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Derivation of the Landauer conductance formula
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The Landauer formula expresses the conductance of a disordered one-dimensional conductor as the ratio of
transmission (T}to reflection (R) coefficients of scattered waves, G = (e'/2m. A)(T/R }.%'e give a rigorous derivation

of this formula from linear-response theory (Kubo formula). The generalization to the many-scattering-channel case
is given in detail. It is found that only in very special circumstances can the currents in different channels be
decoupled in such a way as to give a simple conductance formula.

I. INTRODUCTION

Some' ' recent scaling theories of localization
have been based on a formula derived by Lan-
dauer" for the dc conductance |"of noninteracting
spin-up electrons in a disordered one-dimensional
medium:

G =(e'j2mk)TiA, (l.l)
where 7 and R are the transmission and reflection
coefficients of the medium. There has been some
question ' as to whether the Landauer result can
be obtained from a conventional application of the
Kubo formula. In addition, it is of interest to see
how to generalize the formula so that it is appli-
cable to real wires: the "many-channel" case.'"

In this paper, we address both these questions.
For the one-channel case, we indeed derive the
Landauer formula from the linear-response (Kubo)
formalism. The calculation is carried out on the
basis of the scheme proposed by Economou and
Soukoulis': the ld disordered system, of length
I is attached to infinite perfectly conducting
leads. This device gives a continuous spectrum
and simplifies the zero-frequency limit required
for the dc conductance. We show, however, that
it is essential to take account of the nature of
the leads: it plays a crucial role in the (transient)
establishment of the steady state. As the steady
state is approached, all time-dependent charge
fluctuations must vanish. Thus the current be-
comes spatially uniform during the final stages
of the turning-on process as well as in the steady
state. A relevant experiment, and a practically
realizable one, may be thought of as driving a
given current through the arrangement and mea-
suring the voltage drop across the sample of
length L in order to get the conductance.

We have received a communication from
Thouless' who has also derived the Landauer
formula in the single-channel case. His method
differs somewhat from ours, but the correct
treatment of the field in the leads, as in Sec. III

below, is also an essential ingredient of his cal-
culation.

We discuss also the many-channel case. Here
we take a rather elementary model in which iden-
tical channels are represented by a spinor index.
We show iri the Appendix that a more physical
definition of channels changes neither the physics
nor the results. In the perfect conductor leads,
the channels do not communicate, while in the
sample, they are connected by reflection and
transmission amplitudes. We find that only in
special cases is a simple generalization" of the
Landauer formula obtainable.

In Sec. II, we generalize the Landauer argu-
ment to the many-channel case. We sketch the
derivation of the Landauer formula via the Kubo
formula in Sec. III where we obtain the one-chan-
nel result. It is in this section that the impor-
tance of treating the leads correctly is explained.
In Sec. IV we give the details of the calculation for
the many-channel case. An appendix is devoted to
a discussion of how to modify the calculations when
channels are defined differently, as, for example,
in momentum space as has been done by Fisher
and Lee.' The final results are the same as those
in the text.

II. MANY-CHANNEL LANDAUER DERIVATION

In the Landauer derivation, ' one imagines waves
incident on the one-dimensional medium. The
currents and densities on the left (L) and right
(R) are expressed in terms of transmission and
reflection coefficients. By dividing the current
by the density gradient, Landauer finds the dif-
fusion constant which is related to the conductance
by the Einstein relation.

We generalize the argument to the many-channel
model described in Sec. I. We define P~ I', , as
the probability of the incident waves from L and
R in channel &. Then we may write, for the cur-
rent j and density n in channel a on the left,
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nL PL + gL PL+ yR PR

(2.1)

where v, is the speed in channel &, R~, is the
reflection coefficient on the left for the reflec-
tion from channel 6 to a, and T„ is the transmis-
sion probability from channel 6 on the right to
channel a on the left. A similar expression holds
on the right. We write it in an obvious matrix
notation

jR/v =T P +(R -1)P",

nR = TLPL + (R+ 1)PR .
(2.2)

In these formulas, the probabilities 1', R are
squares of amplitudes t, r which are elements of
a many-channel S matrix as discussed in Ref. 2.
Thus T„=(t„(',etc.,

(tL B

and there are a variety of relations among the
& and t matrices which are a consequence of
unitarity of S. In addition, if time-reversal in-
var iance holds,

y L~B ~L~B tL ~+ t R,L
7 (2.3)

where the tilde indicates the transpose. We as-
sume time-reversal invariance in the remainder
of this section.

