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A theory is developed for neutron-induced transitions to excited states of a proton
trapped at a two-well potential near an interstitial impurity in a metal. The proton wave
function is written as a linear combination of the states in each well (tight-binding ap-
proximation). Hence, in the main, the theory is limited to the low-lying excitations which
lie below the central barrier. Otherwise, the theory is quite general and independent of
the details of the potential. General expressions are derived for the differential cross sec-
tion for transitions from the ground-state doublet to the excited states in terms of F(q },
the transition form factor. A corresponding quantity, F(q), appears in expressions for
do. /dQ associated with transitions within the ground-state doublet. As in earlier work,
concerned only with the ground-state doublet, the effects of asymmetric displacements of
the well bottoms due to strains are considered. As is the case for the ground-state doub-
let, the effect of the asymmetry in the two-well potential is to introduce a general mixing
angle for the excited-state doublet describing the admixture of the left-hand and right-
hand single-well states. Whereas the effect of nonequal mixing on the inelastic differential
cross section for transitions within the ground-state doublet is to diminish it by a factor
(sin 28),„(8is the mixing angle), under suitable experimental conditions, I show that the
corresponding cross section for neutron-induced transitions from the ground-state doublet
to either component of the excited-state doublet is independent of both 8 and P (P is the
excited-state mixing angle). That is, the latter cross section is independent of e, a mea-
sure of the asymmetry, provided e/%co && 1 (Ace is the excitation energy). Thus the ratio
A of the higher-energy to the lower-energy. inelastic cross section is, on the one hand,
enhanced by a factor 1/(sin 28),„and, on the other, diminished by the quantity

~
F( q)

~

. General expressions for A and for the ratios of various other cross sections are
derived in terms of F(q') and F(q). These are then estimated for the first excited state
by making various simplifying approximations. A is finite in the limit q ~0, q ~0,
keeping their ratio fixed. If I assume that errors in making the small-q expansion tend to
cancel in taking the ratio, then, utilizing the idealized oscillator model of Sussmann, I
find the approximate relation A =(p /8)(kF/ki)(%co/Vo)/(sin 28),„. Here p is the actu-
al experimental ratio of the high- to low-momentum transfers, kF/kr is the ratio of the fi-
nal to initial neutron momenta, and VD is the barrier height. Results are applied to ex-
istent and ongoing experiments on hydrogen- and oxygen-doped niobium.

I. INTRODUCTION

The experimental observation and theoretical
analysis of tunnel splittings of impurity complexes
in solids via inelastic neutron scattering is a topic of
current interest. ' Also, the general subject of hy-
drogen in metals continues to receive impetus on
both scientific and technological grounds. ' Recent-
ly, a conOuence of these interests has materialized in
the experiments of Wipf, Magerl, Shapiro, Satija,
and Thomlinson, and of Magerl, Rush, and Rome,

who observe elastic and (weak) ine1astic peaks in the
neutron scattering from samples of niobium doped
with both hydrogen and oxygen. They attribute the
0.19-meV inelastic peak, which they observe at 1ow
temperatures [0(0.1 K) ~O (5 K}],to transitions
between the components of a tunnel-split oscillator
ground state of the proton, trapped in a two-we11

potential at an impurity center, presumably associat-
ed with an oxygen atom. The two wells need not
be symmetric. Wipf et al. have, in fact, employed
the assumption of a Lorentzian distribution in the
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relative energy displacements of the constituent well
minima (for which earlier analyses exist ' ) to ex-

plain the fact that the ratio of the inelastic to elastic
cross sections is only 0(l%%uo).

Analogous neutron-induced transitions, both
among components of the tunnel-split ground state
and also the higher-energy excitations from the
ground to the libronically excited tunnel-split
states' '" associated with the motion of CN
molecules in KBr and KC1, have been observed ear-
lier. It is believed that in these systems the observa-
tion of the neutron-induced transitions is made pos-
sible by the coherent forward resonant scattering of
the phonons in the host lattice from the CN im-

purities, which results in mixed modes, part phonon
and part libronic excitation, and/or reorientation of
the CN dumbbells. ' This interaction induces
splitting of the phonon spectrum and renders the
CN excitation spectrum accessible to the neutron
probe via coherent inelastic scattering from the
mixed modes. For the case of hydrogen in metals,
experimental difficulties are expected to block this
coherent view of the excited states. Nevertheless,
the very large total cross section for low-energy n-p

scattering allows observation of the direct excitation

by the neutron of the bound proton to the excited
oscillator levels and has presumably already been
observed (as have the lower-energy excitations across
the tunnel-split components of the two-well oscilla-
tor ground state). ' Hence, a thorough theoretical
analysis of the process of neutron excitation to these
higher-lying states seems worthwhile. I give such an

analysis here, both for the case of symmetric wells
and that of wells with statistically distributed asym-
metries in the component well depths.

