
Na
Mg
Al
Si
Cl

0.0026
& 0.0010
& 0.0005
& 0.0025

0.0035
0.0045
0.0037
0.0010

& 0.0005
& 0.0005

0.0005
& 0.0010

0.0005

—1.8
& —0.6
& —0.2

—1.2
—1.8

14
—4.1

—5.1

& —0.6
& 0.0
—0.2

& —1.5
40

similar to that of He, a monotonously and nearly

linearly rising curve, is obtained.
The low-density limit of the b,E"' (no) curves is

interesting. In cases where the negative ion is the
correct low-density limit, the integral over the
Coulomb potential in Eq. (14) diverges: Thus the
curve starts from the affinity value with an infinite

negative slope. On the other hand, if the free nega-

tive ion is not stable and the correct limit is the neu-

tral atom (e.g., He, Ne, Ar), the slope near the ori-

gin may be related to atomic properties as follows.
At a low density, one can view the situation as

electrons scattering off a neutral atom. In the limit

n p
—+ 0, the electron-atom scattering leads to the en-

ergy change

~Ee-atom = 2~&~p ~ (18)

where a is the electron-atom scattering length.
Equation (18) is the familiar optical potential expres-
sion and is valid for any system composed of a par-
ticle interacting with scatterers when no bound
states exist. The compensating positive background
also interacts with the atom, and the corresponding
Coulomb energy is

Atom

H
He
Li
Be
B
C

Zeff

0.731
1.52
2.21
2.58
2.86
2.97

Atom

N
0
F
Ne
Na-

Mg

Zeff

3.15
3.61
4.01
4.98
5.43
6.39

Atom

Al
Si
Cl
Ar

Zeff

6.92
7.66
8.81
9.15

4nno d—r r .P,«m(r),
p

(20)

bE& ——J dr [Z5(r) —n„, (r)]Ib(r),

where n „, ( r) is the atomic electron density and

V~ the Coulomb potential due to the background.
One finds

8 00

bEs = =1l p dr r n „,m(r)
p
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where P,« is the Coulomb potential of the atom.
The total energy of immersion is in the low-density
limit 0.2

I
I

I

hE"' =DE, „, + DER .
no—A

Combining Eqs. (18) and (20), we find

dgEhom
2n.a —fdr/, «(r)

d8 p ll p~p

(21)

g 00

= 2m.a + drr n„, (r) .
3 p

(22)

Note, that the limiting form (22) cannot be obtained

from relation (14) by substituting P by P„, . The
reason is that in the derivation of Eq. (14) the
derivative dp, /dn p is needed; this diverges as n p

at low densities. The scattering length a is not

directly related to the phase shifts of an electron
scattering off the self-consistent atom potential. It
should be calculated from a self-consistent potential
including the scattering electron itself, as done im-

plicitly in the above derivation. -

Equation (22) is exact and thus provides a way to
calculate the zero-energy scattering length once
dhE/dno near no ——0 and P,«(or n„, ) are
known. In the present work, those are obtained
within the local-density approximation for exchange
and correlation. Table IV lists the calculated
scattering lengths for He, Ne, and Ar atoms; the ex-

perirnental estimates due to O'Malley' are also in-

cluded. The agreement is quite satisfactory for He
and Ne, but less so for Ar. Note, however, that the
value of a is very sensitive to the large-r behavior of
the atomic electron density n „, (r). Within the

local-density approximation, the effective potential
decays exponentially for large distances, whereas the
true potential is proportional to —r '. Thus, im-

proving on the local-density approximation would

slightly relax n,«(r) outwards, making

fdr r n,«(r) larger and consequently diminish a.

TABLE IV. The scattering lengths a (in atomic units)
of the rare-gas atoms as calculated from Eq. (22). The
experimental estimates are from Ref. 18.

I 1 I

0 5 10
~ (eV)

FIG. 6. Induced state densities AD(e) for Li, Be, and
B in the case r, = 2.

This would presumably yield better agreement in
the case of Ar. It would be very interesting to test
corrections to the local-density approximation (such
as self-interaction corrections, ' sampling function
schemes, gradient expansions ') by calculating the
zero-ehergy atomic scattering lengths from Eq. (22).

Examples of the continuum part of the induced
density of state ED(e) are shown in Figs. 6—11.
Figures 6 and 7 display the induced state density for
atoms Li through F, for the case r, = 2. Figures 8
and 9 exhibit the partial-wave decompositions of
ED(E) for Li, C, Ne, Na, Si, and Ar. As @~0,
BD(e) has a weak singularity which is due to
s-wave scattering. This divergence can be either
positive or negative [see Figs. (8)—(11)]. The
change of sign of low-energy divergence in the s-
wave contribution to the induced density of states
can simply be understood, by way of an example,
by considering scattering ofF a square well of radius
b and depth Vo ——ko/2. The s-wave phase shift is

2.0

1.5

~ 1.0

0.5

0
Atom

He
Ne
Ar

a [Eq. (22)]

0.932
0.63
1.52

a c;gpt

1.12—1.19
0.14—0.39

—1.4——1.70

-0,5
0 5 10

c (eVj

FIG. 7. Induced state densities ED(e) for C, N, 0,
and F in the case r, = 2.
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/
'P

0 5 10 EF15 20
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FIG. 8. Partial-wave decompositions of ED(e) for Li,
C, and Ne in the case r, = 2. The dashed curves give the

total induced density of states.