It is a simple matter to eliminate the P's from
Eqs. (2.1) and (2.2). We find

dn 1
n -n =an= —e8 = eS.

7Tkv
(2.6),

L(I RL)( L/ ) 1TR( R/ ) L(I RL) L L TR R

(2 4)

2(1+R )(j /v)-2 TL(j L/v)= ,TLnL-&(I-R )BR—.

(2.5)

We note that these expressions relate the cur-
rents and densities in the perfect conductor leads.
on the L and 8 of the medium.

The emf is generated entirely by density gra-
dients in this picture, so that the elements of
n (n") are proportional to the emf between the
left (right) end of the sample and a point where
the induced density change vanishes. These
emf's are independent of channel by definition of
the problem to be solved. Therefore n and n
are each constant spinors, and n~ -n~ is related
to the emf 8 across the sample by

~l,B+yR, I

We obtain ~T (n —n ) and —, T (n —n")for . the
right-hand sides of the two equations, respec-
tively. We use (2.6) and finally obtain

jL+QRL jL QTR jB Q TR g (2 7)

jB QRR jL gTL jR e gTLg
7T

(2 8)

In the one-channel case, all A and L quantities
in Eqs. (2.7) and (2.8) are equal. In particular,
as expected,

j"= jL =G 8/e =(e/2va)(T/R)8 .
Equations (2.7) and (2.8) give the result. In

general it is not possible to disentangle the chan. -
nels to give a simple formula as proposed in Ref.
1. A simple case is obtained when the current is
independent of channel. Then j,"= jL = j/N where
j is the total current and N the number of chan-
nels. We add Eqs. (2.7) and (2.8) and use uni-
tarity and time reversal to find

ej e' V'

2m' I-r/iV ' (2.9)

where f'= ', Q, „(T„+T"„)—. In the limit of large
N, this reduces to the formula used in the scaling
theory of Ref. 2. Unfortunately, the constant
current case is realized if and only if the T
matrices have the property

1', = const, (2.10)

Since we are considering a particular disordered
configuration we can hardly expect this condition
to be satisfied. Formula (2.9) is useful for an es-
timate of the behavior at large N. In fact, in the
general case, we expect j, =O(1/N) from which,
by adding Eqs. (2.7) and (2.8), we obtain

G „„(e'/2mb)7', (2.11)

with v =O(1). In certain cases, however, even
(2.11) will fail as, for example, when the diago-
nal elements of T are much larger than the off-
diagonal ones. This would be the case if the dis-

In these arguments, we have assumed a common
v and density of states for the identical channels.
The assumption is not necessary; see the Appen-.
dix. Since the n's are constant, the right-hand
sides of Eqs. (2.4) and (2.5) simplify because
unitarity and time-reversal invariance imply

Q (RL,R + TL,R )
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order were translationally invariant perpendicular
to the wire and all the channels were independent.

IH. DERIVATION VIA THE KUBO FORMULA:
OVERVIEW

Here we derive the results (1.1), (2.7), and (2.8}
directly from linear-response theory. Before
presenting the details, we give a rough overview
of the calculation in the single-channel case. Al-
though the details of the model are not important
to the final results, it is helpful to the discussion
to imagine an infinitely long filament containing
a one-dimensional noninteracting electron gas.
The "sample" consists of a disordered region of
finite length near the origin, and the "leads"
consist of the remaining portions which are as-
sumed uniform, and hence are assumed to offer no re-
sistance to a dc current. An oscillating electromotive
force h((()) ()c e ' +'" ' is now turned on adiabatical-
ly (perhaps by connecting the ends at infinity and

applying a time varying magnetic flux). The cur
rent j(x), a function of position x along the fila-
ment, is given by

j (x) fdx' 5'(x=, x')E(x')

we require that the final steady-state field be such
that there. is no induced charge-density difference
from one end of the sample to the other, so that

jZdx is the complete electromotive force. 'The
above criteria mean that E(x) is not known a
priori (even in the noninteracting case), and
indeed it will depend on the microscopic details
of the sample. Fortunately, however, as the
steady-state limit (e-0) is approached, one may
rigorously say enough about E to calculate the
conductance G of the sample. First, the exis-
tence of steady state implies by current contin-
uity that j(x) is the same everywhere. Second,
we know that in the leads. a long way from the
sample the current is given by

