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On the basis of a simple model of a simple cubic crystal, calculations are carried out of
the mean-square displacement of an atom in a thin film of I. layers bounded by two free

(001) surfaces. The results are compared with those for a semi-infinite crystal bounded by
a single free (001) surface for atoms at the same distance from the surface. The conditions

under which the two sets of results are in essential agreement are established.

I. INTRODUCTION

Although the calculation of the mean-square dis-

placements of atoms in the surface 1ayers of a semi-

infinite crystal has a long history, ' such calculations
have acquired a particular significance in recent
years due to the important role played by mean-

square atomic displacements in theoretical calcula-
tion of low-energy-electron-diAraction intensities.

At the present time the most detailed calcula-
tions of the mean-square displacements of atoms at
crystal surfaces are carried out by representing a
semi-infinite crystal in the form of a thin film, or
slab, of a comparatively small number of atomic
layers (of the orders of 20). The normal-mode fre-

quencies and the corrresponding polarization vec-
tors for such a crystal film can be obtained by
purely numerical methods on a high-speed comput-
er, and are then combined to yield the mean-square
displacements as functions of the distance into the
film from the surface according to well-known ex-
pressions. "

The number of layers in a crystal film used in
such calculations is determined primarily by the
length and cost of the computational efFort involved
in obtaining the normal mode frequencies and polar-
ization vectors for the film, and in the subsequent
calculations of the mean-square displacements.
Nevertheless, it is genera11y felt that the film

thicknesses employed in these calculations are large
enough that effects due to the finite thickness of the
film are unimportant. Put another way, it has been
felt that the approach of the mean-square displace-
ment toward its limiting bulk value with increasing
distance into the crystal from its surface is so rapid,
occurring within a distance of the order of half a
dozen or so atomic layers, that by the time a film is

of the order of 20 layers thick the influence of the
second surface on what is happening in the vicinity
of the first is negligible.

That this may in fact not be the case is suggested
by the results of two recent calculations of the
mean-square displacements of atoms in a semi-
infinite crystal; the first carried out by the methods
of lattice dynamics, the second by continuum
mechanics. Both of these calculations agree in
showing that the mean-square displacement ap-
proaches its limiting bulk value very slowly: The
surface correction to the limiting bulk value de-
creases as only the first power of the. inverse dis-
tance into the crystal from the surface. The ex-
istence of this long "tail" to the single surface con-
tribution to the mean-square displacement suggests
that the presence of a second surface on a film may
affect the values of the mean-square displacement
for atoms in the vicinity of the first surface in a
quantitatively non-negligible way.

In fact, in actual calculations of the mean-square
displacements by the slab method, where the results
are intended to represent mean-square displacements
in a semi-infinite crystal, the rate of approach of the
mean-square displacement to its bulk value with in-
creasing distance into the crystal from the surface is
accelerated by suitably adjusting the ratio of the la-
teral extent of the crystal to its thickness. This is
done through the choice of the values of the two-
dimensional wave vector in the plane of the surfaces
that serves as a partial label for the normal modes
of the slab, since their density is related to the la-
terai dimensions of the slab through periodic boun-
dary conditions on the atomic displacements in
directions parallel to the surface. How this is done
and why it works will be clear from the analysis
presented in this paper.
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In this paper we obtain the variation of the
mean-square displacement across a thin film of a
crystal as a function of the number of atomic layers
in the film and compare the results with those for a
semi-infinite crystal. In this way we can answer
such qualitative questions as the nature of the differ-
ence between the mean-square displacement of an
atom in a thin film and an atom in a semi-infinite

crystal, and such quantitative questions as the condi-
tion under which calculations based on a film can
yield results approximating those for a semi-infinite

crystal, with a specified error.
In order to make this kind of comparison most

accurately it is desirable, perhaps even necessary,
that the calculations be carried out analytically.
This requirement demands in turn the use of a
rather simple crystal model in our calculations. We
have chosen to use the so-called Montroll-Potts
model of a simple cubic crystal with nearest-

