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Phase transitions in heterogeneous films
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The thermodynamics of monolayer films adsorbed on nonuniform substrates is analyzed in

terms of arbitrary but well characterized substrate heterogeneity. It is shown that a combination

of vapor-pressure isotherms of a two-phase film and high-resolution diffraction can yield the dis-

tribution functions of binding energy and of crystallite size. These distributions can be used as a

basis for characterizing all films subject to similar adsorption forces. The effects of these distri-

butions are discussed, with reference to single-phase regimes, phase boundaries of two-phase re-

gions, triple-point melting, and second-order transitions. Several specific examples drawn from
recent literature are discussed. A method is developed for unfolding ideal film behavior from

measurements on well-characterized nonuniform substrates.

I. INTRODUCTION

Current interest in phase transitions of surface
films' heightens the need for improved substrate
characterization and for greater understanding of the
effects of heterogeneity. Although observations of
several types of surface phases and phase transitions
indicates that many films are quite uniform, imper-
fections that would otherwise be considered minor in
kind and number can be important in the neighbor-
hood of phase transitions, where compressibilities be-
come divergent. Heterogeneity may be an important
factor in some questions of lively concern, e.g. , con-
tinuous versus first-order melting in specific systems,
whether certain films have two-dimensional (2D)
liquid phases, and whether commensurate-
incommensurate transitions are first order.

Several types of imperfection play significant roles
in physical adsorption, principally crystalline disorder,
chemical impurities, surface roughness, microporosi-
ty, and orientational disorder. The manner and de-
gree to which they affect an individual film depend
on its composition and phase. Presumably, a com-
plete characterization of the surface together with a
detailed microscopic model of the film would allow
one to calculate the perturbations. Present
knowledge and techniques are far from this stage of
sophistication. However, for certain general ques-
tions it is not necessary to be so specific. In dealing
with questions of phases and phase transitions one is

primarily concerned with perturbations of a small
number of thermodynamic variables, such as the
density and structure of the film. fhe various types
of substrate imperfection affect the density and struc-
ture in distinctive ways, but their mechanisms are
primarily limited to just two; variations in substrate

attractive potential and effects due to finite sizes.
Variations in substrate potential introduce lateral
fields, which cause density variations. Small crystal-
lite and island sizes introduce boundary effects and
limit long-range interactions. The two parameters
can be mapped, in principle, by a detailed topography
of the substrate-adatom potential at all positions
along the surface, which would show the boundaries
of the domains and the locations of nucleation
centers, as well as the more uniform regions in
between. For some purposes it is important to know
the spatial distribution, but for many applications a
less detailed characterization, specifying only a statist-
ical distribution, is sufficient. We limit ourselves to
such cases, where it is enough to know what fraction
of the surface has a certain range of potential, and
how many crystallites and islands there are of a given
size.

In the next section of this paper we propose an ex-
perimental procedure to obtain these distributions.
In Sec. III we discuss the effects of heterogeneity on
specific thermodynamic regimes, with applications to
published data, and draw tentative conclus'ions con-
cerning several current questions. In Sec. IV we
show how it is possible to unfold the unperturbed
properties of a film from measurements on the
heterogeneous system,

II. SUBSTRATE CHARACTERIZATION

A. Binding energy heterogeneity,
without size effects

Nonuniform substrate binding energy has been
recognized for many years as a principal source of
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film heterogeneity. ' A technique for measuring the
energy distribution from vapor-pressure isotherms
dates from the same time. The technique is based
on the direct dependence of the pressure of a low

coverage gas phase film on the substrate-adatorn
binding energy averaged over the population. The
method works best for obtaining the number of sites
with higher than average binding energies. It has
been employed to obtain the high-energy side of the
He-graphite binding energy distribution. ' This classic
method is not adequate, however, for surveying the
intermediate and weak binding portions of the distri-
bution, since these are appreciably occupied only at
relatively high coverage, where adatom interactions
are both more important and change with coverage.
The method also suffers in that it has limited sensi-
tivity to small variations of potential, of magnitudes
characteristic of the most uniform regions of well or-
dered samples. But these drawbacks can be eliminat-
ed by a simple modification of the technique: use of a
two-phase film in place of a low-density gas.

In a regime of first-order phase condensation a film
has infinite two-dimensional compressibility, which
makes it sensitive to arbitrarily weak latera1 fields.
On an ideal substrate the vapor pressure of a two-

phase film is a function of T but not of coverage, the
isotherm showing a vertical (constant pressure and
constant chemical potential p, ) step in the coexistence
region. On a nonideal surface the isotherm has a fin-
ite slope. The slope is a measure of the ideality, i.e.,

of the constancy of the substrate binding. In the
two-phase region the denser phase is preferentially
adsorbed on the more attractive parts of the surface,
and as the coverage is increased the interface
between the two surface phases moves upward in po-
tential. As the potential energy at the interface
varies, so does the chemical potential of the system,
hence the vapor pressure of the film. Thus the
steepness of the isotherm gauges the ideality of the
surface at the immediate locations of the interface.
Since the capacity of the regions having the same
binding energy is gauged by the quantity adsorbed,
the capacity and perfection can be measured simul-
taneously as a function of substrate potential. A
direct measure can be obtained in terms of a density
of states G(p, ), defined by

1 ]

G( )
1 B]N 8lnN6 p,

where N is the number of molecules adsorbed.
As it stands, G ( p, ) describes a specific film and

thermodynamic regime on a particular substrate. To
be most useful, a characterization should describe the,
substrate alone, so that it might then be used to
predict the heterogeneity of different films and their
phases. Such a generalization can be obtained from
G (]M, ), as follows.

9 lnN

int TA

Changes in the adsorbed quantity can be related to
changes in the adsorption area swept out by the shift-
ing interface. Specifying the populations and areas in
the two phases (1,2),

N =N)+N2, A =A)+32
n] = N]/A], n2 = N2/A2

(4)

the changes 5N can be related to the changes in area,
with a correction term involving the two-dimensional
compressibilities of the two phases.

gN = (n2 —n]) gg2 + (/2n2K2+/]n]K])g@

where the compressibility K is obtainable from ther-
modynamic data such as vapor-pressure isotherms
by5, 6

1 Qn 1 8nE—=—
n 8$ r n2 Bp,

Equating dP= ndp, (Ref. 6) at constant Tand dif-

ferentiating with respect to p, we obtain
1

=(n2 —n]) +(32n2K2+A]n]K])2

Qp

BN

In the case of an ideal uniform film the substrate
potential e is, to first order, an additive term in the
chemical potential, so that the equilibrium relation
between the film and gas can be written

I = @vapor(I T) =ptl]m(~ ]i T) ++ p2(]i T) (2)

where p.2 is the "two-dimensional equation of state"
of the film in terms of T and the spreading pressure
]]]]. We make here the "local equilibrium" assump-
tion that Eq. (2) applies also in cases where the sub-
strate potential e varies locally over the film; i.e.,
where one can treat e as a function of position (x,y)
on the film, and assume that equilibrium is estab-
lished between vapor and film for each local region
in the neighborhood of (x,y). Specifically, we are as-
suming that there are no terms in p, f;~ involving gra-
dients of e. The relationship between variations of
potential energy and chemical potential is particularly
simple in a two-phase regime. In a two-phase regime
at constant T the spreading pressure is fixed at some
value $ = P,~. On a substrate of varying e the inter-
face between the two phases is always located at the
same value of @,~ and hence the same value of ]M, 2.

