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Dynamical response of a dipole near the surface of a nonlocal metal
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Expressions are derived for the potential of an oscillating point charge near the surface of
a metal described by a nonlocal dielectric constant. The induced field at the site of a dipole

outside the surface is found, and this result is used to calculate the renormalized polariza-

bility of a dipole oscillator. Calculations are carried out using a hydrodynamic nonlocal

dielectric constant, and the effects of nonlocal surface-plasmon dispersion and coupling to
bulk plasmons are apparent. Expressions for the potential are also found if the added

charge is placed within the nonlocal medium.

I. INTRODUCTION

A knowledge of the optical behavior of atoms and
molecules near the surface of a metal is important
for understanding effects such as surface-enhanced
Raman scattering' and difFerential reflectance
spectroscopy of adsorbed atoms. ' Several theories
have been developed for the effect of a metal surface
on the radiation of a dipole oscillator ' and on the
reflectance spectrum of an adsorbed overlayer of
atoms in which the metal is described by a local
dielectric constant e(co). This local description will

O.

become invalid if the dipoles are within a few A of
the surface. There has been much work recently on
the static (co = 0) nonlocal response of a metal to a
charge near the surface using the random-phase ap-
proximation (RPA) with a jellium model of the met-

al, " but these theories cannot be extended readily
to nonzero frequencies.

We shall address the following problem. An
atom, considered as a point dipole oscillating with

frequency co, is situated outside a metal surface.
The dipole induces oscillating image charges in the
metal which in turn produce an induced electric
field at the site of the dipole. %'e wish to determine
this induced field as a function of the frequency, the

properties of the metal, and the distance of the di-

pole from the surface. This field changes the un-

renormalized frequency-dependent polarizability

ao(co) of the atomic dipole at an infinite distance
from the metal to a renormalized polarizability a(co)
that is related to the optical-absorption spectrum of

the atom near the surface. We shall neglect retar-
dation, so our results wi11 be valid only if the dis-

tance of the dipole to the surface is much smaller
than the wavelength of light.

A general formalism for solving this problem has

been set up by Feibelman. ' He uses an RPA jelli-
um description of the metal, which he takes to be
Al, but is able to calculate the induced field only if
the dipole is far from the metal surface. This is a
severe limitation arising from a long-wavelength ex-

pansion which requires that the electric field have

appreciable Fourier components only for small

values of the wave vector q &
parallel to the surface.

We believe that this limitation excludes some of the

more interesting effects of nonlocality, namely the

dispersion of the surface and bulk-plasmon modes
and the appearance of electron-hole pair excitations
at the large values of q &

that occur when the dipole
is close to the surface. It is also difficult to general-

ize Feibelman's theory to other metals and to in-

clude electron scattering in the metal.
A general theory for the screening for an oscilla-

tory dipole near a metal surface has also been

developed by Korzeniewski, Maniv, and Metiu. '

Using an infinite-barrier model to calculate the non-

local dielectric response of the metal, they have

found the induced electric field at a number of fre-

quencies for various locations of the dipole and the
field point.

We have chosen to describe the metal with the

specular scattering or semiclassical infinite-barrier
(SCIB) model. ' ' Although this model does not
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treat the diffuse nature of the metal surface correct-
ly, it includes the most important effects of nonlo-

cality, it can be solved easily for arbitrary distance
of the dipole from the surface and for different met-

als, and the results can be understood physically.
There are two interesting effects that appear when
the dipole approaches the surface: (l) The singulari-

ty in the image dipole in a local theory (and also in
Feibelman's results) that occurs when the dielectric
constant of the metal is e(co) = —l, is removed be-

cause of surface-plasmon dispersion at large values

of q i. (2) An additional damping mechanism ap-

pears at frequencies higher than the plasma frequen-

cy because of generation of bulk plasrnons. The
SCIB model of the metal cannot be expected to be
valid if the dipole approaches to within 1 —2 A of
the surface; however, for such small distances the

point dipole picture of an atom also will be in-

correct and there will be complicating effects due to
overlap of the atomic wave functions with the met-
al. '

In Sec. iI we place a point charge outside the
metal and derive expressions for the potential at all

points in space in terms of the longitudinal dielectric
constant et(q, tp) of the metal. We use this result to
find the electric field produced by the image charges
for a dipole outside the metal. This induced field at
the location of the dipole will renormalize the polar-
izability of the dipole.