neighbor, central, and noncentral force interactions
between atoms. This model is well known not to
satisfy the conditions imposed by the requirements
of infinitesimal rotational invariance; it does not
give rise to Rayleigh surface waves on a (001) sur-

face such as we consider here. ' A film based on it
also does not possess the plate modes in the long-
wavelength limit predicted by continuum theory. "
Nevertheless, these deficiencies of the model are

unimportant for the physical properties we are con-
sidering, for which the existence of Rayleigh waves

and plate modes is inessential.
The only related work of which we are aware is

that of Corciovei and Berlinde, ' who also studied
the mean-square displacement of an atom in a thin

film of a Montroll-Potts crystal bounded by (001)
free surfaces. Thes'e authors, however, averaged this

quantity over the thickness of the film and calculat-
ed the resulting average as a function of the thick-
ness of the film. In contrast, we obtain the mean-

square displacement at any lattice site within the

II. DYNAMICAL GREEN'S FUNCTION
FOR A CRYSTAL FILM

In this section we obtain the dynamical Green's
function for a thin film of a simple cubic crystal
with nearest-neighbor, central, and noncentral force
interactions between atoms. The film, which con-
sists of L layers, is bounded by a pair of (001) sur-

faces.
We construct the film in the following way. We

begin with an infinitely extended simple cubic crys-
tal whose lattice translation vectors are given by

x(l) =a o(t i,l2,13), (2.1)

where a o is the lattice parameter, and l i,l z,l3 are
any three integers, positive, negative, or zero, which
we denote collectively by l. We then excise a film

of L layers by equating to zero all interactions
between atoms in the plane l3 ——0 and atoms in the
plane l3 ——1 and between atoms in the plane l3 —L
and atoms in the plane l3 ——L + 1, and then re-
stricting l3 to assume only the values 1(l3 (L.

The time-independent equations of motion of the
infinite crystal perturbed by the annulment of the
interactions between the layers l 3

——0 and l 3
——1

and between the layers l3 ——L and l3 ——L + 1 can
be written in the form

(L' ' —5L'"—5L' ')u=0 (2.2)

where the elements of the matrices L' ', 6L'", and
5L' ' are given by

fi1m.

In Sec. II we will obtain the dynamical Green's

function for a thin film of a Montroll-Potts crystal,
bounded by a pair of (001) free surfaces. This result

is used in Sec. III in a calculation of the mean-

square displacement of a typical atom in the film in

the classical, or high-temperature, limit. The results

of this calculation are discussed in Sec. IV.

L~'(ll';cd)=5~p[Ma) 5i i 5i i 5i i +y(5i i ~,5i I 5I i +5( I'+i5i i'5i i'
11 22.

1)I l 1212 i 1313 1 )12 1212 + 1 1313 1 ll ) 1212 1313 i

I )I I I2!2 13!3 + i I )I ) l~l2 l3l3 (2.3a)

5L~(ll')= —5&py51
&

5& I (5i,o 5i, i)(5I, O
—5I, i)—

I

5L~'(/l')= —5~y5 5 (5i r, —5i I, +i)(51 ~
—5i ~ ),11 22 3 3 3 3 +

(2.3b)

(2.3c)
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where M is the mass of an atom in the crystal, and

y is the nearest-neighbor force constant. To simpli-

fy the Montroll-Potts model further, we have as-
sumed that the central and noncentral force con-
stants are all equal. In these expressions a and P
label the Cartesian axes. The matrix L' ' describes
the vibrations of the infinitely extended crystal;
5L"' subtracts the interactions between the planes

l3 ——0 and I3 ——1; 5L' ' subtracts the interactions
between the planes l3 ——L and l3 ——L + 1.