To discuss the two-well structure in which the
proton is assumed trapped at low temperatures, it is
helpful to keep in mind a concrete model potential.
Here, each potential minimum can be visualized as
that of a three-dimensional harmonic-oscillator well

which is cut off by its intersection with its neighbor-

ing well in the two-center complex. Corresponding
force constants are assumed equal from well to well;
hence, in the absence of possible (strain-induced) re-
lative displacements of the minima, the unperturbed
levels coincide. To be definite, I assume that the
force constant of each for motion parallel to the
vector r connecting the two minima in space is
somewhat weaker than the force constants associat-
ed with motion perpendicular to r. In the tight-
binding approximation, the proton wave functions
are taken to be linear combinations of the eigen-
states of the single-well potential (without cutoff)

centered at each site. The above assumption con-
cerning the anisotropy in the force constants, in ad-
dition to being physically reasonable, serves to re-
move the angular momentum degeneracy of the first
excited unperturbed oscillator state which would
result if all three force constants for each well were
selected equal. ' In this picture, the first excited
state involves only excitation of the oscillator quan-
tum number n

~~

associated with motion parallel to r
and the problem is reduced to an effective one-
dimensional two-well problem for which the
analysis of the ground-state splitting (for both the
symmetric and displaced-minima cases) has been
given by Sussmann.

While it is helpful to keep in mind an explicit
model, such as the above, it must be emphasized
that much of the present analysis is based upon
more general considerations and essentially depends
only upon the (tight-binding) assumption that the
eigenstates are linear combinations of local well
states, from which it follows that the approximate
eigenstates assume the form,

cos8 sin8
—sin8 cos8

Here ~L) and ~R ) are the left and right eigen-
states, e.g.,

(x iL) =QL(x)=f(x —L), (2)

where, for a symmetrically chosen origin L
= —r/2 and R = + r/2. 8 is the mixing angle
which, for 8 =sr/4 (symmetric-well case), leads to
states which are even or odd under reflection in a
plane perpendicular to and bisecting r. In general,
if the excited and ground states of the single-well
problem are separated by energies that are large
compared with the tunnel-induced splitting of each,
the factorization into two-dimensional manifolds is
justified. However, the mixing angle for the excited
states will, in general, differ from that of the
ground-state complex, except for the symmetric-well
case where reflection symmetry dictates that P =8
=rr/4. (P is the excited-state mixing angle connect-
ing

~
L,E,„) and

~
R;E,„),the excited single-well

states, ) As noted above, the general tight-binding
results are independent of the details of the oscilla-
tor model. Only the assumption that the first excit-
ed local-well state is nondegenerate' is abstracted
from the model. Moreover, time-reversal invariance
is invoked. On occasion, I shall estimate model
parameters by reverting to the explicit harmonic-
oscillator model, being careful to point out when
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this is the case. Renormalization of the proton (ef-

fective) mass and of the well parameters due to in-

teraction with the phonon field may be assumed to
be included in the phenomological description.

In Sec. II, the formalism is developed for the
symmetric-well case, both for the elastic and inelas-
tic scattering among the tunnel-split ground states,
where, to the extent that deviations of F( q ) from
isotropy can be ignored, the results are known, and
then for the inelastic scattering at low temperatures
due to neutron-induced transitions to the excited
states. Here, the quantity F(q) enters. A general
expression is obtained for the ratio of the inelastic-
cross section associated with transitions to the excit-
ed states divided by the sum of the cross sections as.
sociated with transitions between the components of
the ground-state doublet. The ratio is then evaluat-
ed by making a series of simplifying assumptions.
In Sec. III, the effects of a distribution of asym-
metric wells on these processes are considered. The
experimental situation for niobium is discussed in
Sec. IV.