Our expressions for the induced field are special
cases of those found originally by Sommerfeld' '
in his treatment of a dipole above a conducting
plane, although Sommerfeld did not explicitly use a
nonlocal dielectric constant. If the reflectance am-

plitude is known for all values of the wave vector q &

parallel to the surface, the induced field outside the
surface can be determined with retardation included.
That is, the nonlocality of the metal enters only into
the expression for the reflectance amplitude, and not
into the relationship between the reflectance ampli-
tude and the induced field. This fact is implicit in
the work of Chance et al. ' and Tews, ' and it has
been explicitly noted by Weber and Ford who
have emphasized the essential role of nonlocality in
the image dipole model of surface-enhanced Raman
scattering. Although the work of Weber and Ford
has some similarity to ours, they proceed directly to
the Raman scattering problem and do not present
calculations of the induced field, nor do they in-
clude any frequency dependence of the unrenormal-
ized polarizability ao. An equivalent method has
been used by Agarwal and Wolmer ' to calculate
the radiative lifetime of an atom near the surface of

where

Pp(r ) =-
ep~ r+zpk

~

(2)

is the potential produced by the point charge and
P'(r ) is the potential produced by the charge in-

duced in the metal. It will be convenient to Fourier
transform all potentials and fields from the two-
dimensional spatial vector p = xi + yj to the corre-
sponding wave vector q&

——q i + qzj. For the po-
tential Pp we find

yp(q„z) = I e ' Pp(r )dxdy

2m'Q —
q& l~+~o Ie

(3a)

(3b)

The source of the potential P'(r ) is the charge
induced in the metal, so P'(r ) is a solution of
Laplace's equation V P' = 0 for z &0. The Fourier

a metal described by a hydrodynamic nonlocal
dielectric constant.

Section III presents numerical calculations using
a hydrodynamic model for the dielectric constant of
the metal and a simple harmonic-oscillator dipole
polarizability. In the Appendix we find expressions
for the potential produced by a point charge inside
the metal. These results can be used to treat the in-
fluence of the surface on screened interactions
between impurities or vacancies as well as the in-
teraction of such defects with the surface itself.

II. GENERAL THEORY USING
THE SCIB MODEL

A. Potential produced by an
oscillating point charge

We set up a coordinate system such that the
metal, described by a nonlocal dielectric constant,
fills the half-space z & 0 and a medium with a local
dielectric constant ep(co), which we will usually
consider to be vacuum, fills the half-space z &0.
An oscillating point charge Q(t) = Qp exp( —icot)
is located at the point (0,0, —zp) outside the metal.
The distance zo between the charge and the metal
surface is restricted to be much smaller than the
wavelength of light, so retardation can be neglect-
ed; i.e., B = 0, V &( E = 0, and E can be derived
from a scalar potential P. The charge and all fields
have a common time dependence exp( itot) whi—ch
will not be written explicitly.

Outside the metal, the potential P(r ) can be
written
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component P'(q i~) must therefore satisfy the equa-
tion

d2

dz

The solution is of the form

D, (qi,z = 0+) = —hm q, &, (q)
2 q —+oo

= 2~f(q, },
so Eq. (10) can be written

PD(q) = 2D, (qi, O+)/q

(12)

(13)

(14)

P'(q, p) = Cie ' + C2e

where the term C2e ' must be discarded because
P'~0 as z~ —ao. Adding Eqs. (3b) and (5), we
find the total potential outside the metal,

2&Q —si I&+&O
I C qp

E'oq i

where the unknown quantity C& will be determined
from boundary conditions at z = 0.

%e now consider the potential inside the metal.
Using the SCIB model we temporarily imagine the
metal to be extended throughout all space and im-

pose the symmetry conditions E„(pp) = E„(p,—z),
E~(p,z) = E&(p, z), and E—,(pp) = E,(p, z—), —
with similar conditions for the displacement D(pg).
There is no added charge in the meta1, so V' D = 0
for both z & 0 and z & 0, However, because of the

symmetry conditions, D, is discontinuous at z = 0,
so we must imagine an added fictitious charge
layer at z = 0 that acts as a source for a "poten-
tial" PD(r ) from which D can be derived:
D = —VpD. Polssoil S eqllatlofl fol pD ls