We now define three Green's functions,
G~tt(ll', co ), G~p'(ll';co ), and U~tt(ll';co ) as the
solutions of the equations

(2.4a)

tions. The N allowed values of the wave vector k
ll

are therefore given by

2' X N
k~~= (mi, mz, O), ——+1&m(,mz&-

Sao

(2.6)

where m
&

and mz are integers. The area swept out
by the allowed values of k

ll
is the two-dimensional

first Brillouin zone for this problem.
When we substitute Eq. (2.5) into Eq. (2.4a) and

use Eq. (2.3a) we find that the Fourier coeAicient
6 ( k)(a)

~
lily ) satisfies the finite diA'erence equation

6 (k ~)t0 ~
1z+

llew

) —2/6(k {(co ~ lilac )

(L(0) gL(1))6(s)

(L(0) gL(1) gL(2))U

(2.4b)

(2.4c)

1+6 (k)(co
I

1z
—11' ) =—6, , (2.7a)

l3l3

In each case» is a unit matrix with elements
6 p6II . The Green's function 6 is that for an in-

finitely extended crystal; 6' ' is the Green's func-
tion for a semi-infinite crystal occupying the region
I3 & 1; U is the Green's function for the film de-
fined by 1 &I3 &L.

To solve Eq. (2.4a) we represent G~t)(ll', co ) in

the form

Mg= 3 —cos k (a 0—cos kza o— (L)

2p

which has the solution

(2.7b)

(2.8)

where

i(l3 —I3 )8

G(k))co ~1313 ) = do
4iry —~ cos 8 (+ie—

1
l13—13 l

+1

y t —1

(2.5)

which reflects the periodicity our system retains in

directions parallel to the surfaces about to be intro-
duced. In this expression x)((l)=ao(li, lz,O) is a
two-dimensional position vector parallel to the sur-

face, and kll =x&k& +xpkg is a two-dimensional
wave vector parallel to the surface, where x I,xz are
unit vectors in the 1 and 2 directions. %e assume
periodic boundary conditions in the 1 and 2 direc-
tions, with the periodicity element being a square
with edges of length Xao along each of these direc-

(2.9a)

(2.9b)

(2.9c)

We have introduced a positive infinitesimal ima-
ginary part ie into the denominator of the integrand
in Eq. (2.8) to define the manner of treating the pole
that it would otherwise have on the real axis.

The solution for 6 t)(ll', co ) just obtained enables
us to solve for G~t)'(ll';a) ). We rewrite Eq. (24b)
as an integral equation for this Green's function:

G'p'(ll', co ) =G p(ll', co )+g QG tt(11";co )5Lr's'(1"1'")Gstt'(I"'/', co ) .
I"y I"'y

(2.10)

To solve this equation 4'e expand 6 't)'(ll', co ) in the form

(2.1 1)

and exploit the separable nature of the matrix 5L 'p'(ll') to obtain the equation satisfied by the Fourier coeffi-
cient 6' '(k~~co

) l&l& ):
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6' '(ki[co
I
1313 }=6(k][coI1313 ) —y[6(k][co I130)—6(k)(co I

l, l }1[6'"(ki[co1013) —6' '(k~[co
I

1/3 )] .

2999

This equation is readily solved with the result that

(2.12)

[6(k~~~ I
130}—6(k~~~1131}1[6(k~yI

013 ) 6(k[[~ I113 )16' '(k~ ~co I 1313 ) =6(k ~~co I 13 3 ) —y
1+2y[G (k((co I

00)—6(k))co I
10)]

(2.13)

If we now restrict l3 and I3 by the condition /3, I3 & 1 we can simplify this result considerably. We substitute
the result given by Eq. (2.8) into Eq. (2.13) and obtain the simple result that

6' '(kiico I1313 )=-
7 t' —1

13+13

+—',
& t —1

(2.14a)

=6(k((co I1313 )+6(k))co I13—1,—13 ), (2.14b)

a result first obtained by Dobrzynski and Mills. '

We come finally to the Green's function U~p(ll', co ). Its defining equation, Eq. (2.4c) can be rewritten as an
integral equation with the aid of Eq. (2.4b):