j =v((a)E „,~, , (3.2)

where c(e) is the uniform (one-dimensional)
electron gas conductivity. Since a(u&) ~i/(++i')
as ~-0, we surmise that the electric field E in
the leads goes to zero with ~ in just such a way as
to yield a constant product in (3.2). The function
E(x, x') has been evaluated by Economou and
Soukoulis' (Fisher and I.ee' for the multichannel
case) for a&-0 assuming that both x and x' are
finite. In this case it is found that (henceforth
our units are such that e'=g =1)

dx'E(x, x')X(x')+ f dx'X(x, x')E(x'),
sample leads

I
E(x, x') ——T

2m
(3.3)

(3.1)

where E(x) is the electric field (E (r- e 't ""l').
According to standard linear-response theory,
the quantity E(x, x') is given in terms of the ma-
trix elements of the current operator and the
excitation energies of the system [see Eq. (4.2)
below].

In a real wire (or for interacting electrons in
the limit of a large number of channels), the
electric field E(x) is determined self-consistent-
ly. In a single- (or few-) channel case, or for
noninteracting electrons where the electrons
cannot produce their own mean field, one could,
in principle, apply any field whatever as in Hefs.
3 and 5. However, most such fields would not
result in the required final steady state without
time-dependent charge fluctuations, because our
leads are such that the electrons in them move
ballistically. We apply a space- and time-depen-
dent electric field in the leads during the turning-
on process so as to achieve this steady state
thus mimicking the situation in a real wire.
(Steady state might also be achieved by driving the
electrons around the circuit and through the
sample many times; this possibility is not con-
sidered here because we take the limit of an in-
finite system from the beginning. ) In addition,

independently of x and x', where T is the trans-
mission probability for a Fermi surface electron
or hole to cross the disordered region (sample).
Now as (d- 0, the field outside the sample van-
ishes, so that the electromotive force b is just

E xdx.
sample

(3.4)

Substitution of (3.2), (3.3), and (3.4) in (3.1) gives

1j = —Th + dx'E(x, x') j,
2m o((d)

(3 5)

dx'E(x, x') —To'((g),
leads

(3.6)

a result almost obvious by inspection. Upon sub-
stituting (3.6) in (3.5) and solving for j one finds

j 1 I' 1—=—G=—
2m 1-Z 2m B' (3.7)

w'here (d 0 is implied. It is tempting to drop the
second term in (3.5) because I/o((d) goes to zero.
This, however, is incorrect because the integral
in (3.5} goes over an infinite interval, so that ac-
cording to (3.3), an indeterminate form would
result for the large parentheses. We will show in
the next section that as ~ -0,



DERIVATION OF THE LANDAUKR CONDUCTANCE FORMULA 2981

IV. DERIVATION VIA THE KUBO FORMULA:
DETAILS

We now provide the details of the derivation of
(3.6) for the multichannel case, and hence pro-
vide a derivation of Eqs. (2.7) and (2.8) directly
from linear-response theory. We define chan-
nels as in Sec. II, and suppose that at each end of
the sample each channel is connected to a lead.
The leads are identical, one-dimensional elec-
tron gases, which are independent of each other,
and noninteracting. Thus the current and elec-
tric fieM operators are channel diagonal in the
representation defined by the leads. The leads
are perfectly insulated from one another, so that
at finite frequency, the electric field may be
channel dependent, even though there is a com-
mon emf applied across all channels. (The left
and right leads can be imagined to be connected
across a common generator at infinity. } Because
of the essential one-dimensional nature we as-
sume for our sample, the channel. s are all taken
to be in electrical contact within the sample, so
that E =E(x) independent of channel as the steady
state is reached.

The multichannel version of Eq. (8.1} is there-
fore

&.(.) =
Jt
samyle

where

+
1ectds

dx' g S.,(x,x')Z(x')

dx' g S'.,(x,x')Z, (x'), (4 1)

and

E (x,x')= S, (x,x', ur)+r,*,(x,x', -cu) (4.2a)

aS An( Ba
(4.2b)

The sum over n and P in (4.2) goes over the
exact single-particle states of the system (sample
plus leads) with the restriction e~&eR&e is the
single-particle energy of the nth eigenstate, &~
is the Fermi energy, and (d~ =&~-& . The quan-
tities J~ (x) are the matrix elements between the
states P and n of the operator J'(x} for the cur-
rent in channel g at point x.