P(qip) = I P(q)e *
dq, , (16)

has the value

D, (qi, O+)
~

dq,

q~ei(q, N)

just inside the surface of the metal.
Returning to the physical two-medium system,

we now impose the boundary conditions that (1) the
tangential component of the electric field (or
equivalently, the potential) and (2) the normal com-
ponent of the displacement be continuous at z = 0.
The first boundary condition gives, from Eqs. (6)
and (17),

(17)

The potential (ti( r ), from which the electric field can
be derived (E = —VP), has the Fourier transform

P(q) found by dividing PD(q) by the bulk longitu-
dinal dielectric constant:

2D, (qi, O+)
P(q) =

q ei( q, ci7)

The transformed potential, defined by

V PD(r ) = 4rrf (p)5(z)—, (7)
2rrQ -~i~a

e +C)=
~o9' i

D, (qi,0+) dqz

" q~ei(q, co)

where f(p ) is the unknown fictitious surface charge
density. The three-dimensional Fourier transform
of Eq. (7) is

—q2PD(q) = —4~f(qi),

(18)

The normal component of the displacement outside
the surface is

D, (q,.) = —..(a/az}y(q a),

where q = q~ + q, and

f(qi) = I e ' f(p)dxdy . (9)
2m'Qe ' —eoq i C i

——D ( q i,O+ ) . (19)

therefore from Eq. (6) the second boundary condi-
tion gives

From Eq. (8) we immediately find

PD(q) = 4~f(qi)/q'

and the displacement

(10}
Combining Eqs.' (18) and (19) we find

q lz0

(20)

&,(q) = iq, P (qD)—

4~if ( q i )q,/q—
The q, ~ oo limit of &,( q) gives the value of D,
just inside the surface of the metal,

D, ( q i,0+ }=2nQe.
e qi +1

where24

deI(qi) =
qeIq

(21)

(22)
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and

epl(q i) —1

B(q)}=
epl(qi) + 1

Finally, the total potential outside the metal is

(23}

1
0(p~) =

2 f, 4(q)~»o(q)p)qidqi, (30)

where Jp(q))o) is the Bessel function of order zero.
We now analyze the behavior of the normal com-

ponent of the electric field at the surface. From Eq.
(15) we find

~(~ )
2rTQ

(
l7) ) &+&() ) B ( )

IJ)(z —s()))

z (0 (24)

2iq, D, ( q ),0+ )
&,(q) =-

q e)(q,co)
(31)

the second term being the induced potential
(}}'(qi,z), whereas the potential inside the metal is

Applying the theorem (12) to Eq. (31), we immedi-

ately find the electric field just inside the surface:

where

2ir -q ~ 2I(q)&)

qi epl(q)) + 1

E,(qi, z = 0+) = D, (q),0+)/ei,

where

e) ——lim ei(q, p))
q~oo

(32)

(33)

lqgs
qi ~ e 'dq,

I(q)z} =
q e~ q,co

(26)
is the local background dielectric constant of the
metal. From the continuity of D, it follows that

2m &o —& Q q )(z —zo)
p(q&p) = —e, z & 0

q1 so+6 eo

(27)

which, by comparing with Eq. (3b), is the potential
due to a point image charge Q (ep —e)/(ep + e) lo-

cated at +zo in an infinite medium with dielectric
constant ep From E. q. (25), the local potential in-
side the metal

2rr 2e Q —q)(z+z())—e , zy0
e+ep e

(2g)

is the potential due to a point image charge

Q 2e/(e + ep) located at —zp in an infinite medium
with dielectric constant e.

The potential in real space is found from Eq. (24)
or (25) by an inverse Fourier transform of the form

4(pa) =, J P(q)p)e"' d'q, .(2n). (29)

Using the axial symmetry of the potential (P
depends only on the magnitude q i ), the angular in-

tegration in d q ~
——q ~dq &d 8 can be carried out,

leaving the radial integration

It can be readily verified that for a local dielectric
constant [e)(q,co) —+e(co)], the above equations
reduce to the usual image solutions. We find

I(q, p) = e ' exp( —q iz) and I(q i) = e ', so the lo-
cal induced potential in Eq. (24) is

eEp, (q 0)}= e)E,(q),0+), (34}

and that the nonlocal part of the polarization (or the
current density) P, = (D, —e)E, )/4ninside the.
metal must vanish at the surface. The calculations
in Sec. III will be applied to a metal with no local
background dielectric constant (e) ——1), and a vacu-
um as the second medium (eo ——1). In this particu-
lar situation both D, and E, are continuous and the
normal component of the current density vanishes

at z = 0. The surface polarization charge that
would exist in a local theory is replaced by a
volume charge density inside the metal.