U it(ll', co }=6' '(ll'co )+g QG' '(ll" co )5L' '(1"1'")Ustt(l"'1',co )
l"y l"'5

We expand this Green's function according to

(2.15)

U p(ll';co )= Q U( k [[co I 1313 )+2
k)(

The equation satisfied by the Fourier coefHcient U(k ~~co I1313 ) is

(2.16)

U(k((co
I
1313 )=G' '(k((co I1313 ) —y[G' '(k((co

I
13L)—6' (k(p I13L+1)][U(k((coILls )—U(k((co IL+113}],

(2.17)

and its solution is

U(k~~co I1313 )= 6' '(k~~co I13 3 )

[6'"(k()~
I
13L) 6' '(k[[m

I
13L+1)][6' '(k[[m

I
L13 ) —6' '(k[[m IL+113 )]

1+y[6' '(k~~co ILL)—26' '(k~~co
I
LL+1)+6' '(k~~co

I
L+ lL+1)]

(2.18)

If we now use Eq. (2.8) and restrict 13 and 13 by the conditions 13,13 (L, we can simplify Eq. (2.18) consider-
ably. We obtain finally the result that

i l3 —13 ( +1
U(k((co II,I,

' )=-
y' t —1

I
l3+ l3 2L I I . I

1 t 1 t t l3 l3 + 1 l3+l3 l3 l3 13+l3+ + 3 (t , +t +t ).
y t' —1 yt' —11—t'
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We now proceed to utilize this result for the deter-
mination of the mean-square displacement of an
atom in the film.

III. THE MEAN-SQUARE DISPI.ACEMENT
OF AN ATOM IN A THIN FILM

The results of the preceding section enable us to
obtain the mean-square displacement of an atom in

a thin film. Our starting point is the relation
between the mean square displacement and the
Green's function'" U~p(11'

~

aP):

(u (1))= ksT g—U~~(ll
~

—II„), (3.1)

where Q„=(2mnlPfi), and P =(k&T) ', with ks
Boltzmann's constant and'T the absolute tempera-
ture. In the high-temperature, or classical, limit,
which is the only one we consider in this paper, the

only nonvanishing contribution to the sum on the
right-hand side of Eq. .(3.1) comes from the term

with n =0:

k ]Qp= Q] k2Qp= p2 —~( gi g2 (~

(3.5)

Then on substituting the first term on the right-hand
side of Eq. (2.19) into Eq. (3.3) we obtain for
(u~(l))s the expression

(u,'(1))&—— f d8, f d8,
y ' o 1 —r''

where now

(3 6)

ment in an infinitely extended crystal. The second
term is the correction to the bulk contribution to the
mean-square displacement that arises from the pres-
ence of a single, planar surface bounding a semi-
infinite crystal. The last contribution represents the
effect on ( u ~(l) ) of the presence of a second,
planar bounding surface, parallel to the first, creat-
ing a film of L atomic layers. We consider each
contribution in turn.

We replace the summation over k~~ by an integra-
tion, and make the changes of variables

(u~(l))= ksTU~~(l—l ~0), T~oo . (3.2)

With the aid of Eq. (2.16) we can rewrite Eq. (3.2)

AT
, g«1 ~f 11313) . (3.3)

(=3—cos8I —cos8z) 1 .

We now use the facts that

From the form of U(k ~~co ~
l313 ) given by Eq. (2.19)

we see that we can write (u~(/) ) as the sum of
three contributions: and

t 1

2(g2 1)I&2
(3.8)

(u~(l)) = (u~(1))s+ (u~(l)) Is+ (u~(1))2s .