Variations in chemical potential of the system directly
reflect the variations of substrate potential at the po-
sition of the interface between the two film phases,
i.e., dp, „„„=—de;„„,f„,. Therefore, the density of
states with respect to energy is simply related to the
slope of the isotherm in the two-phase region
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The second term on the right is relatively unimpor-
tant on good substrates, where (BA2/Bdu, ) r is large,
and we shall therefore neglect it in the remaining
analysis. The dominant term involves a distribution
function over area, which we term the "areal density
of states" g„(e),

therm slope:
A'ep

gg'(~/~o) = G(p, )
(n, —n, )A

8. Size effects

(IO)

F2 y QA2

A dtlnt A 6)x T

(8a)

where A is the total area. g~(e) is characteristic of
the film-substrate combination, independent of densi-
ty and temperature. Formally, A2 is the area covered
by the adatoms subject to the condition that the local
substrate interaction energy ei(x,y) be less than the

energy ~ (choosing phase 2 arbitrarily as the more
dense phase). Thus,

A p(t) = Jl J"dxdy 0[E El(x y) ]

where 0 is a unit step function, and

ro

J dxdyg[e —ei(x,y)] (Sb)

(9)

where the "reduced areal density of states" g' is the
same function for different adatoms on the same
substrate. This form can be derived directly from Eq.
(8b) if the only difference between adatom-substrate
energy functions e~(x,y) is the strength of the in-

teraction, i.e., if there is a common length scale for
all combinations. In this case ep is proportional to
that interaction strength. However, we expect the
form (9) to be more general than this derivation
would indicate, if ep is taken to be the average bind-

ing energy.
Combining Eqs. (6), (7), and (9), we obtain the

reduced areal density of states g&' in terms of the iso-

It is the expression on the right-hand side of Eq. (Sb)
which appears naturally in the formal treatment (see
Appendix). This characterization, in terms of gq(~),
can be further broadened by a simple physical ansatz.

%e assume that the energy heterogeneity of dif-
ferent adatoms having the same class of substrate in-

teraction can be scaled proportional to their average
binding energy ~p. The rationale for the assumption
is that most substrate imperfections can be modeled
as distortions in their spatial arrangements, and
therefore should produce the same fractional changes
in the interactions of the substrate with different ada-
toms. Subsequently in this paper we shall bring evi-
dence to bear supporting the assumption. %e there-
fore expect that the functional form of g„(~) is

Finite-size effects include a variety of distinct
phenomena affecting films. Limited crystallite and
platelet dimensions truncate long-range interactions
and spatial coherence. Grain boundaries and crystal-
lite edges disturb the substrate potential, making it
locally larger or smaller than in the interior of a large
perfect domain. The local anomalies are condensa-
tion nuclei for phase condensation and the growth of
two-dimensional islands. Crevices and regions of
negative curvature at grain boundaries and steps
cause capillary condensation of phases at pressures
below their saturation value.

Quantitative estimates of island and domain sizes
have been obtained from measurements of heat capa-
city, ' ' vapor pressure, ""two-dimensional pres-
sure, "neutron scattering, ' low-energy electron dif-
fraction, "and x ray diffraction. " In one study"
combining vapor pressure and low-energy electron
diffraction (LEED) measurements it was possible to
estimate the relative importance of energy and size
effects, and to conclude for one sample that size ef-
fects were dominant. In all of the remaining studies
the possibility of energy heterogeneity was neglected
at the outset. For the majority the analysis was limit-
ed to an estimate of the average size L of a typical
domain, but one detailed comparison between experi-
ment and model calculations yielded an empirical dis-
tribution of domain sizes. It has been comforting
that the estimates of L obtained by different tech-
niques on similar substrates are within an order of
magnitude of each other. However on closer inspec-
tion we note that some estimates differ by as much
as a factor of 4 or 5, which may indicate the inade-
quacies of the basic models.

A substantial advance in substrate characterization
can be made with detailed direct measurements of
the size distributions, in various film phases and at
different stages of growth. The size distribution can
then be combined with isotherm measurements to
yield a density of states independent of size effects.
The most direct technique would seem to be diffrac-
tion, of neutrons, x rays, or electrons, where line
broadening and intensity changes can be caused by
small 20 grain size. Finer details than the average L
are difficult to obtain except under conditions of ex-
tremely high instrumental resolution, but they can in
principle be obtained. In this paper we will assume
that the size distribution is known. Its form will be
taken as the distribution function, defined by

~ (0 8 InlV

QI
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5p, =2o [l(n2 —n~) ] (12)

This shift must be added to p, r„ in Eq. (2), so that
the equilibrium condition at the interface becomes

where N is the number of atoms enclosed in domains
of diameter /or greater.

In the analysis of line broadening to obtain h (I) it
is important to note that line broadening can also be
caused by energy heterogeneity, which causes varia-
tion in film density. It does not affect registered
phases however, since the structure is locked to the
substrate, hence for these phases the line shapes can
yield h (I) directly. Energy heterogeneity plays a
minor role in line broadening of typical incommensu-
rate solid phases, where two-dimensional compressi-
bilities are small. Where necessary, first-order
corrections to account for this contribution to
linewidth can be made following the analysis of iso-
therms for g„'(e/eo).

The size distribution is to some extent independent
of the magnitudes of atom-substrate interaction and
is therefore directly applicable to a wide class. How-
ever, it cannot be presumed to be the same for films
of distinctly different states of registry, as for in-

stance commensurate versus incommensurate phases.
These regimes probably differ strongly in their reac-
tion to substrate crystallite order, are likely to have
markedly different h(l) 's. Therefore the characteri-
zation for- size should be carried out with films of the
same type of registry as the phase under study.