B. Induced electric field

of a dipole

277Pz
B(qi}e '

eo
(35)

We now place a dipole outside the metal, instead
of a single point charge. This dipole induces
charges inside the metal which are sources of the
potential P' and an induced field E' outside the met-
al. The field E' will be determined at the site of the
dipole.

Starting with the induced potential P'( q)g) for a
single charge, the second term in Eq. (24), we find
the potential for a dipole in the z direction by ad-
ding potentials for a charge Q at (0,0,—zp) and a
charge —Q at (0,0, —zo —b, ). Expanding to first
order in b and introducing the dipole moment

p, = Qb„we find
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We take the inverse Fourier transform as in Eq. (29)
to find the potential at the arbitrary point (p,z).
Differentiating with respect to z gives the electric
field

Eg'(pz) = — I qiB(qi)e ' 'e ' d qi,
2ATE'0

pj = aj(co)EpI, J = xp

where

(44)

where we have assumed that Ep, and hence E', lie in
the x —z plane. The solution of Eq. (43) for p„and
p, can be written

(36)
ap(co)

a;(co}=
1+ nJap(co)F(zp, co)

' (45)

The potential P' for a dipole in the x direction is

found similarly by adding potentials for point
charges Q at (0,0,—z p) and —Q at ( —6,0,—zp).
Differentiating with respect to x, we find the in-

duced field

2

Ei(~ )
px f qx B( )

gi(s —sp) lqi'pd2
2~60 q1

(38)

and, at the site of the dipole,

I I P» —2q )zoE„=—E„(0,—zp} = —— B(qi)e qidqi,2'
(39)

a result differing from Eq. (37) only by the factor
Equations (37) and (39) can be combined to give

the total induced field at the site of the dipole:

E' = F(zp ~)( ,p—.i +p*k)— (40}

where

F(zp, co) = ep
' I B(qi)e ' 'q, dqi . (41)

C. Renormalized polarizability of
a dipole oscillator

The dipole will be assuined to have an isotropic
frequency-dependent polarizability ap(co). Let Ep be
the electric field (oscillating at frequency co) that
would exist at the point (0,0,—zp) outside the metal
when the dipole is absent. When the polarizable di-

pole is placed at this point, the field acting on the
dipole is the sum of the applied field Eo and the in-

duced field E'; that is,

and evaluating this at p = 0, z = —zp gives

I I pz —2g )soE =—E, (0,—z, ) = —— B(qi)e qidqi
eo

(37)

with n„= —, , n, = 1. The quantities a„(co) and

a, (co) are components of the renormalized polariza-
bility, i.e., the polarizability ao modified by the in-

teraction of the dipole with its "image" in the metal.
It will be seen in Sec. III that nonlocality in the
response of the metal has a significant effect on the
form of F(zp, co) and hence, on the renormalized po-
larizability.

III. CALCULATIONS USING HYDRODYNAMIC
DIELECTRIC CONSTANT

A. Induced field at the site
of the dipole

We describe the metal using the hydrodynamic
dielectric constant

COp

ei(q, co) = 1— (46)
p2 2

where co = co(co + i/ ),rr being a phenomenologi-
cal relaxation time, co& is the plasma frequency,
f3 =

5 uF, and q = q i + q, . Although this

dielectric constant becomes invalid at low frequen-
cies and does not contain electron-hole pair excita-
tions, it gives a qualitatively correct description of
the bulk-plasmon and surface-plasmon dispersion.
An advantage of using Eq. (46) rather than a more
realistic dielectric constant (such as Lindhard-
Mermin) is that it allows many expressions in the
previous sections to be evaluated analytically and
makes the physical interpretation of the results more
transparent.