(3.4)

cos183 [g (g& 1 )I/2j
d63r g cos83 (g~ —1)Ii

The first term is the bulk contribution to the mean-

square displacement, i.e., the mean-square displace- to rewrite Eq. (3.6) as

(3.9)

k~T l ~ ~ ~ dO)d02d03 kg T
(u '(l) )~ —— = (0.505 46)

2y P o » 3 cos8, c—os82 c—os83- 2y
'

since the triple integral is recognized as the third of the three famous Watson integrals. '

The contribution ( u (l) ) Is can be written in the form

32l

(u~(l))is —— f d8I f d82
y 0 0 1

With the aid of Eqs. (3.8) and (3.9) we can rewrite this expression in the form

cos(2l3 —1)83
(u (1) ) is = dOi d82 d83

2y g o o o 3 —cos8I —cos82 —cos83

(3.10)

(3.11)

(3.12)
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The values of this integral for the first two values of
13 are

We come finally to the contribution ( u (1))qs.
This can be written in the form

AT
(u~(l))is —— (0.17213), ls ——1

2y

AT
(0.05509), 13——2 .

2y

(3.13a)

(3.13b)

AT
(u (l))2s ——

~ f d8if "82

It is shown in the Appendix that the integral

1I(l)= f d8 f d8, 1 &0 (3.18)

(3.14)

in the limit of large l has the asymptotic expansion

I(1)- +
&

+O((l —1) ) .1 1 1 1

4m' 1 —1 16m (1—I)s

(3.15)

It follows, therefore, that in the limit of large k3

AT
4m@ (21 —1)

4(213
—1)

(3.16)

a result obtained previously by Dobrzynski and
Lajzerowicz.

It should be pointed out that the result given by
Eq. (3.16}which has been obtained under the as-

sumption that 213—1 is large, is quite accurate even

for the smallest values of l3, viz. , l3 ——1,2. Indeed
we obtain from Eq. (3.16) the results that

k~T
(0.19894), li ——1

, 2y
(u (1))is—'

1 7
(0.05453}, ls ——2 .

2y

(3.17a)

(3.17b)

The first value is in error by 15.5%o, the second is in
error by only I'//o.

The integrand in this expression has a singularity in

the vicinity of the point 8i ——82 ——0. This is

characteristic of the integrand in the expression for
the mean-square displacement of an atom in a thin

film. We dea1 with this by excluding from the in-

tegration over 0& and 02 a circular region centered
at the origin whose radius e is of the order of the
magnitude of the smallest allowed wave vector k ~~.

The physical reason for this exclusion is that the
three normal modes of vibration of a Nm at the
point k~~ =0 (8i ——82 ——0), whose frequencies van-

ish by infinitesimal translational invariance, describe
a rigid-body displacement of the film as a whole.
Such a displacement should be exlcuded from a cal-
culation of the mean-square displacement of an

atom, since this dynamica1 property is properly as-
sociated with the oscillatory, not translational,
motion of the atom about its rest position. Since the
mean-square displacement is given by a sum over
the values of the wave vector k

~~
allowed by period-

ic boundary conditions [see Eqs. (3.3) and (2.6)], we
can effect this exclusion by omitting from the sum
in Eq. (3.3} the term with k

~~

=0. However, since
we are approximating this sum by an integral, in
view of the dense distribution of the allowed values
of k

~~

=0 throughout the two-dimensional first Bril-
louin zone, this exclusion is equivalent to removing
from the region of integration a square of edge
(2ir/Nao) centered at the point k~~ =0. For simpli-

city, we replace this square by a circle. If the area
of the excluded circle were to equal that of the ex-
cluded square, its radius in 8 space would be
a=2m'~ /N. It is this value we will assume for e
We now rewrite Eq. (3.18) as

yg „, 1 —t'

co

g [I,(2nL 21&+2)+2I,(2nL—+ 1)+I,(2NL +21i)],
n=1

(3.19)
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where the primes indicate that the integrals run from (0(+Oz)' &e, and I,(1) is the integral that results
when a circle of radius e centered at 01 ——02 ——0 is excluded from the domain of integration in the integral
on the right-hand side of Eq. (3.19). It is shown in the Appendix that the asymptotic form of i,(l) in the
limit of large l is