Finite crystallite size plays a role in the thermo-
dynamics of two-phase regimes, and it therefore af-
fects the isotherms used to characterize the substrate.
If the interfacial line tension between the two surface
phases is o-, the difference 5p, , between the chemical
potentials of the finite crystallite regime and an infin-
ite system is' '

III. EFFECTS OF HETEROGENEITY

In this section we examine the effects of hetero-
geneity on different thermodynamic regimes. It will
be assumed that the distribution functions g' and h
appropriate to the regime are known. The discussion
is largely given in general terms, but some specific
examples are treated in detail.

A. Homogeneous phases

The local density variation dn = n Ed p, 2 at constant
temperature is related to the local change in substrate
energy, i.e., dp2= —de. Therefore, F = —(I/Nn'K)
& (BN/Be) r. If the film is relatively incompressible,
dN = ndA, so that ( BN/Be) r = n (BA /Be) r
= —Ng~ (e), according to Eq. (8). This, together with
Eq. (9) gives

F(~.~. T) =g'(e/eo)/~on'K(n, T), (16)

where K(n, T) is the local isothermal compressibility,
and ~ is explicitly given, as a function of n, n, and T,
by

e= p(n, T) —p~(,n, T)

The simplest regime is one which ideally is an in-
finite uniform phase. On a real substrate the film
has nonuniform density and is effectively divided
into small domains. These perturbations can in prin-
ciple affect many thermodynamic properties.

The density variations can be described by means
of a distribution F(n, n, T) such that the fractional
number of atoms whose local density lies between n

and n +dn, when the average density N/A is n and
the temperature is T, is given by

dN = F(n, n, T) dn

p,„,p„(P, T) = —e;„,+ p2(d;„,, T)+2o [l(n2 —n() ]

Differentiating with respect to N, we obtain a relation
between G(p. ), the density of sites and h (0.

(18)

with

Typical local thermodynamic properties are func-
tions of n and T. For a local property X(n, T) the
heterogeneous sample average is

X(n, T) = J dnF(n, n, T)X(n, T)

[g~(e)] '=(n, —n, )A [NG(p)] '+2oA [Nl'h(l)] '

(14)

n = &fdnF(n, n, T)n

1= „l dnF(n, n, T) (19)

Thus, isotherm and line-broadening measurements
combined can yield the size and energy distributions.
These can serve to characterize the substrate for a
class of adsorbates and regimes, i.e., for all adsor-
bates subject to the same type of long-range attrac-
tions to the substrate, in thermodynamic regimes
similar to those used for characterization.

Although our heuristic discussion appears to apply
only to the case of homogeneous phases, it is shown
in the Appendix that, at least for the case of energy
heterogeneity alone, the distribution F given by Eq.
(16) is quite general. Some care must be taken in
expressing thermodynamic derivatives with respect to
n.and T. From the detailed treatment in the Appen-
dix, it can be sho~n that the averaged compressibility
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K'"= (—1/n ) (8n/8p)r, thermal expansion coefficient
o'"= —(1/n)(Bn/f)T)&, and specific heat at constant
area Cg" —= (T/n)(Bs/BT) „are-given by

K'" =—
2 „dnF (n, n, T) n2K (n, T)

t7

a'" " BF=s —n dn s(n, T)

b'av

",n, T

Cg" = — dnF(n, n, T) nCq (n, T)
.n

"

T
,

eFt+—
J dn s(n, T)

(20)

B. First-order phase transitions

where the local compressibility, entropy density, and
specific heat appear in the integrals. Certain linear
combinations of these sample-averaged thermo-
dynamic derivatives can be expressed directly in

terms of F itself, rather than in terms of temperature
and density derivatives of F (see Appendix).

Of particular interest is the heat capacity. The ad-

ditional term in Eq. (20) can be interpreted physically
as the effect of density redistribution. That is, redis-
tribution- among the regions of differing binding ener-

gy can produce an appreciable contribution, as dis-

cussed in a recent paper. " This heterogeneity term is

unimportant in relatively incompressible dense
phases, but may become important at low densities.
Recently it has been shown" that a first-order correc-
tion for the effect in the heat capacities of low-

coverage He on Grafoil makes a significant change in

the deduced values of the virial coefficient.
Size effects can occur in various properties of

homogeneous phases. In addition to diffraction line

broadening, which has been discussed, limited sizes
may affect transport phenomena. 'spin" and mass dif-

fusion, and sound and heat transport are all limited by

imperfections and crystallite boundaries. Phases with

especially large coherence lengths are particularly
sensitive. Outstanding examples of such systems are
films in the vicinity of higher-order phase transitions,
%e postpone discussion of this topic to Sec. III D
below, where it will be taken up in detail. A dif-

ferent regime sensitive to size limitation is an incom-
mensurate solid at low temperature. At progressively
lower T the principal phonons contributing to the
heat capacity have longer wavelengths, varying
roughly as X —n'~28/T, where 8 is the two-dimen-

sional Debye temperature. As T is decreased A.

sweeps through the size distribution; as more modes
become lost to the frequency distribution their contri-
bution to the heat capacity is lost, and the heat capa-
city falls below the 2D Debye law.

On an ideal substrate a first-order phase change is
marked by discontinuities in the first derivatives of
the thermodynamic state functions, but on a nonuni-
form surface the transition is rounded into a continu-
ous change. The rounding is caused by both binding
energy variations and size effects.

The rounding of the ideally sharp corners of vapor
pressure isotherms has already been discussed, in the
section on characterization. A related thermodynam-
ic property, the specific heat, will be analyzed at
some length, with application to experimental results.

The heat capacity of a two-phase system can be ex-
pressed as the sum of three terms: the contributions
of each phase and a conversion term. The conver-
sion term is '

1

QS)
Cconv = T

BN T,A)

+T BSi

T'iV1

QS2

BN2 T~2
1

&S2

~~2 TW2

(jA')

, N, A

(21)

l

Tc

where S~, S2 are the total entropies of the individual
phases. This term is not present on the single-phase
side of the boundary line on the phase diagram,
hence the signature of the first-order transition would
be a heat capacity discontinuity due to the sudden ap-
pearance or disappearance of C„„„.The discontinuity
can be expressed as follows. Let the function T'(n)
represent the phase boundary in the local system.
The boundary can, for example, be the line dividing
the homogeneous vapor phase from coexisting vapor
and liquid, as shown in Fig. 1. As one crosses this

Among the most serious effects of substrate
heterogeneity are their blurring of phase transitions.