5p(k) = arctan 2, tan(kp + k )'~ a
k

(kp + k )'~

—ka + nm. , (23)

0.10 + g~

0.05

where n is the number of bound states in the well.
The induced state density in the limit a~ 0 is

EDp(e) = (tankpa —kpa )1/2/~kpv'e . (24)

Thus there is a divergence proportional to e ', the
sign of which changes as a function of the well

parameters. The low-energy divergence is positive
for kpa & m/2 (when there is no bound state) and

I I I

0 2 4 6
c (eV)

FIG. 10. The induced state density AD{a) for 0 at

different densities no. The arrows denote the position of
the Fermi level in each case.

before the appearance of successive new bound

states in regions between the roots of equation

tankpa = kpa and odd multiples of n/2. The

divergence is negative after the appearance of a new

bound state. Similar divergence with an alternating

sign in the s-wave density of states holds for any po-
tential decaying faster than r

As noted by Stott and Zaremba, p-wave scattering

is already substantial for Li (Fig. 8); for the other

second-row elements p-wave character increases

with Z and is totally dominating in C, N, and O.
For F the 2p electrons are bound at r, = 2 and the

conduction-band contribution to b,D (e) consequent-

ly changes drastically. It has a strong d-like charac-

ter, which is even more pronounced for Ne. In the

following row (Fig. 9), Na and Mg have nearly flat

induced state densities when r, = 2, whereas Al and

especially Si have p-like peaks. Cl binds the 3p

I
I

I

1,0

0 (

g 0.5
tD

0.

-0.2
0

I

5 10 EF 15 20
c (evj

FIG. 9. Partial-wave decompositions of ED {e)for
Na, Si, and Ar in the case r, = 2. The dashed curves

give the total induced density of states.

I I I

0 2 - 4 6
~ (evj

FIG. 11. The induced state density AD(e) for Mg at

different densities no. The arrows denote the position of
the Fermi level in each case.
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electrons and, not surprisingly, shows structure
resembling F.

The dependence of the induced state density on
the jellium density is displayed in Figs. 10 and 11
for 0 and Mg, respectively. The figures show the
formation and movement of a p-like resonance
within the Fermi sea. It is also noteworthy that Mg
binds the 3s electrons when r, ~ 3 and therefore the

singularity changes sign when going from

r, = 2 to r, = 3. One can also note, especially in

the case of 0, that the peak in the induced density
of states is rather fixed in energy and does not fol-
low the Fermi level.

IV. DISCUSSION

The quasiatom or effective-medium approach to
chemical binding is appealing. In its simplest form,
the uniform density approximation, the ansatz sim-

ply states that the binding energy Ez of an atom to
any inhomogeneous electronic medium is given by

Ez ——hE"' (n(r = 0)), (25)

where n(r = 0) is the host electron density at the
site where the (impurity) atom nucleus is placed. A
useful improvement is to use instead of the local
density the effective "sampled" density around the
nucleus. If the sampling function is chosen to be
the induced Coulomb potential in a homogeneous
medium, the leading correction to Ez reduces to the
simple first-order electrostatic energy. " Further
corrections can be systematically obtained, e.g., in

terms of density-density response functions for the
embedded atom.

Detailed investigations of various systems will be
necessary to reveal the general applicability, conver-

gence, and accuracy of the quasiatom approach.
Here we restrict ourselves to some simple and gen-
eral observations. Table V lists the average bind-

ing energies of those diatomic molecules, where one
of the atom belongs to the group considered in Sec.
III. Also, the mean-square deviations are listed.
Two entries are given for each atom: The first en-

try includes all diatomic binding energies tabulated
in Ref. 22; the second, labeled "metallic, " includes

only those where the second atom belongs to the
metallic elements of the Periodic Table. Upon
comparison with the minimum ~R"' energies of
Table II, one notes that the correlation is certainly
suggestive, especially when the atom in question ei-

ther forms a good metal or is strongly electronega-
tive. On the other hand, the correlation seems to
be quite poor in cases where the atom is known to
have the tendency to bond covalently. Whether ef-

fects like covalency can be'incorporated in, say,
corrections to the uniform-density approximation,
remains an interesting question worth investigat-

ing.
A straightforward test case, already considered in

Refs. 8 and 10, is atomic chemisorption on simple
metal (jellium) surfaces. This problem has been in-

vestigated in detail using density-functional methods,
and the results' for the binding energy and equilibri-

um distance from the jellium edge are collected in

TABLE V. Average experimental bond strengths and their standard deviations for dia-
tomic molecules. The right-hand column includes only molecules with a metallic partner.
The number of molecules is given in parentheses. Data from Ref. 22.