1,(l)-e " + [I+E(l —1)+ , ~'(l——1)'+—„E'(l—I)']
4ir(l —1) 16m.(l —1)

&6(e(l —1))+0 (3.20)

where P6(x) is a. sixth-degree polynomial in x.
When the result given by the first terin on the right-hand side of Eq. (3.20) is substituted into Eq. (3.19) we

obtain the result that

e(2nL——21 + I ) 2 L —E(2nL +21&—I)
ao e 3 e

—t ll

+2
4n.y „, 2nL —2li+ 1 2nL 2nL +2lg —1

These sums diverge unless e is kept nonzero, reflecting the singularity in the integrand in Eq. (3.1g).
plify the notation, let us introduce the definition

I3——
a=

L

so that 0&a & 1. Then Eq. (3.21) takes the form

(3.21)

(3.22)

AT ~ e e
—n (2')

(u 2(l) )(() y, e(2')a+ 2
8wyL „1 n —a n

—n (2')+' e
—(2eL)a

n+a
(3.23)

%e rewrite this as

(u~(l))2s' ——

SmyL

oo e
—(1—a)u —(1+a)u—2ln(1 —e ')+J du + I du (3.24)

where we have used the integral representation

(3.25)

valid for real, positive x.
Since @=2m' /X, we have that

2' =4' L/iv=5 « 1, (3.26)

because N can be of the order of 10 for a physical film, while L might range from 10 to 10 . We therefore
evaluate the right hand side of Eq. (3.24) only to the leading nonzero order in 5. To this end we write

(u.'(l) )2",'=,
8myL

00 e
—(1—a)u —u—21n5+5+ O(52)+2E((5)+ I du

u

oo e
—(1+a)u —u

+ du
u u

(3.27)
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where E i(5) is the exponential integral. For small

5 we have the expansion'
=0 directly in the reslting sum with an error of
0 (5/L ). We do so and obtain

$2
E,(5)= —ln(C5)+ 5——+O(5'),

4
(3.28} u (I) ps =(2) kg T

128rryL „ i (n —a)

where C = 1.781072... is Euler's constant. We can
replace the lower limits on the integrals by zero,
with an error of the order of 5. In this way we ob-
tain the result that

+ 3 +2 1

n (n+a)i

(u (I) }zs'—— [ —41n(C'~ 5)—Pl —a)
8myL

[2g(3)——,f( '(1 —a)
128myL

f(1+z)= i)j(z)+ 1/z (3.30)

—,P(1+a)+O(5)], (3.29)

where g(z) is the psi (digamma) function. ' The re-
currence formula'

——,P' '(1+a)], (3.32)

where g( '(z} is a polygamma function. ' The re-
currence formula'

enables us to rewrite this result finally in the form

kg T
4iry (21 —1)

+ [ —41n(C'~ 5)
k~T

8myL

—(tt(1 —a ) —P(a )],
(3.31)

p( )(I+z) =l(t( '(z)+2/z

enables us to write Eq. (3.32) finally as

u (I) 2s ———4~ 1

16m}' (2I3—I )3

+,[2g(3)——,g"'(I —a)
128myL

) y(2)(a)]

(3.33)

(3.34)

with an error of the order of 5/L.
With the second term on the right-hand side of

Eq. (3.20) is substituted into Eq. (3.19), we can set e

with an error of the order of (5/L ).
Combining the results of Eqs. (3.31) and (3.34)

we find that

k~T

4~ (2I,—1)

k~T 1 AT+ [—41n(C' 5)—l((a) —p(1 —a)]
16m) (2I3—1)3 8~L+,[2g(3)——,i)""(a)——,1("'(1—a)]+

128~L
(3.35)

We have therefore obtained the result that the mean-square displacement of an atom in a thin film of L
layers is given in the classical limit by

(u~(l) )r) = (0.50546) + [—41n(C' 5}—g(a) —g(1 —a)]
2y 8~L

+ AT
3 [2g(3}——,P( '(a) ——,g( '(1 —a)]+ .