FIG. 1. Phase diagram of a monolayer with first-order
transitions between solid, liquid, and vapor phases,
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phase boundary from slightly below T'(n) to slightly
above T'(n) (at fixed n), the local heat capacity exhi-
bits a discontinuity given by C„„„.Explicitly, the
discontinuity is

, T T (n)-0, T T (n)+0++

(22)
dT'(n)

nfl

where K'+ is the isothermal compressibility
K(n, T'(n) +0+) on the single-phase side of the
boundary. The calculated magnitude of this term in

typical systems is large compared to other terms.
Nevertheless, no discontinuities have been observed,
even in systems in which vapor-pressure isotherms
give strong indications that first-order phase boun-
daries do exist. Their absence can be explained, by
heterogeneity.

We consider an approach to the transition from ei-
ther the single or the two-phase side. The boundary
line in the ideal system is a specific function T'(n) of
the density. In a system with average density n and
local density variations (described by the distribution
F discussed previously) there will be a spread in

boundary temperatures around T'(n): Depending on
the shape of the local density variations, i.e., on the
nature of F, the transition will show a reduced and/or
rounded anomaly in the neighborhood of T'(n); if I'

is sufficiently broad (i.e., gives significant weight to n

values far from n) there will be no observable rem-
nant of the ideal discontinuity. The shapes of
anomalies can be calculated if the transition line slope
and g„(e) are known. Although complete characteri-
zations in the manner described here have not been
made, some information on the heterogeneity of
commonly used substrates is available, and can be
applied to the problem. However first we calculate
the sensitivity of different transitions to energy
heterogeneity.

We define the specific sensitivity to heterogeneity
as S(T'),

able. Two particularly interesting systems are
Kr/graphite and Xe/graphite, both of which appear to
have solid-vapor and solid-hypercritical fluid regimes
according to vapor-pressure isotherms, ' yet nei-
ther of the systems have displayed the expected
heat-capacity discontinuities, nor even rounded
anomalies (except in one case, discussed below), at
their evaporation or melting phase boundaries. ""
Part of the reason for the discrepancy is the fact that
the isotherm measurements were made with un-
compressed graphite powder, which appears to have
exceptionally good uniformity, while the heat-capacity
measurements were made with Grafoil, a compressed
powder of lower quality. Another contributing factor
is the high sensitivity of the transition temperatures
to energy heterogeneity. We have calculated S(T')
for each of the transitions, and list the results in
Table. I. The results range from 0.05 to 1; at the
upper value a spread of 1 K in transition temperature
would be caused by a variation of about 1 k~ in the
binding, i.e. less than 0.1% variation in e. ' There-
fore the detection of experimental signals approach-
ing the form of ideal transitions demands extreme
substrate uniformity; if not of the entire sample, at
least an appreciable part of it. The one exception to
the complete absence of anomalies, alluded to earlier,
is the melting transition of Kr. Heat capacities at
coverages from 0.8 to —1 layer show broad
anomalies ' at temperatures lying along a line con-
sistent with the boundary traced out by vapor-
pressure isotherms. ' The appearance of these exper-
imental signals, as contrasted with the absence of cor-
responding signals in Xe or with anomalies due to
condensation in either system, is consistent with the
appreciably lower sensitivity of the Kr melting transi-
tion. It is particularly interesting that, although there
are alternative explanations for the shape of the Kr
peak, ' ' the experimental anomaly has a shape
which would result from the smearing of an ideal me-
salike signal due to the crossing of a first-order melt-
ing regime.

Also listed in Table I are the sensitivities of the
condensation and incommensurate solid melting tran-
sitions of 4He on graphite. (For this discussion we

(23)

i.e., the shift of transition temperature with respect to
variations in binding energy, measured in units of
Be/ks With Eq. (6) an. d ndp = nde =—d$—we can
relate S ( T') to the compressibility and the slope of
the boundary: Film Condensation Melting

TABLE I. Specific sensitivity to energy heterogeneity of
phase transitions S ( T') = k&dT'/d e, various films on gra-

phite.

I

S(T ) =+k n2K
dn

(24)

Using Eq. (24) one can calculate S(T') of systems
for which detailed vapor-pressure isotherms are avail-

Kr
Xe
4He

0.2
1.0
0.08

0.05
0.3
0.07
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do not distinguish whether the phase change at melt-
ing is first order or continuous. ) These values, calcu-
lated from the phase boundary slopes' and compressi-
bilities, 4 are within the range covered by the Kr and
Xe values, yet they contrast with the heavier atoms
in that the He heat capacities on Grafoil" do show
pronounced anomalies even along the condensation
iine (see Fig. 12 of Ref. 7). The difference can be
due to a combination of two effects. First, as seen in
Table I, the sensitivity of the helium condensation is

appreciably lower. Also important is the much lower
total binding energy of helium, approximately one-
tenth of the Kr value. ' A common g~'(p) for all of
the systems on the same type of substrate produces
lateral fields only one-tenth as large in helium; it is
these fields which cause the density variations that
blur the transitions. Combining factors, and scaling
from the experimental widths -0.5 K of the He
condensation anomalies, predicts that the widths of
the Kr and Xe peaks would be 25 and 50 K, respec-
tively: it is therefore not surprising that no evidence
has been found of those transitions in the heat-
capacity studies, Scaling the melting transitions in
the same way, a width of —0.5 K of the "He peaks
indicates a corresponding width of 3.5 K for Kr and
over 20 K for Xe, which is consistent with the obser-
vation of a broad Kr anomaly but nothing apparent
for Xe.

The comparisons lend support to the assumption
that the reduced density of states can characterize a
substrate for classes of adsorbates, and that g„(p) is

equal to gq'(e/pp)/pp
Finally, we note that the experimental width of the

4He condensation specific-heat anomaly, together
with the calculated S ( T') of the transition, indicates
that the binding energy variation of He on Grafoil is
on the order of 6k&.

C. Triple points

"Two-dimensional triple points" have been de-
duced from studies of several monolayer systems, by
vapor-pressure isotherms 20, 2i, 25-28 neutron scatter
ing, x ray diffraction, ' and calorimetry.
The specific-heat results are particularly striking: Ne,
O~, and Xe films on graphite showing strong sharp
peaks with widths as narrow as ST =0.003, ' limited

by instrumental resolution. These sharp peaks are in

contrast with absent or broad anomalies at the two-

phase boundaries in the same films. We believe that
the explanation involves the spatial distribution of
heterogeneity coupled with incomplete equilibrium in

the experiments.
Our discussion is given with reference to the ideal

phase diagram of Fig. I, which describes the situation
in a uniform film having a normal triple point.
Although the temperature T, is independent of the
average film density, this alone is not enough to ex-

plain the insensitivity of T, to heterogeneity. The tri-
ple point is a fixed point, independent of the relative
amounts of the three surface phases. This indepen-
dence has nothing to do with the stability of n against
the lateral fields of a heterogeneous substrate. Fields
cause density variations in any phase according to its
compressibility, whether or not there is another,
coexisting phase. Thus, the triple point of the
heterogeneous film can be experienced by only that
part of the film in zero binding-energy gradient,
where the densities of the coexisting phases corre-
spond to their values in the uniform system. Since
the experiments show that major fractions of the
films undergo sharp triple point melting, it follows
that at T, at least, substantial parts of the systems are
on an effectively uniform surface. The conclusion
appears to contradict the evidence for strong hetero-
geneity at other phase boundaries. We propose the
following explanation,