II. SYMMETRIC WELLS

Let TFI be the appropriate mass-weighted reduced
T matrix between the initial and final states of the
neutron plus impurity center. TFI is normalized
such that the differential cross section can be written
in the form

kF

I

kr and kF are the magnitudes of the incident and
scattered neutron momenta, respectively, in units
with fi = I. In terms of the standard Fermi pseu-
dopotential,

V(x,x') =(2ira/m)53(x —x'),
and in Born approximation,

T = fd x fd fx'(x) e'
'" V(x x')1() (x),

2~

whence

TFI a f d x e q QF——(x)1()~(x) ~

In the above, q =kF —ki, $1(x) and QF(x) are
the initial- and final-state wave functions of the pro-
ton bound to the two-well impurity center, m is the
neutron mass, and a is the bound n-p scattering
length (summed over final- and averaged over
initial-spin states) multiplied by the lattice Debye-

Wailer factor, exp[ —W(q)]." As noted earlier, for
symmetric wells the ground-state mixing angle 0 in

Eq. (1) equals n/4 . as does the analogous excited-
state angle, (t).

A. Ground-state doublet

For the ground-state doublet, with the phase con-
ventions adopted in Eq. (1),

$1F +( —, }'~—2[f( x —L) +f ( x —R)] . (7

b, (q) =fdix e '"'"f~(x —L)f(x —R}, (10)

the elastic cross section is given by the expression

=)a)' )F(q))'tos' q ). (11)

Under experimental conditions where the ground-

state splitting is suAiciently small that the deviation

from unity of the ratio kF/kr can be neglected,

+„=[a f'( [F(q) /'}, (12)
el

and the ratio R of the sum of the inelastic (energy
loss and gain) cross sections divided by the total is
given by the expression

rq 'sin' q' p-
2

To the extent that the average of the product can be
replaced by the product of the averages, the ratio 8
reduces to the known expression

At T =0 K the inelastic cross section satisfies
. 0

kF
/F(q)

f
sin

&r

Here,

F(q)= fd'xe ""~I(x) ~',

and the angular brackets in Eq. (8} denote an aver-

age over the angular distribution of the directions in

which the impurities are oriented, i.e., over r/d
where d =

~

r
~

. At finite but sufficiently low tem-

peratures that only the doublet ground states are oc-
cupied, , Eq. (8) is to be modified by including the
usual thermal occupation factors Z ' and
Z 'exp( —P5E) for transitions involving neutron

energy loss and gain, respectively. Z = 1

+exp( —P5E), 13 = 1/ks T, and 5E is the ground-

state energy splitting. Neglecting the overlap b, ( q },
where
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R = sin (14}

which is independent of F(q). That F(q) can
depend upon the orientation r/d follows from the
(reasonable) assumption that f( x) is not, in general,
spherically symmetric. For example, in the
harmonic-oscillator model discussed earlier, the an-

isotropy in the force constants associated with
motion along r (as opposed to motion perpendicular
to r) produces this deviation from spherical sym-

metry in f( x ), but the result is more general If.the

anisotropy is negligible, Eq. (14) follows even when

F(q) differs significantly from unity. From Eq. (9)
it is also clear that as q ~0, F(q) ~1, indepen-

dently of the degree of anisotropy in f(x ) and the
result (14) is again recovered. To estimate finite-q

corrections, note that when the unperturbed single-

well ground state f(x ) is an eigenstate of the parity
operator, F(q) is an even function of q. In the
small-q regime,

F(q)=1 B"'q„p,+—O(q ),
where 8& is the second-moment tensor:

B"'=fd'x x"x'
i f( x )

i

(15)

(16)

Thus, deviations from unity occur only in second
order in q, and, when f(x) can be approximated

by 5 (x), can be ignored altogether. Under typical
experimental conditions, 1 ~ q & 3 A '. Hence, de-
viations from unity may not be negligible in F(q ),
given that the proton wave functions have sufficient
extent to produce tunneling. [The assumption of
parity symmetry employed in the above, is a reason-
able one if, in the effective one-dimensional two-well

problem, the unperturbed ground-state energy Eo
lies considerably below the energy Vo at which the
two potential wells intersect. (In the oscillator
model F.o =co/2, the zero-point energy associated
with motion along r.)]