Atom E~ (ev) E g ("metallic" )

H
Li
Be
B
C
N
0
F
Na
Mg
Si
Cl

—2.7 +
—3.9 +
—3.6 +
—4.8 +
—5.8+
—4.6.+
—5.1 +
—4.8 +
—22+
—2.5+
—4.1+
—3.4+

1.0 (n = 43)
1.5 (n = 6)
1.5 (n = 6)
1.5 (n = 17)
1.8 (n = 20)
1.9 (n = 17)
1.8 (n = 70)
1.3 (71 = 32)
1.5 (n = 6)
1.0(n =6)
1.0 (n = 16)
09 (n = 33)

—2.2+0.7 (n = 26)
—1.0 (Li2)
—0.7 (Be2)
—4.3+0.8 (n = 8)
—5.9+0.6 (n = 7)
—4.8 + 1.1 (n = 4)
—4.3+ 1.5 (n = 20)
—4.9+ 0.9 (n = 17)
—0.7+ 0.1 (Na&, NaRb)
—1.5+ 1.1 (n = 3)
—3.6+0.8 (n = 9)
—3.7+0.6 (n = 23)
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Table VI. The final entries in the table are the sim-

ple uniform-density-approximation estimates for
those numbers. These can easily be read from the
curves of Sec. III once the density profile for the
pure jellium surface is at hand. Again we notice a
good overall agreement, which gives support to the
basic soundness of the quasiatom concept. (Also
the form of potential energy curves near the chem-
isorption minimum is rather well reproduced. }

One immediate application of the quasiatom ap-
proach is the construction of an eAective interatomic
potential. In the region where the b,E"' (no) curve
is linearly rising with density, the interaction energy
of an atom with its environment is a hnear function
of the density. If the total density is imagined to be
constructed as a superposition of (pseudo)atomic
charge densities, the linearity of b,E"' (n 0) implies

that the total energy of interaction of an atom with

the surrounding ones is also obtained as superposi-
tion of interaction energies, i.e., there is a well-

defined interatomic pair potential. This idea may
turn out quite useful in obtaining potential-energy

, surfaces, and indeed Esbjerg and Ngrskov' have

analyzed He scattering from metal surfaces in these
terms.

In conclusion, energies of immersion of atoms H
through Ar in a homogeneous electron gas have

been obtained in the density range r, .= 2—8 using a
self-consistent solution of density-functional equa-
tions. These energies contain useful information
about the binding characteristics of atoms in a form
which promises to be most useful in a number of
applications. Further work will be necessary to in-

vestigate the accuracy of a perturbative approach to

TABLE VI. Chemisorption energies and distances for atoms on jellium surfaces, evaluated
in the uniform density approximation using density profiles from Ref. 23, and Figs. 1 —4.
The right-hand columns for r, = 2 are the exact results of Lang and Williams (Ref. 1).

fz = 2
Atom

Uniform density approximation
Energy (eV) Distance (a.u.)

Lang and Williams (Ref. 1)

Energy (eV) Distance (a.u. )

H
Li
Be
B
C
N
0
F
Na
Mg
Al
Si
Cl

—1.8
& —0.6
& —0.2

—1.2
—1.8
—1.4
—4.1
—5.1

& —0.6
0.0

—0.2
& —1.5

—4.0

1.6
& 2.3
& 3.0

1.6
1.3
1.1
1.3
2.3

& 3.0
& 3.0

3.0
& 2.3

3.0

—1.5
—1.3

—5.4

—0.9

—3
—3.6

1.1
,2.5

3.1

2.3
2.6

r, =4
Atom

Uniform density approximation
Energy (eV) Distance (a.u.)

H
Li
Be
8
C
F
Na
Mg
Al
Si
Cl

—1.8
& —0.6
& —0.2

—1.2
—1.8
—5.1

& —0.6
0.0

—0.2
& —2.5

—4.0

—1.1
& 0.6
& 1.5
—1.0
—2.1

0.6
& 1.5
& 1.5

1.5
& 0.6

1.5
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chemical bonding based on the quasiatom or effec-
tive medium concept.