Let us assume that the spatial distribution of bind-

ing energy is in the form of terraces, of uniform re-
gions, their dimensions being consistent with size ef-
fects. Such patchwise-uniform or "homotattic"
structures have been employed as models for calcula-
tions of nonuniform films. ' In a uniform phase
the density of a film in equilibrium on such a sub-
strate will vary from patch to patch according to the
energy variation and the 2D equation of state, The
density profile follows the spatial variation of e on
the patches, and the density distribution F(n) is the
same (except for size effects) as that on any sub-
strate having the same g(p). If a film on such a sub-
strate is cooled below T, it divides into two phases on
each patch with relative amounts according to the lo-
cal average density. On further cooling each uniform
two-phase region passes through the ideal triple
point.

However, this explanation requires an additional
condition: that the equilibrium between different re-
gions be relatively slow at or near the triple point, If
the system were in complete thermodynamic equili-
briurn in the two-phase regime, some atoms would
have distilled from regions of weaker to st'ronger

binding, until in the complete equilibrium state the
dense phase would cover all of the strong-binding re-

gions, with ~ & e & e;„„and the low density phase
covering all of the rest. The interface would be some
relatively short boundary, the number of atoms on
the boundary being on the order of N' ' for a con-
tinuous g(p). In these circumstances the only part
of the film capable of triple point melting would be
the very small fraction at the interface. The rest of
the film would be at lower or higher spreading pres-
sures, and hence lower or higher densities than the
vapor and liquid in two-phase equilibrium along the
interface. These phases would undergo condensation
and melting transitions broadened by heterogeneity in

the manner described in the preceding section.
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Therefore the explanation requires that, although the
film is in equilibrium on each patch, the equilibrium
is incomplete between patches. This situation is plau-
sible due to the typically low vapor times the long dif-
fusion times at T, in the absorbents used in
calorimetry.

In contrast to the Ne, 02, and Xe results, other
films have not shown resolution limited heat capaci-
ties. Experimental widths, at intermediate coverages
~here the triple point might be expected, range from
ST/T =0.02 for Kr (Ref. 22) and N2 (Ref. 36) to 0.3
for Ar (Ref. 37) (see Fig. 2 and Table II). The broad
anomalies were obtained with the same substrates as
used for the Ne, 02, and Xe films.

While it is possible that the broad anomalies are
due to continuous melting, as has been suggested on
the basis of several different mechanisms, ' "" it

seems possible that some of the broad transitions are
intrinsically first order, but seriously affected by
heterogeneity. Neutron diffraction shows appreciable
size broadening in the films on Grafoil substrates. In
N2 the mean domain size of the registered solid'" is
consistent with the values deduced from the specific-
heat transition widths due to line tension and a size
distribution. In Ar films the linewidths are much
greater. " Since the Ar solid is incommensurate the
width must be due to a combination of size broaden-
ing and density variation. Density variation may play
a much more important role in films having a very
limited liquid density range. In the case of Kr, for
example, whose phase diagram is quite detailed, " the

TABLE II. Abruptness of solid-fluid transitions at "triple
points" of experimental monolayers on Grafoil and Papyex
graphite {see Fig. 2).

Atom 5 Twisty/ T 5 Tsgi ft/ T

Xea
Neb

02'
CD4~

Nc

Kr'
Ar&

«0.003
0.006
0.012
0.013
0.02
0.02
0.3

«0.001
«0.006

0.004

0.04
0.024
0.04

' Reference 23.
Reference 31.

' Reference 32.
4 Reference 29.

' Reference 36.
~ Reference 22.
~ Reference 3'7.

liquid range is quite narrow. Assuming that the
liquid does exist, a moderate spread of density caused
by energy heterogeneity could reach well beyond the
entire coexistence region. Under these circumstances
a sharp triple point signal due to the minor fraction
of the film could be masked by the discontinuities
due to transitions in the low-density and compressed
film region. N2 films appear to have a similar phase
diagram. The phase diagram of Ar is not sufficiently
known to test the mechanism.

D. Second-order phase transitions

~ ~uvidth

Zr
V

S~sl ift—

FIG. 2, Experimental phase diagram of rnonolayers with

diffuse solid-vapor transitions (see Table II). The dotted
line corresponds to a line of heat-capacity peaks seen in

Kr/graphite films.

The study of second-order phase transitions in ad-
sorbed films is a very active field of experiment and
theory. Several types of phase change are known or
presently speculated to be second order: the gas-
liquid critical point, order-disorder transitions, mag-
netic ordering, commensurate-incommensurate tran-
sitions, me1ting of incommensurate solids, and super-
fluid transitions. In some of these cases the question
of whether the transition is first or second order is of
prime interest; in others the determination of critical
exponents is a principal objective. To the extent that
heterogeneity can change the apparent critical ex-
ponents and even the apparent order of the transi-
tion, the careful characterization of substrates is cru-
cial to the field. A detailed prescription for removing
the effects of heterogeneity from experimental data is
given in Sec. IV, and it can be applied to critical re-
gions as well as others. Here we give a general dis-
cussion, and investigate some specific examples.

In all second-order transitions the correlation ra-
dius r, and generalized susceptibility X diverge as the
critical point is approached':

(25)
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where t = ( T —T, )jT, and the critical exponents
v, y & 0. The increase of r, as T T, is truncated by
the finite sizes of crystallites, so that the temperature
region unaffected by size limitation does not extend
all the way to T,. Energy heterogeneity also limits
critical behavior, but sensitivity to energy hetero-
geneity depends on the specific type of transition.
%here the relevant susceptibility is the density
compressibility K, as in the gas-liquid critical point,
energy heterogeneity couples directly to the critical
behavior. In these cases the excluded critical region
becomes a combined result of the divergence of both
X and r, . The range of temperatures excluded from
ideal behavior can be scaled in terms of the charac-
teristics of the substrate. For the cases where he is
the appropriate field for the divergent susceptibility, a

general scaling law allows us to relate 5~ to t,„, the
limiting temperature of ideal behavior. The general
scaling law is'6

(26)

where P is the critical exponent of the order parame-
ter. Finite size of crystallites plays an independent
role; from Eq. (25) we obtain for a typical dimension
t,

(27)

The combination of energy heterogeneity and finite
size produces a scaling law of the form

(28)

where a and b are nonuniversal constants. Compar-
isons between different well characterized substrates
can presumably yield the kind of detailed information
that will allow the determination of the coefficients in

Eq. (28); about all that can be concluded at this time
is that no such detailed comparisons have yet been
made.