1
'=2 ~p6(x -q}+"x -q»~~a& &a~ (4 8)

where p is the momentum operator for an elec-
tron at position q, and ~a) &a~ projects onto the

where R is the reflection probability of the sample.
This is the result originally derived by Landauer. 4

We see here that it follows rigorously from linear-
response theory.

ath channel (as defined by the leads).
We choose our eigenstates g in analogy with

scattering theory to have a singl. e incoming
component with channel index g and wave vector
ak where 4=42ma &0 and 0=+1. Thus,
n=(a, k, cr]. We choose our normalization such
that

(g, g,) =2mb(k —k')5, „b,~,
so that

(4 4)

dk

a +0 7t pe

(4-5)

Since the functions g have different analytic forms
for waves whose incoming parts travel in the +x
direction, respectively (o =+1), we let

4., a,„(x)=-u.a(x),

g. g, i(x) -=v.j,(x)
(4.6)

The functions gg and g have simple asymptotic
forms outside the sample. ' In particular, for g
to the left,

u„(x) =e' *~a)+Jr„e ""~b), (4.7a)

v,~(x) =Q tf, e '""Ib) . (4.7b)

Similarly, for g to the right,

u. (x) =Q t„e""~b), (4.8a)

e,~(x) = e '
~

a) +Q r„e""
~

b) . (4.8b)

rRrR+ t RtR —1

rLtR+ t Lr8

and (4.5) implies that

r r'+tRtR =1,
t~ t~+r" r =1,
r't'+t"r~ = 0,

(4.9)

(4.10)

where a bar over the quantity means the Hermitian
adjoint. Equations (4.9}and (4.10}are equivalent to
the unitarity of the corresponding S matrix of Sec.II.

The quantities r and t, r" and t" have 4 depen-
dence which we suppress because only Fermi sur-
face values 4 =k~ will ultimately occur.

If we let r~, r", t t" be the operators having
the matrix elements r~~„etc., then (4.4) implies
(since delta-function contributions can come oniy
from asymptotic regions) that

rLrL+ t LtL - 1
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Now consider the evaluation of (4.1). The cur-
rent outsic'e the sample (in the leads) in each chan-
nel is separately independent of x. (Hencef orth,
we use the term sample to mean a spatial region
sufficiently large that all wave functions-have de-
cayed to their asymptotic values; thus, our sample
would be larger than the physical sample. ) The
term leads refers to the asymptotic region. Thus,
we take x in E(I. (4.1) to be in the leads. Now the
x' dependence of Q»F,b(x, x') in the first term in
(4.1) involves only matrix elements of the total
current density operator which is a constant in
space as &-0. Therefore x' in this term may also
be taken in the leads. ' However, in the second
term of (4.1), it will generally turn out that the
transient E field produced as steady state is ap-
proached is dependent on channel so that the sum
over b cannot be done as in the first term. Thus,
F„(x,x') in the second term does depend on x';
fortunately the integrals here are already in the
leads, but J" has a value to the left different from
its value to the right.

To determine F„(x,x'), the matrix elements of
& between the states (4.7) and (4.8) are needed.
These matrix elements involve linear combinations
of

(k+kz)e((k k')k'
(ty-pe I)

(k k ) (i(eko) k' o(type 11)

plux complex conjugates of these, where 0 &0, A'

& 0. As (d- 0, all combinations of type II vanish
because 0-O'. To see this, first consider the

I

first term in (4.1). If (d &0 and ~- 0, only the real
part of the first term of (4.2a) contributes

F.,- Z &:.( ) ~' ("))(5 (() —(()

nB 0)y~
(4.12)

The &z in the denominator cancels a similar term
from the Fermi statistics restriction in the &je

sums. Thus a factor &(co() ) c(~(k —k') multiplies
all the the terms in the sum, forcing type-II terms
to vanish.