Equation (22) can be easily evaluated using Eq.
{46}. We find

2
COpI(qi}=1+ i 2

1—
CO —CO

where

{42)

(43)

p = ap(co)(Ep+ E')

= ap(co)[Ep —F(zp,co)( ,p„i + p, k)], —
2 ~2

CO —COI2 2+ (48)
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Equation (23), with ED ——1, then gives

q) —I
(qi) =

qi+ AI
(49)

where A = (e~~+ 1)/(@i~ —1) and

to find E, , the induced field at the site of a di-

pole in the z direction:

where

pz

4 fzo
(50)

1T= —1—
A

4 IXI

(A + 1) e
cop o Ab + Pu/co~

with

(51)

b = [(Plop) u + (1 —0 )~zzo

0 =co/co& .

In the local limit, p = 0 and Eq. (51) reduces to

T= —=1

A

&]0 —1

&)~+ 1
(52)

We have calculated the real and ima 'na

s o t e imensionless frequency ra-

usin the
io =co cop for several values of h d'o t e istancezo,

'
g e electron density parameter r = 2

~ ~

n order to remove the sin ularit
in T in the local limit when 0 = I/v 2

r is given a finite value: y = (ro r)p

= 10
The results are shown in Figs. 1 and 2. Th

prominent fea
an . e most

eature, most easily seen in Fi .
hh rp resonance in the local limit at h f
cy0= 1@2'

i a t e requen-

2 is broadened by nonlocalit . Th
width of thethe resonance increases as the

cai y. e
as e istance zo

e ipo e rom the surface decreases, and the
resonance is broadroadened asymmetrically to the hi h-

frequency side.
o e ig-

Two physical effects contribute to this b do is roaden-
ispersion of the surface plasmon and (2)

additional energy dissipation when 0
p 'ng o ulk plasmons. In order t 1

'
n o . er o exp ain ef-
' qualitatively, we must first note that at a

given frequency the induced t
'

1

'd d
po entia can be con-

si ered as the su e ositid p rp si ion of surface-plasmon po-
tentials with different val f haues o t e wave vector
According to . (3b) the range of q i values for the

or q&.

potential of the external h
the char e a r

a c argeish —z
ge approaches the surface the ran e of

increases. The
e range o q&

duced o
es. e q~ Fourier component of th

p tential has a resonant peak at
e in-

equal to that o
pea at a requency

q a o at o~ a surface plasmon at this value of
q ~. If a local free-electron d' 1 t

'

use, the surface-plasmon frequenncyisco, =co/ 2
and is independent of q . Th fere ore each Fourier
component of the induced pote t' 1 hen ia as a resonance
at the same frequency co /v 2

~ ~

, and so does the en-
tire induced potential. Withi a nonlocal dielectric
constant, the surface plasmon has dis ersion:

arge values of q&. Hence the small- F
corn

a -q
~

ourier
ponents of the induced pot t' 1en ia respond

resonantly at co —co /v 2, and th, an t e 1-arge-q& Fourier
omponents at frequencies co & co~/v 2. Ilus ex-

e ie, , as abroad
y metric resonance beginnin at ro /v

tendin to hi
'

g o igher frequencies, the width increasin
as zo decreases.

increasing

The preceding statements can be verif d b
'

ie y not-

g t the Founer component '(

duced ot
qiz of the in-

po ential, given by the second term of
(24), contains the factor B(qi) defined 'n . 23 .

qi) vanish, i.e., G(qi, ro)
—= @of(qi) + 1 = 0 iv

the surface-plasmon dison ispersion relation co = co aS

q y, as a function of real q . Wh
co is real, G q i,ro) does not vanish but b

q&. en

small and
u ecomes

purely imaginary when ReG(
or co —Reco

e qi co) = 0

Effe

—Reco„producing a peak
'

ImBin (q, ).
ffect (2), the coupling to bulk lasm

pears as anan additional contribution to ImT

p r ) . It is most easily seen in Fig. 2
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FIG. 2. Im T as a function of 0 = co/co~ for a local
metal (dashed curve) and a nonlocal metal with zp =- 2, 5,
and 10 A (solid curves).

for large distances zo (zo = 10 A and zo ——5 ).=5 A&.

Although this eA'ect also exists for zp = 2 A the
additional contribution to ImT is hidden by the
very broad resonance arising from effect (1). The
coupling to bulk plasmons is associated with an in-
crease of ImI (q! ) when co & co~; this contributes to
ImG(q!, ru) = ImeoI(q! ) and finally, to ImT. As
is evident from Eq. (22), ImI(q! ) involves an in-

tegration over tPe longitudinal energy-loss function
Im[ —1/e!(q, co)], which has a bulk-plasmon
energy-loss peak when co ~ co&. A similar coupling
to bulk plasmons is responsible for additional opti-
cal absorption of p-polarized light when co g co&.