In transitions for which the relevant susceptibility
does not couple to the energy heterogeneity, varia-
tions in e can still cause appreciable blurring of the
transition. The mechanism has been described in
Sec. III B, whereby induced density variations pro-
duce a distribution of transition temperatures. The
blurring of the transition in these cases depends on
the value of E and the slope of the phase boundary.
In some of the transitions, e.g. , the gas-liquid critical
point and the order-disorder transition of He/graph-
ite, the slope dT, /dn =0 at n = n, In these cases .the
spread in T, is due only to the curvature of the boun-
dary, and is markedly reduced from the typical spread
of transition temperatures seen in other transitions,
e.g. , condensation. This appears to be one of the fac-
tors contributing to the striking sharpness of the
specific-heat peaks of the He/graphite transi-
t~on 7 9 24 40

The peak rounding and finite heights of the specific
heats of He on various forms of graphite have been
interpreted as due solely to size effects. ' Howev-
er, from our earlier discussion, we consider it virtual-
ly certain that energy heterogeneity must also contri-
bute to the rounding. There is in fact evidence that
in the very uniform ZYX graphite ' size effects are
less important than energy heterogeneity. In recent
high-resolution x-ray studies of the registered Kr
solid on ZYX graphite, diffraction linewidths indicate

0
surface coherence lengths of more then 2000 A, " '
as much as 10 times the lengths deduced from the
He order-disorder transition heat capacities on the
same type of substrate. While it is conceivable that
the quality of the two different ZYX samples is so
different, we think it much more likely that the
discrepancy is a matter of interpretation. The x-ray
linewidth of a registered phase is subject to size
broadening but not to energy heterogeneity, while the
transition temperature rounding is subject to both en-
ergy and size effects. The discrepancy between the
two interpretations indicates that, contrary to com-
mon belief, it is energy heterogeneity and not size
limitation that is dominant.

The most familiar second-order transitiori is the
gas-liquid critical point. Several films have phase dia-
grams obtained from vapor-pressure isotherms that
indicate liquid-vapor coexistence regions and hence
2D critical points. However in none of these systems
has any singular behavior been seen, as for example,
divergent heat capacities. Their absence can be ex-
plained by heterogeneity, specifically energy hetero-
geneity, coupled with divergent compressibilities.
Even if very much more uniform substrates could be
obtained the divergence of E as T T, makes the
critical region particularly difficult to observe. Apart
from the critical region, the dependence of G(p, ) on
the densities of the liquid and vapor phases helps to
explain some features seen in vapor-pressure iso-
therms. In Eq. (10) we see that G(p, ) is proportion-
al to (nq —n~). Since g„'(e) is a constant, if follows
that the slope of the isotherms in the two-phase re-
gion should decrease monotonically with increasing
temperature. This is observed in many of the sys-
tems.

IV. INVERSION PROBLEM

Experimental quantities will in general be related to
the averages (X), defined in the Appendix tEqs.
(A16) —(A18)j. In cases where a two-phase region
exists locally, one must make a distinction between
the average X and the average (X). As described in

the Appendix, the two averages are equal for local
quantities X which are finite in the two-phase region,
but L is not appropriate for all quantities when the
film is in a two-phase coexistence regime. Instead, it
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is the average

"max
(X) = J dnF(n, n, T)X~"(n, T) (29)

over all densities (including the interface region)
which is appropriate in all cases. The function F is
given explicitly by

g [p(n, T) —p, ,(n, T) ]

n2K(n, T)
(30)

n K'"(n, T) = (n2K)

We would like to construct a simple inversion
scheme for extracting the local quantity from the
average; i.e., for obtaining information about the lo-
cal variables from the experimental averages. We
suppose here that the functional form of g(e) is

known, that p(n, T,) has been determined experimen-
tally, and that p2(n, T) (and K) are supplied by some
simple local model for the film. The form discussed
in Sec. III, g(e) = (I/tp)g"(e/ep), may be used, but
is not a necessary condition for the analysis below.

Every "average" property can be related to an"I " average of a local property. Specifically, if we
regard C&", o.'", and K'" as an appropriate set of
average quantities, then it follows from Eqs. (A24),
(A25), and (A26) that

S; =—
11J

iJ
, ~max,

ij =1,2, . . . , Z (33)

The. inverse of this matrix provides quadrature
~eights for the approximate integration required in
Eq. (32). Thus,

(34)

defines quadrature weights so that the integral in Eq.
(32) is approximately given by

(35)

with

g,~
—= n, „F(n;,ng) W) (36)

The temperature dependence of 3",8"', and F is
implied. A further matrix inversion of g now pro-
vides explicitly the value of 8'". Thus,

(37)

I = 1, 2, . . . , Z

Z experimental densities n; and define the Z x Z ma-
trix

n[SK"(n, T) —n'"(n, T)] = n K(n, T)—BS
Qf1

T [SKr"(f, T) —a'"(rT, T) ]nC'"(n T) +
K'"(n T)

(31)

Z z
1= X gg, n;= Q Q0nj

J-~ J-~
(3g)

It should be noted that simple checks on both the ap-
proximate integral inversion and on the validity of
the original F(n, n) are the requirements

= nC&+ Tn K (js
nfl

A "(n, T) = (8"'(n, T) )

—= J
™x

F(n n T)8"'(n, T) (32)

The traditional derivatives representing constant area
specific heat, thermal expansion coefficient, and
isothermal compressibility, are not the simplest
choices of average and corresponding local quantity.
For example, the choices A'"=n, 8"'=n or A'"=s,
8"'= s (n, T) are obviously simpler cases of the gen-
eral structure exhibited by Eq. (32).