, 0&a &1.
128myL

(3.36)

This result is manifestly symmetric about the point
a = —,, which corresponds to the midpoint of the

film, as would be expected.

For comparison the mean-square displacement of
an atom in a semi-infinite crystal is given in the
classical limit by
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(u (I));=(0.50546)
k~T k~T 1

Zy SmyL a

AT+ 3+ . , a&1
128myL a

(3.37)

500 -t

400—

in the same notation.
%e conclude this section by presenting the result

for the mean-square displacement of an atom in the
surface layer (ls ——1) of a thin film of L layers. In
this case we have that a =1/2L « 1. We use the
small-z expansions' '

g 1+z}= —InC +g(2)z —g(3)z'+

(3.38a)

g"'( I +z) = —[2g(3) —6((4)z

200—

100—

+ 12$(5)z — ]

in Eqs. (3.29) and (3.32) to obtain

(3.38b)

4T Inn 34K(3)
u (I) is= — + -+ ''

32~L'
(3.39)

3k' T ((3)
32m@ L 3

(3.40)

in the classical limit. The first term gives the corre-
sponding result for a semi-infinite crystal.

IV. DISCUSSION

The results obtained in this paper apply to two

physically distinct situations, and the discussion of
these results is somewhat diAerent in each of these

cases. The first of these is when the thin film we

have studied is a representation of a physical thin

film whose lateral dimensions are large compared
with its thickness. The second is when, for compu-
tational purposes, a film is used as an approxima-
tion to a semi-infinite crystal. %e consider each of
the situations in turn.

There may be experimental situations in which it

When this result is added to the sum of Eqs. (3.10)
and (3.13a) we obtain for the mean-square displace-
ment of an atom in the surface layer of a thin film

of L layers

(u~(l) )Rm ——— (0.67759}—AT k~T ln5

2y 2~ L

1 1 I

I. I 1.2 1.3

&u (ll)& t. )
/ &Uu (k)& sam;

FIG. 1. The mean-square value of the atomic displace-

ment in the midplane of a film of thickness L layers di-

vided by the mean-square value in the semi-infinite case
for an atom L/2 layers below the surface is plotted
versus L.

is the mean-square displacements of atoms in a thin

film of a solid that are required. In such situations

the computational methods employed at the present
time for the calculation of these quantities, based as

they are on the use of a thin film, would appear to
be appropriate and accurate.

However, if the results of a calculation based on a
thin film are intended to provide an approximation
to the mean-square displacements of atoms in a
semi-infinite crystal, the results of this paper show

that rather thicker films, by at least an order of
magnitude, have to be employed than have been
used in such calculations to date, if good accuracy is
to be achieved.

In Fig. 1 we have plotted a curve of
(u~(l})ri /(u~(l))~m; as a function of L for
a = —,, X = 10 . From this figure we see that the

film has to be at least 600-layers thick, before the
value of the mean-square displacement at its mid-

plane is within 1% of the value of the mean-square
displacement at the same depth in a semi-infinite

crystal.
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FIG. 2. The mean-square value of the atomic displacement of an atom on the surface of the film divided by the
mean-square value of an atom on the surface in the semi-infinite case is plotted versus the number of layers I. in the film.

In Fig. 2 we have plotted a curve of (u (I) ) film
divided by (u (1));versus L for an atom on the
surface (li ——1). Again, choosing N = 10, we see
from the figure that L has to be at least 400 before
the result for a thin film is within 1% of that for a
semi-infinite crystal.