In the second term of (4.1), however, the condi-
tion k-0' arises for a different reason. Here we
must look for a term o-~ ~ in E so that the product

fFE remains finite as ~-0. This can only happen
if the integral over x' produces a term ()-~(k —k')
in the infinite asymptotic region; then the remain-
ing (d() in the denominator of (4.2b) vanishes,
leaving the & ' dependence necessary. Note that
only contributions ()(&(k —k') need to be kept. The
integral f"e'k ""(or f „e'k ~)") produces such a
term, where the finite lower (or upper) limit is ir-
relevant, while an integral like fe'"'k '" does not.
Therefore, we can again throw away the type-II
terms in P() (x'). Since the integral over x' effec-
tively sets A =k', we may throw away type-II terms
in Z'()(x) as well.

Now consider Jz, z for x to the left. We denote
this by P , b(ob', o'; I.) where we have suppressed the
k dependence. We shall often write, instead of 0
=+I, o=u or u according to E(ls. (4.6)-(4.8). For
the current in channel a in the leads to the left, we
then have, according to (4.1),

jL= Q, )(5((u+k —k') Q &;,, (cr, o'; J.)P, (v', o;L,)8
k'k' CC 'bofJ'

Z;,.(o, a', 4 fO P,..(o', xx')k, ( )o, x
+~~j

(4.18)

where the integral in the second term excludes the
sample. In the k sums e' = e~, , e = c~, and e' & e~

In the second term only those pieces propor-
tional to &(k —k') are to be retained and then the
limit (d-0 is to be taken.

The calculation of the matrix elements is straight-
forward. As an example consider P...(u, u;x') for
x' to the left,

&'...(u, u, x') = - (u, ., (x')
t k&, , (k ~u„(x')&

— —, , (u, , (x')
( I» (k iu„(x')&,

(4.i4)
where u is given by (4.7a) because x' is to the left.
Upon substitution we get (we include only type-I
terms)

gb (u u ~ X() (6 6 ei(k k')x-0+0'
C C & & 2~ CkC Ckb

-&(a-a' &x'S-y'C bXbc e
(4.16)

No matter where this term is used, either 0 =k'
so that each exponential is unity ox it is integrated
to yield )T&(k -k'). All other matrix elements have
the same property. Therefore, we may let

Zb, ,(o'(I;x') =L) e "k 'Ak,',,( o(;Fx'), (4.16)

where E=()FJ ~» k, . With this simplification (4.13)
becomes

g P SLL + o(~) g (SII EL + SLRER)
b b

(4.17)
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S,"P= —,
' Q EC;,.(o, o'; n) &'...(o', o'; m),

CC
fya'

(4.18)

where n and m each take on the values L and R.
The various reduced matrix elements K are

easily worked out as in (4.15). On substitution in
(4.18) and use of the unitarity relations (4.9) and
(4.10) we find that

where we have used the fact that the quantity
vie"~ ~ '" is the value of J(o, o, x) for a single chan-
nel in the leads, assuming the sample is not pres-
ent. We have written E", ' for the respective
asymptotic values of the field in channel b. There-
fore, once the summation in the 2nd term of (4.17)
is factored out of the second term of (4.13), the
remaining factor is just the Kubo formula for the
(frequency-dependent) conductivity o(v) of one of
the (single-channel) leads. The quantities P,'~ are
given by

to steady state. This is actually not a contradic-
tion. Since velocity times density of states is in-
dependent of channel, differing currents mean dif-
fering densities in the different channels (actually
density divided by the density of states is what
must vary). In other words, the Fermi surface in
the (free electron) leads must change from a
sphere to another shape moving with the drift
velocity (instead of from a sphere to a sphere mov-
ing with the drift velocity) during the transient
period when the field is turned on. This implies
a different density gradient (in the leads) for dif-
fering transverse momentum states during the
time when the emf is being turned on. In linear-
response theory such density gradients cannot be
treated directly as driving forces in the Hamilton-
ian, and are usually handled by replacing them by
equivalent fictitious fields. Our momentum-de-
pendent fields shoul. d be thought of in this sense.

~Lg z +~I
ab & ba &

where

(4.19)

(4.20)

(4.21)

which is the same as Eq. (2.7), since R=R, Tz
=T . We can of course derive the current on the
right, by repeating the same steps, or more simp-
ly by interchanging the superscripts R and L in
(4.20} and (4.21}.