Equation (50) for the induced field can be written

I

z
Pz

4A Izo+ z'
I

' (53)

This is of the same form as the local induced field,

except that the distance zp is replaced by zp+ z',
where z' is a complex distance which includes all ef-

I
Ofects of nonlocality; i.e., for a local metal z = 0.

Equation (53) can be interpreted as follows: The
field at the site of a dipole located. at —zp outside
the metal is given by using the same image dipole as
for a local metal, but locating the image dipole at
the complex position zo+ 2z'. Comparison of Eqs.
(50) and (53) immediately gives an expression for z':

FIG. 3. Rez', in A, as a function of A = co/co& for
zp = ao (dot-dashed curve), zp ——5 A (dotted curve), and

zp = 2 A (solid curve). A nearly vertical portion of the
dot-dashed curve at 0 = 1/~2is not shown.

tion in Eq. (51) can then be done analyticaHy, and

Eq. (54) gives

Zp~ 00

IOI

o+
IO

-I

10 —Zp

!'
!

I

!
!
!
!
I

!
I

!
I

I /
I

I l! !
! I

!
I

Zo= IOA
!
I

!

!
!

2
—g&

Q

P (1 —0 )'i
(55)

1 —202

From Eq. (55) it follows that Imz' I, „has a

sharp peak at 0 = 1/v 2 originating from the
denominator, 1 —20, and a broad shoulder for
0 & 1 originating from (1 —0 ), these effects2 1/2

arising from the surface plasmon and coupling to
bulk plasmons, respectively.

Figures 3 and 4 show Rez' and Imz' for zp ~ ao

(dot-dashed lines) and also for several smaller
values of zp. As zp decreases, the surface-plasmon

peak in Imz' at 0 = 1/W2 broadens asymmetrical-

ly to high frequencies, and the shoulder at 0 ~ 1

becomes obscured by the broad surface-plasmon

peak.

z' = zo[(AT) —1] . (54)
10

0.4 0.6 0.8
!
I.o

!
1.2 14

!
1.6 1.8

In the limit as zp~ oo, T can be found by taking
b =

I zo
I
(1 —0 )' and neglecting the term

Pu/co~ in the denominator of Eq. (51). The integra-

FIG. 4. Imz', in A, as a function of 0 = co/co~ for

zp ——oo (dot-dashed curve), zp ——10 and 5 A (dotted
0

curves) and zp ——2 A (solid curve).
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e /m
ao(ro) =

No —N
(56)

We place this dipole in vacuum at a distance zo
from the metal surface and calculate the renormal-
ized polarizability a, (ro) from Eq. (4S). A compar-
ison of Eqs. (37), (41), and (SO) shows that I' (zo, ro)
= —T/4zo. If we introduce the dimensionless na-
tural resonance frequency Qo ——coo/re and renor-
malized polarizability a = (mrs/e )a, (ro), we can
rewrite Eq. (45) as

Using a self-consistent model of an Al surface
with a smooth density profile, Feibelman' also has
calculated Rez' ~, „and Imz' ~, „. Feibelman's

result for Rez' ~, „has some similarity to ours:

There is a singularity at Q = I/v 2, but his value
becomes positive for 0 in the range 0.74 & 0 g 1,
whereas ours remains negative in the entire range
( I/v 2) & Q & 1. His values of Rez' ~,, „are
smaller than ours by a factor of about 5.
Feibelman's result for Imz' ~,, „is in complete

disagreement with ours: He finds a singular
behavior at Q = 1/~2 that has a sign change,
whereas we find a positive peak at Q = I/v 2.
Furthermore, he finds no contribution to Imz' from
bulk plasmons when 0 & 1. We are unable to
understand why Feibelman's calculation for a rela-
tively accurate model of a metal surface should
yield results so different from those we have found
using the much simpler SCIB hydrodynamic
model. This disagreement is especially puzzling
since our results have features that have such obvi-
ous physical interpretations.