APPENDIX: NUMERICAL TECHNIQUES

Iteration

The iterative solution of Eqs. (3)—(5) has been
obtained using the technique of Manninen et al.
The r axis was discretized into a Herman-
Skillmann mesh consisting of 11 blocks, each di-

vided in to 40 intervals. In the free-atom and ion
calculations the step length in the first block was
taken as

der = 0.00125(3'/4) Z

In the jellium calculations, the step lengths were
shortened to make the interval in the outermost
block small compared to the wavelength m/kF of
the Friedel oscillations. This was accomplished by
choosing the largest r-value R o to be approximately
five times r, . Beyond this point the scattering state
solutions were fitted to their asymptotic forms

[cos5((k)ji(kr) —sin5((k)n((kr)] . .

Partial waves up to l = 10 were included. The
k-space integrals were performed using Simpson's
rule on a mesh consisting of up to 61 equally
spaced points from 0 to kF. As the starting poten-
tial we have found it convenient to use the Thomas-
Fermi potential of the free atom as given by the in-

terpolation formula due to Latter.
In some cases a very shallow bound state appears

below the bottom of the band, or a pronounced res-
onance may develop near the Fermi level. Then, in

addition to the inherent stability afForded by the
screened-kernel iteration of the Hartree potential,
special care is necessary in order to obtain true con-
vergence. For example, the resonance in the con-
duction band may move across the Fermi level in

successive iterations and cause large fluctuations in

the screening cloud and thus in the effective poten-
tial. A commonly used method to improve stability
is to feed into an iteration a linear combination of
the initial and final potential from the previous itera-
tion:

V' +"(r) = [1 —A(r)]V«(r)

+ A (r) V,g(r), (A2)

where V,~(r), V,g(r) are the intial and final poten-
tials of the mth iteration, and A (r) is a feedback
function. The simplest choice is to use a constant

A (r).
In the Pratt improvement scheme the initial po-

tential of the next iteration is calculated from initial
and final potentials of two latest iterations:

V(m+1)i( )

V(m —1)i( ) Vmj"( ) Vmi( ) V(m —1)f( )

Vim —i)i(r) + Vmg(r) Vm~(r) —V™1)f(r)

(A3)
This means that one attempts to find the self-
consistent potential (which satisfies V,~ ——V,(r) by
interpolating or extrapolating from the points

(V, ((rr), V mf(i(r)) and (V,'(r '(r), V,'g. 'f(r)) to the
line V' «(r) = Vf«(r).

The feedback function A (r) of Pratt's scheme can
be solved from Eqs. (A2) and (A3). In the modified
Pratt's scheme, which we have used, only the values

between 0 and 1 are allowed to A (r). If the calcu-
lated A (r) ~ 1 it is replaced by l. If A (r) & 0 it is

replaced by a suitably chosen constant. Our
method differs slightly from the modified Pratt's
scheme used by Herman and Skillmann: They al-

lowed A (r) to vary only between 0.5 and 1. This
difference is important because in some cases (see
below) the feedback function has to be as small as
0.1 —0.2 in order to ensure convergence.

The modified Pratt improvement scheme turns
out to be powerful when there is a resonance in the
density of states near the Fermi level. Examples of
this kind of system are 3d impurities in aluminum
and C, N, and 0 atoms in jellium. The origin of
the resonance is in the former case resonant d-wave,
and in the latter case resonant p-wave scattering. In
these systems the Pratt improvement scheme makes
the iteration process converge faster than the use of
a constant feedback parameter, because in Pratt's
scheme A (r) is in these cases a decreasing function
of r. Far away from the impurity, where the contri-
bution from the resonance to the total electron den-

sity is dominant, the feedback function A (r) is
small, which increases stability. In systems where
the resonance is near the bottom of the conduction
band (e.g., C, N, and 0 atoms in low-density jelli-
um), the iteration process did not converge even if
we used the Pratt scheme. In those cases the
resonant electrons in successive iterations sometimes
bind and sometimes form a resonance peak above
the band bottom. When there is no resonance the
iteration process converges rapidly by simply using
a constant feedback function A (r), and the Pratt im-

provement scheme is necessary only in the reso-
nance cases.
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Evaluation of total energy

In the r-space integrals in Eqs. (9), (11), and (12)
the limit r = 00 has to be replaced in numerical cal-
culations by the cutoff radius R 0 of the integration
mesh. This cutting leads to an R 0 dependence in

the calculated total energy. The dependence is larg-

est in the exchange-correlation energy. The in-

tegrals in the Coulomb and kinetic energies depend
only weakly on R 0, because in the integrands two
oscillating functions, charge or spin density and po-
tential, are multiplied. We have removed the R 0
dependence in the exchange-correlation energy by
evaluating the correction term (which is valid when

0o = O)

de„,(n, O)
E„,(n'o, O) + no

dig n=no

Ro Ro
Z —I [n(r) —no]4m dr =p„,(no, O) Z —f [n(r) —no]err dr

I

(A4)

The correction (A4) is the leading term when the
exchange-correlation energy density e„,(n, O) is ex-

panded in a series around no and the integral is cal-
culated analytically from R 0 to infinity.
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