It is a simple matter to invert Eq. (32) by suppos-
ing a grid of experimental densities n (all at the same
T) with their associated values of A'". Let there be

We see that the left-hand side of Eq. (31) is some
combination 3'"(n, T) of average properties, while

the quantity in the ( ) on the right-hand side is some
local function 8"'(n, T) In general, then. , the rela-
tion between average and local properties is always of
the form

The first of these follows from the normalization on
I', and the second follows from the fact that A" = n

corresponds to 8"'= n.
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APPENDIX: AVERAGING PROCESS FOR
HETEROGENEOUS SUBSTRATES

For purposes of illustration and motivation, first
consider the total number of particles per unit area,
as an integral over the local film density

n = —=—
l l n [ x, y]d xyd (Al)

We regard the film as a two-dimensional system,
whose local density n [x,y] is the 2D thermodynamic
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function n (p,2, T), with p, 2 the 2D chemical potential.
Thus,

and the derivatives with respect to p, and T become

n [x,y] = n (p,2, T) (A2)
"'

g(p, —p2) [Xl(p2( T), T)

with the functional form determined by the 2D equa-
tion of state. The temperature T is uniform. The
film is locally in equilibrium with 3D vapor, so that

—X2(p,2(T), T) ] +
()T, g2

p' pvapor pfilm p2 +»l(x 8 ) (A3) (A9)

d»g„(») =1 (As)

where»l(x, y) is the locally varying substrate potential
energy. The vapor chemical potential p, is a constant,
determined by the 3D gas pressure P and tempera-
ture T. Thus, the spatial dependence of p, 2

= p, —»2(x,y) determines the local variation in film

density.
Equation (Al) can therefore be written in the form

n = „d»n (p, —», T) gg (») (A4)

where
t

g„(») =—— dxdy 5[» —»2(x,y) ];

= —g (p, —p,,) [X,(p2( T), T)
, BJM,

—X,(p, ', ( T), T) ] +
BIM2

'

~

and we note that d p2/dT = —(sl —s2)/(nl —n2) for a
first-order transition.

Consider now the averages of density n, entropy
density s, spreading pressure $, and chemical poten-
tial p2. For rtr and p2, there is no discontinuity
(xl —x2) along the phase boundary. Since the 2D
variables satisfy the Gibbs-Duhem relation,
nd p, 2

= sd T + d rti—, we have

n(p„T) = „dp,g(pp, , )n(p, —, T,)

The "natural" variables are p, and T. For systems
undergoing first-order phase changes, there are re-
gimes of temperature and density where two phases
coexist. In these regimes the average density is com-
posed of contributions from each phase, i.e.,

rap, (T)

dp2g (p, —p2) nl(p2, T)n(p„T) = „

By employing Eq. (A2), with a value of p, 2 which is

independent of total area, we are implicitly assuming
the 2D thermodynamic limit (A ~) for the film.
Thus, we have in mind here energy-averaging effects
only, as distinct from explicit size effects; the limit

g (») = lim„gq (») is therefore appropriate and will

be assumed in the following discussion.
We may rewrite Eq. (A4) in the form

Consequently, p, 2
= p, +constant, d p, = d p, 2, and

d rtr = nd p + SdT (A 10)

P2 =P

where

1
goo

»l(x, y)dxdy = ' »g(»)d» (All)

In other words, there is a simple Gibbs-Duhem rela-
tion between the average quantities rt, n, s, p, 2. The
constant relating p, 2. and p, is simply the average sub-
strate potential energy

+„, dp2g(p, —p2)n2(p2 T) (A7)
p,2(A

~here the subscript 1 refers to the lower density
phase, and p02( T) is the common 2D chemical poten-
tial of the two phases (the value of p2 at the inter-
face) .

Now, any local thermodynamic quantity X(p,2, T),
which is a function of chemical potential and tem-
perature, can be averaged in the same manner. Thus

t y,2(T)
X =„dp2g (p —p2)Xl(p2, T)

e —p2n = Ts —
rtr (A12)

and these local variables also satisfy the thermo-
dynamic identity de = p,2dn + Tds. Because the aver-
age e contains p,2n, we define an average quantity u

by

u = ( e p2n +pn) —= pn+ TS —
p, ,

Note that ~ is not a function of either temperature or
chemical potential.

The local 2D internal energy density (not including
substrate energy) is

+ J~ dp2g(p p2)X2(p2iT)
p,o, (r)

(Ag) where the second equality follows by inserting the
average of e. The differential du becomes, with the
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use of Eq. (A10), du = p, dn + Td s. The thermo-
dynamic identity thus involves the new variable u. In
summary, we have

u =e —p2n + p, n
1

u = pn+, T s —$ (A13)

where K is the 2D compressibility. According to the
definition of the averaging process [Eq. (A8)l, n'K
includes contributions from each phase, and both
contributions are small. It is the first term in Eq.
(A14) which on the ideal substrate gives a 8 function
at p, —pt(T) = ep, weighted by the difference
between phase densities on the phase boundary. On
a real surface, the finite slope of the isotherm pro-
vides a direct measure of g(e).

In fact, we may define an average isothermal
compressibility by the expression

1 9A 1 Qn 1 9nK'" = ——
8$ „r n 8@r n, 0pr

—~ (/sngp+n K)1 2

n
(A15)

where /sn =
n2 ( T) —n

& ( T) and gp ——g (p, —p, 2 ( T) ) .
K'" is directly measurable. Furthermore, observe
that the average defined by Eq. (AS) can be convert-
ed to an integral over density, recognizing that

du = p dn + Td s

On an ideal substrate [with ei(x,y) = const = —ep

and g (e) = 8(e+ ep) ], we have p2n = p2n = (p,
+ ep) n He.nce u = e —epn on the ideal substrate.
More important is the fact that u is the total energy
per unit area. That is, u (x,y) = e(x,y)
+ ei(xy) n (x,y) is the full local energy density. Since
ei(xy) = p, —p2(xy), we see that u = e —p2n + pn, ,

and its average u is the total energy per unit area, in-

cluding the substrate potential energy. Equations
(A13) and (A10) provide a "complete" set of ther-
modynamic relations for the averaged quantities,
identical with the usual relations.

In fact, the "average" relations are those most evi-
dent from a purely thermodynamic point of view.
Our derivation, starting with the assumption of local
equilibrium and locally defined thermodynamic quan-
tities, merely shows in a pedestrian fashion that these
assumptions are consistent with the thermodynamics
which must be correct for the entire film.