B. Renormalized polarizability
of a dipole

We assume that the unrenormalized polarizability
of the dipole has a natural resonance frequency coo,

unit oscillator strength, and zero width:

Q' = Qo and a surface-plasmon branch Q' = 1/v 2
which interact repulsively in the crossing region

Qo —Q' —I/v 2 so that there is, in fact, no cross-
ing. The oscillator strength, which is not shown in

Fig. 4, is concentrated in the "natural" branch; i.e.,
in the low-frequency mode when Qo & 1/~2and in

the high-frequency mode when Qo & 1/~2, with a
continuous transfer of oscillator strength from one
mode to the other in the interaction region

Qo —1/~2.
In Figs. 6(a) —6(d), we have plotted Ima as a

function of 0 for the selected values Qo = 0.6, 0.7,
0.8, and 1.0, and with the damping factor y = 10
for the metal. The dashed curves, which show the
local results, have peaks at frequencies that are the
same as the 0' frequencies shown in Fig. 5. The
transfer of oscillator strength discussed in the
preceding paragraph is also evident. The damping
in the metal accounts for the finite width of the
peaks, as the free dipole oscillator is assumed to
have zero width.

Figures 6(a) —6(d) also show nonlocal results for
Ima, obtained by using nonlocal values of T calcu-
lated from Eq. (51) in Eq. (57). The behavior of
Ima can be understood qualitatively for examining
the frequency dependence of ReT and ImT for
zo ——2 A as shown in Figs. 1 and 2. The asym-
metric broadening of the peak in ImT produces
strong damping of the resonances in a that lie at
frequencies higher than Q = 1/~2. Moreover, the
magnitude of ReT, which shifts the frequency of
resonance, is generally smaller in the nonlocal cal-
culation. Thus in Fig. 6(a), for example, the low-

frequency nonlocal peak in Ima at 0 = 0.59 lies
. much closer to the natural resonance frequency

l.4

l.2—

a = [Qo —Q —(g/zo) T] (57) I.O—

where g = (r,ao) /12 = 0.98 A for Al (r, = 2 and
ao ——0.529 A}. We have calculated a only for one
distance, zo ——2 A.

Suppose that we use a local dielectric constant
for the metal and neglect damping. Then
T = (ei —1)/(ei + 1) =(1 —2Q ) '. We can
easily find the frequencies Q (which we denote Q')
for which the quantity in square brackets in Eq.
(57) becomes zero; i.e., the poles of a occur at Q'.
In Fig. 5 0' is shown as a function of 00. It is ap-
parent that the two solutions for 0' can be con-
sidered as a "natural" or unrenormalized branch

0.8—

0.6—

0.4—

0.2—

I I

0 02 04 06 08 IO l2 I 4
Qo

FIG. 5. Resonance frequencies 0' = m'/co& of the re-
normalized dipole polarizability as a function of the na-

tural dipole resonance frequency Qo ——coo/co~, for a local
metal.
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one peak in Ima is large enough to be detectable ex-
perimentally. This is especially significant for
Qo ——0.7 [Fig. 6(b)], where the local theory gives

two well-separated peaks with almost equal oscilla-
tor strengths but the nonlocal theory gives essential-

ly only a single peak at 0 = 0.69.

IV. CONCLUSION
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FIG. 6. (a) —(d) Renormahzed polarizability, Ima,
as a function of 0 = co/co~, for zp ——2 A and for various
values of the natural dipole resonance frequency
Qp = cop/Q)p ~ The dashed and solid curves are for a lo-
cal and nonlocal metal, respectively. (a): Op ——0.6; (b):
Qp ——0.7; (c): Qo = 0.8; (d): Oo = 1 0

Qo ——0.60 than does the corresponding local peak.
A general feature of the nonlocal results is that only

We have shown that when a dipole is within a
0

few A of a metal surface, nonlocality of the metal is

important in calculating the image field and renor-
malized polarizability. It will be of interest to see
how the conclusions of the present calculation,
based on a hydrodynamic dielectric function for the
metal, are altered if the more realistic Lindhard-
Mermin dielectric function is used.

The role of nonlocality has been emphasized by
Weber and Ford in connection with surface-
enhanced Raman scattering, but they have not con-
sidered the frequency dependence of the unrenor-.
malized polarizability ao. We have seen that the
frequency dependence of the renormalized polariza-
bility changes significantly as the resonance frequen-

cy of uo varies, so this should be included in the
theory of surface-enhanced Raman scattering.