Although the main body of the paper has dealt
with the case L &&N, i.e., a thin film, we would

like to make a final comment concerning the case
that L =N. In the latter case, of course, we are

dealing not with a thin film, but with a cubical
volume of the crystal. Allen and deWette suggest-
ed that (u~(l) ) approaches the semi-infinite value

very quickly as one moves into the interior of the
crystal from the surface in the case when L =N. It
is easy to see why this is so in our calculation, since
it follows directly from Eqs. (3.4), (3.24), and (3.37).
Setting L =N and a = —, and ignoring terms pro-

portional to L we obtain

0.505 46+ I/2nL L
(4.1)

When L =N, the right-hand side of Eq. (4.1)

equals 1.0009, which shows that fewer than ten

layers are required in order that the mean-square

displacements calculated for the cube (L =N = 10)
and for a semi-infinite solid agree to within l%%uo for
atoms at the midplane. In conclusion, we em-

phasize that for a physical film (L « N), L must

be at least 600 in order to obtain the same accuracy.

California at Irvine Physics Department for their
hospitality and especially to Professor D. L. Mills
and Professor R. F. &allis for many helpful discus-
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APPENDIX

In this Appendix we obtain the asymptotic form
of the integral
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in the limit of large I ( & 0), where t is defined by
Eq. (3.7). We use Eqs. (3.7) and (3.8) to rewrite this

integral as
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(A2}

In view of the fact that 0 & t & 1 we can write this

integral in the form

(I —$)JII[g—(g —f) /
~

I(l)= f d8i f d82
2ir o o (g —1)'~

It is easy to see that in[( —(g —I )'~ ] assumes its
largest value when 0& ——02 ——0. In the limit of
large (1 —1) we therefore expand the functions
entering the integrand in powers of 0& and 02. We
begin with the fact that

g= 1+—,(8', +8', ) ——„(8',+ 8', )

+—„,(8~+ 8', )—

We next transform to two-dimensional polar coordi-
nates (r, 8) according to

We also note that In[(—(g —I)'~ ] can be expand-

ed in the form
0& ——rcos0, 02 ——r sin0

and write g as

(A6)

In[(—(g —I )'~ ]=—2 g —1 1 g —1

(+1 3 (+I+— g= 1+ i r „rf4——(8)+ 72O
r f6(8)

(A7a)
' 5/2

1 g —1

5 (+1 + 0 ~ ~

(A4)

with

f2„(8)= cos "8+sin "8 .

It follows that

(A7b)

1 r
(g2 —I) ' =— 1 — (3—f4)+ (135+30f4+15f4 —8fs)+O(r )

r 24 5760 (A8)

3 5

In[(—(g —I)'~ ]= r+ (1+—f4) — (27+30f4 5f4+Sf6)—+O(r } .
24 5760

.When we substitute the expansions (A8) and (A9) into Eq. (A3) we can remove the upper limit on the in-

tegral on r to infinity, because the error committed in doing so is exponentially small m (1 —1) compared with
the algebraically small result we obtain. Thus we obtain the result that

m/2 oc 2 r 3

I(l)-
2 f d8 f dr e ' '" 1 — [3—f4(8)]+(1—1) [1+f4(8)]

+ O(r, (l —1)r',(1 —1)'r )

vr/2
1 ~(8)

0 +,+0 l —1-'
2n 2 o (1 —1) 3(l —1)

(A10)

(Al 1)

For certain purposes in the text the asymptotic behavior of the integral

I,(l) = f d8i f d82 (A12)

where the primes indicate that the integrals run from (81+8&)' & e, for large, positive 1 is required. The
preceding analysis can be repeated, and yields the result that
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e/2 oo ~2 3

Ie(l) — f d8 f dre ( "" 1 — [3 fq—(8)]+(l—1) [I+f4(8)]

+ O(r, (l —1)r,(l —1) rs)

en 1 f4(8) f~(8) 2 f4(8)
q

1+fg(8)
e(l —() — d8 + +e +E +e'

(l —1) 3(l —1) 3(l —1) 6(l —1) 24

P6(e(l —1))+0
(l —1)

where p6(x) is a sixth-degree polynomial in x. We obtain finally the result that

(A13)

e
—e(l —i )

4'(l —I) 16'(1—1)' [1+@(l—1)+—,e (l —1) + 2I e (—l —1) ]

Ps(e(l —1))+0
(I —1)'

(A14)
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