The important thermodynamic derivatives can be
constructed from averages of local quantities via Eqs.
(A9). For example, the average densify derivative
with respect to chemical potential is

1

=g(p, —p2(T)) [n2(T) —ni(T) 1 +n'K
Bp y

(A14)

This expression excludes explicitly any contribution
P lf

2
from the region ~, i.e., any contribution due to

n, '

the existence of the two-phase interface. We antici-
pate, and will show explicitly below, that 'an average
defined so as to include such contributions will be
useful. Therefore, we define the average

so that

X(n, T)(X) =gp Jl dn
2

' +X
n'K n, T

(A18)

We have used the fact that p, 2
= p, p2( T) in the two-

phase region, so that g[p, —p, 2(n, T)] =g[p, —p, P2(T)]
=go

Now, it is clear that for any local quantity X which
is finite in the two-phase region, (X) = X, since
K ~ in the two-phase region. This includes all the
quantities in Eqs. (A10) and (A13). If X = n'K, as
in Eq. (A15), we see that (n2K) =i5ngp+n2K. Con-
sequently, Eq. (A15) can be rewritten as

n K"= =(n K)n

Bp y

= J dng[pp2(n, T,)]—(A19)

If p, —pP2( T) is close to the energy most heavily
weighted in g(e), then only the two-phase contribu-
tion is important; i.e., the first term in Eq. (A14). If
there is no two-phase region, then the original defini-
tion of L would have included a11 n values. In other
words, the average (X) given in Eq. (A17) is ap-
propriate in all cases. Because we have defined K'"
[Eq. (A15)] in analogy with the local definition, K'"
is (n'K ) /n rather than simply (K ).

The complete thermodynamic description requires
three derivatives. %e may take the others, in addi-
tion to Eq. (A19) to be

Qn

BT
9S
Bp

ASgp + nK (S —u/K)

(A20)

9S
[

QT

(bS)2 I
gp +—nCg +K (S —n/K) 2

An T

p, 2
—~ corresponds to n =0 and p,2 +~ will cor-

respond to some maximum possible density n,„(as-
suming a "hard disk" part in the interaction between
film atoms). p2(T) corresponds to ni(T) or n2(T).
Thus, the average X in the two-phase regime is

g [p, —p, ( ,n, T) ]
n2K (n, T)

1
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where n is the thermal expansion coefficient and C~
the specific heat at constant area (nCA is the local
heat capacity per unit area) for the 2D film. We
have used the definitions As = s~( T) —s2( T) and
An = n2( T) —n~(T), together with the fact that
dpp2(T)/dT=hs/An T. he fact that each of these
derivatives involves a gp term plus a ( ) term follows
from Eqs. (A9).

The right-hand side of Eq. (A20) can be expressed
most simply in terms of the ( ) average. To show
this, we observe that in the two-phase region

S = [S2(T)(n —nt(T)) +S&(T)(n2(T) —n) ]/An

(A21)
while, in general

av-
n

t t

8n 1 9n
—2
Pl RIM, , iT ll QT

=—(n K) ——nK s ——S 2 1 Cl

K

= —(n n) + —,[S (n'K ) —n (snK ) ]

(A2S)

is a result of definition; i.e., (Bn/Bp) r is still equal
to the average ((Bn/Bp2) r). A more interesting ex-
ample is the thermal expansion coefficient, which we
define by

BS(n T) 1 S n

so that in the two-phase region

1 o. AS—S ——
n K An

(A22)

(A23)

The fact that (1/n ) (n ot) appears instead of (n) is

again a result of definition. But in addition, there is
a term which appears because the product of s and
n K averages is not equal to the product of n and snK
averages.

Another derivative, of more direct interest than a'"
is the heat capacity, defined by

That is, although both n and K diverge in the two-

phase region, their ratio is finite and such that
(1/n) (s —n/K) is independent of n. From Eq.
(A17), we see that the interface term contributes

Asgp to (nK(s cK/K) ) and [(As)'/An ]gp to
(K(s —u/K)2). Therefore, using Eq. (22), our
complete set of derivatives becomes

CtPj /AM ~ QP ~ T gS

n~ ~T n ~T n

The properly averaged specific heat at constant area is
then given by

av — ~Pl
n K'"=—

9jLl T

= (n'K) = ' dng[p—p, ,(n, T, )]
ay T ()S T QS /pe

9T „- n, ~T „,~ BT „

9n
gT

BS

, Bp T

aJ P

0!= nKs ——
K

dng[p, —p, ( T)]
nfl

(A24)

= —(nC„) +—1 T
n n

2K, Bs
'( an,

9S 1= —(nC„)+ Ks ——CX

QT) T K

n KT
S

8fl
n'Kr)

1 pnmax ()S=—(nCq) + I dng [p, —p2(n, T)]
T ~Jp apl

QX

C)P

QX . c)X (jX
QP'2 BT QT P2

That is, the derivative of the average is not always
the average of the derivative. This is obviously true
for K'" = (1/n ) (n'K ) but in this case the difference

These derivatives are then the most directly related
to averages of local quantities, and the first one (re-
lated to K'") is also directly accessible experimental-
ly. Notice that it is only the basic derivatives with
respect to p, and T which will satisfy

t 1

(A26)

This expression also shows an explicit in square
brackets term analogous to the one in o.'". Equation
(A26) actually does not show a divergence in the
ideal substrate limit. The terms containing gp appear
only in the ratio Angpn2K/(Angp+ n2K), which is
finite even when gp is a 5 function.

The temperature dependence of the heat capacity,
and the blurring effect of energy heterogeneity on a
first-order local heat capacity discontinuity, has been
discussed in Sec. III B. A related question, which is
somewhat simpler, concerns the density dependence
when T is low enough so that the ideal film is in two
phase equilibrium. In the two-phase region, the local
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heat capacity per unit area satisfies or, from Eqs. (A15) and (A20)

d dpo(T) d dg(T)
dT dT dT dT

T d ES +T d d@(T)
dT An dT dT

8 C~ ()

Qn A, y QT

1

ASgp —n K 9S
8fl

Aflgp + N K
, n

(A2g)

so that

9 C~

9n A
Td AS

dT An
(A27)

C tot

Bn, ~
T 8 BS T 8 BS 8

8T gg 9T ~~, r, ~~, r n

is a function of T only. This (linear in n) property
has been used to characterize the two-phase region.
However, the linearity in n is strictly correct only in

the case of an ideal substrate.
The effects of energy heterogeneity on the density

dependence are most easily seen by taking the n

derivative of the total heat capacity per unit area.
For the general case, we have C~"'/A = T(Bs/BT)„
so that

We have argued, in applying Eq. (A14) or Eq. (A15),
that the gas and liquid phase contributions to n'K are
small compared to b ng p if we are in the region where
p, —po(T) is close to the energy most heavily weight-
ed in g(e). Igo=g[p, —p2(T)] would be infinite at
this energy on the ideal substrate. ) If we can use the
same argument for the numerator in Eq. (A28), then
the right-hand side becomes T(d/d—T) (hs/4n ),
identical with the local expression. The point here is
that the n dependence of C„"'/A in the approximately
linear region will not provide immediate useful infor-
mation about g(a). Furthermore, each of the
derivatives K'", o.'", and C&" are given by distribution
averages over g(a), but the quantity to be averaged
generally involves a mixture of local thermodynamic
derivatives. Only K'" is simple.
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