The connection between the present treatment
and that of Feibelman, ' who has used a more accu-
rate model of the metal surface, is unclear. Since
the surface-plasmon dispersion depends on the elec-
tron density profile at the surface, one would not
expect our SCIB model, in which the electron densi-

ty drops discontinuously to zero, to give the correct
shape of the broadened induced-field singularity, as
shown in Fig. 2, for example. However, one would

expect the SCIB model to become seriously invalid

only for zo as small as I —2 A, a distance compar-
able to the actual width of the electron density pro-
file. Thus, our disagreement with the results of
Feibelman even for large distances is puzzling,

This work bears directly on the theory of dif-

ferential surface reAectance spectroscopy of atoms
adsorbed on metal surface. An existing theory of
this efFect is being extended so as to include nonlo-
cality of the metal, and the results will be reported
in the future.
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APPENDIX

Ci ——4Q J z dq,—"
q ei(q, co)

+ —Dg( q i,0+ )
1 d9'z

—~ q ei(q, co)

—epqiCi = D.(qi o+}

(A5)

(A6)

We shall derive expressions for the potential
when a charge Q is added inside the metal at the
point x =y = 0, z =zp Q 0. As before, the medi-
um outside the metal (z & 0) has a local dielectric
constant eo.

Since the total potential outside the metal satisfies
Laplace's equation, it is of the same form as the in-

duced potential in Eq. (6):

Equations (A5) and (A6) are readily solved for the
unknown quantities Ci and D, (q i,0+ ), and the final

expressions for the potentials are

/

2irQ epK(qi)
K (q ig) — I(q ip)

e qi +1

P(qiz) = Cie ', z & 0.
From Eq. (Al) we find the displacement

Dg(qip) = —epqiCie ', z & 0.

(A 1)

(A2)

2~Q

ql epf(ql)+1

z & () (A7)

z&0 (A8)

To determine the potential inside the metal we
again use the SCIB approximation: Extend the met-
al throughout all space with the requirement that
the z components of D and E be odd functions of z,
or that the potential and charge distributions be
even functions of z. With the true charge Q at
x = y = 0, z = zp we must include a fictitious
symmetric image charge Q at x =y = 0, z = —zp.
There is also a fictitious charge layer at z = 0, as
before.

The two point charges are sources of the "poten-
tial"

(A3)

Dividing Eq. (A3) by ei(q, cu) and taking the inverse
Fourier transform as in Eq. (16), we find

where l(qi) and l(qig) are defined in Eqs. (22) and

(26), and

cosgzzo ~ z& qia)=, e 'dq, ," qzei(q, co}

q ) 2 cosgzzo
lt.'(q i) = —, de" q ei( q p))

(A9)

(A10}

In Eq. (A7) the first term is the potential produced

by the real charge and its symmetric image, whereas
the second term is the potential produced by the fic-
titious surface charge layer at z = 0. By taking in-

verse Fourier transforms as in Eqs. (29) or (30) we
find the potentials in real space, P(pg).

When (eqi, co)~ e(co), Eqs. (A7) and (A8)
reduce to the correct local limit. In this limit we
find

P(q, ~) = 4Q J e *
dq, .—"

q ei(qipi)
(A4) &{qip) = e '[exp( qi Iz+zpI }

+ exp( —q, ~z —zp
~
)]

Because of symmetry, the "potential" Pn of Eq.
(A3) does not contribute to the normal component
of D, at the surface.

The fictitious surface charge layer is treated just
as in Eqs. (7)—(17); it is the source of D, (q i,0+ )

and produces the potential P( q i,0+ } as in Eq. (17).
Just inside the surface of the metal the potential is,
therefore, the sum of Eqs. (17) and (A4).

From the continuity of 4 and D, at z = 0 in the
actual system, we find

and K(qi) = 2e 'exp( —qizp), so Eq. (A7)
reduces to

2m'Q —q & I
& —'o I

e ep —e i I '+'o I

y(q, &) = e + e
giE 6+ 6O

z & 0 (All)

the sum of the potentials due to the real charge Q
at zp and an image charge Q (e —ep) l(e + ep) at
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—zp, in a medium e, while Eq. (AS) reduces to

O. (A12)q" +"

the potential due to an image charge

Q2~p/(e+ ep) at zp in a medium ep.
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