We emphasize that Eqs. (2.7), (2.8), and (4.21)
are completely general and rigorous. The extra
technical details necessary to treat asymptotic
channels that differ from one another are given in
the Appendix. Thus, our results may be applied
to the spatial channels of standard quasi-one-di-
mensional conductors, as well as to the trans-
verse momentum channels in an ordinary metallic
wire.

An apparent paradox occurs in this latter case
if the disorder is such that the current in one
transverse momentum channel is different from
that in another. It would seem from Eq. (4.17)
that we would need a momentum-dependent field
E in the asymptotic regions to bring the system

Of course if our sample is time-reversal invari-
ant, the two terms in the right-hand side of each
equation in (4.20) are equal and R,~ (T,,) is identi-
cal to the reflection (transmission) probability of
Sec. 1I. Finally, since a(tu)E~ -j~z', we find that
substitution of (4.19) in (4.17) yields
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APPENDIX: DIFFERING ASYMPTOTIC CHANNELS

We consider briefly here the case in which the
channels of the leads are different from each
other, in the sense of having different Fermi
velocities v„different Fermi wave vectors k„and
therefore different densities of states p„where
p, =(2wv, )-'. This in no way changes the results,
but the derivations are more cumbersome because
of the necessity of keeping track of these factors.
We empl. oy here a method used by one of us for a
similar problem in surface physics. '

Because the energy shell contains a differing
number states for each channel, it is best to talk
of transmission and reflection amplitudes between
states of differing 0 but nearby energy. These are
(see Ref. 8)

and

where (for example) 2vp, = J dk 5(ez —e~) =(2@v,) '.
Similar expressions hold for 6P and g". The wave
functions u and v have the asymptotic forms as in
(4.7}. Thus, for x far on the left,
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energy of an extra incident particle in the nth side
of the sample (n =R or n =L) in channel a. Then
we may write

i.'=Q.'p. . g—IV..[~']Q', p, 2— ~..lf"]q".p, (A }

Expressions similar to (4.8} hold for x» 0. The
orthonormality and completeness of these wave
functions requires that the matrices S and E satis-
fy unitarity relations like (4.9) and (4.10) on the
complete Hilbert space, which in turn implies
that x and t satisfy (4.9) and (4.10) in the seduced
space consisting of oniy the channel indices (with
k =. k'=kz). By evaluating the k' integrals, one
can see that (for example) ~x~, ~' is the convention-
ally defined reflection probability (on the left) from
state b to state a, that is, the ratio of the outgoing
current in channel g to the incoming current in
channel b. Similar relations hold for the other
quantities. One also notes that the quantity
(2rri) '(p, p,) '"r~~ is the transition matrix element
from a state in channel a (going to the right) to
another state in channel b (going to the left) with
both states on the energy shell. Therefore, ac-
cording to the golden rule, the rate at which an
initial particle in channel g is reflected to the
energy-shell states of channel 5 is

~L
W„[x~]=2rr ., "„r, p, .

2'tl'Z(PgPb)

Similar relations hold for r", f~, and ta.
We now use the generalized I andauer method

to derive equations (2.7), (2.8), and (4.21). As-
sume time-reversal invariance to simplify the
discussion. Let Q," be the probability per unit

We substitute (A3) and obtain
L r QB

~ r. QRI, 5 Q TR @&

2rr "2rr "2rr'
b

(A5)

Similarly, the extra density in channel g to the
left is

~r, qrp +~-1+ IIr [~l]qrp p~-1 Q gr [frr]qrrp

(A8}

If we let g~ be the voltage in channel g at the left,
then h~=n~/p, or

L B
+gR—+P T-

27r 2rr
b

2v '~ 2rr
(AV)

Equations (A5} and (AV) are completely equivalent
to Eqs. (2.1) with P replaced by Q/2rr. When com-
bined with their analogs for the right of the sample,
they can be solved as in Sec. II, eliminating Q,
and Eqs. (2.7) and (2.8) are again obtained. These
equations are now proved to hold for channels that
have different Fermi wave vectors, 'Fermi velo-
cities, and densities of states.

It is also a simple matter to repeat the steps of
Sec. IV, with wave functions like those of (A2) in-
stead of (4.V). Gf course, all the extra factors
from differing state densities all cancel out, and

hence we still obtain Eqs. (2.7) and (2.8) from the
Kubo formula as well.
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