B. Excited-state transitions

First consider T=0 K. Then ~I) = ~g, kz)
and

~

F & is ~~t~~~
I g &.. kF & or

I
«- kF &

Again neglecting overlap terms of the type

b(q)= fd xe '"'~f'" (x —L)f(x —R), (17)

the expression for the (even ~ even) cross section
becomes

- 0

dQ kI 2
)a ) IP(q)

I
~os ). )))))

where, in each case, kF and kr are related by energy
conservation. At finite but sufficiently low tempera-
tures that only the ground-state doublet is occupied,
the usual factor Z ' enters in Eqs. (18) and (19).
Transitions initiating from the odd component of
the ground-state doublet are associated with cross
sections given by the expressions

-0

Z ' exp( PSE)—,uu, gg

t' . 0

Z ' exp( —PSE) .
ug

(20)

(21)

The prefactors in Eqs. (20) and (21) are given by
Eqs. (18) and (19), respectively. We may imagine
the following experimental scenario: (i} The experi-
ment designed to observe the higher-energy transi-
tions cannot simultaneously resolve the ground-state
splitting. (ii) The temperature is sufficiently high
that the two ground-state components are roughly
equally populated, but sufBciently low that the ex-
cited states are empty. (iii) The fn'st excited-state
splitting is larger than the ground-state splitting and
resolvable in the experiment satisfying (i) and (ii).
Under these conditions, the cross section for a tran-
sition from the unresolved ground-state doublet to
either the even or the odd component of the
excited-state doublet is given, to good approxima-
tion, by the relation

dn
=

2 k ~' ~'~
~

'q'~') (22)

The quantity F(q), which appears in Eqs. (18), (19),
and (22), is given by the expression

F( )= fd xe 'q "f'"'(x)f( ) (23)

where f'"(x) is the excited state and f(x), the
ground state of the unperturbed local-well poten-
tial. [Within the three-dimensional oscillator
model, the quantum numbers for fi" are (n~~ =1,
nii ——0, ni2 ——0).] Quite generally, since the inner
product (f'",f) vanishes, it follows that F(q) ~0
as q —+0. Thus, even when F(q) can be ignored
F(q) cannot.

To the extent that a small-q expansion is legiti-
mate,

F(q) = —iq D —Q""q„q„+, (24)

The (odd ~ even) cross section reads
- 0 T

(19)
ug I 2
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where

D= fd'x f'"'(x)xf(x), (25)

and g&" is the transition quadrapole tensor. In gen-

eral Di does not vanish even when parity is a good
symmetry of the one-well potential, since fi'" and f
can be expected to be of opposite parity. Next, I
assume the following: (i) Parity is a good single-well

symmetry. (ii) The first single-well excitation is
nondegenerate. (iii) The wave functions factor

f( x)=f1( xL)fll(g)

f'"(x)=fi(xi)f lt"(g),
(26)

where g = x.r/d and x1 is a two-dimensional vec-
tor satisfying xy r =0. Then,

d fd~fll *(~)~fll(~) . (27)

, ( iF(q') i')1 kF

k
iF(q)I sin

2

(29)

This reduction to a one-dimensional form also fol-
lows when the parity assumption (i) is replaced by a
somewhat weaker assumption of reAection sym-
metry in two mutually perpendicular planes inter-
secting through the line of centers. In either case
Eqs. (24) and (27) together imply tliat to lowest or-
der in q, for transitions to the first excited state,

( iF(q) i
)=((q.r/d)i) iD i, (28)

where D is given by Eq. (27).
Bemuse of experimental interest, I obtain a gen-

eral expression for the ratio A of the differential
cross section for scattering from the unresolved
doublet ground state to either component of the ex-
cited two-well doublet, divided by the sum of the
differential crass sections for inelastic scattering
among the components of the ground-state doublet.
The numerator is given by Eq. (22) for the experi-
mental scenario described earlier. To the extent that
deviations from unity of the ratio (k~/kc) can be ig-
nored for transitions within the ground-state doublet,
the sum in the denominator is equal to the zero-
temperature inelastic cross section, as given by Eq.
(8). (The relative values of the lower-energy
cross sections in NbOp p&3Hp p&6 are known from
the distinct high-resolution experiments described
earlier. ' ) With no further approximation, in par-
ticular, for arbitrary momentum transfers, which
need not be small, I find the following general ex-
pression for A:

p'(kF/ki )
I
D

2

where I =d/2 and, from Eq. (23), for real f'",

i
D

i
=fd~fl'I"(~+fll(~) .

(30)

(31)

Equation (31) is in the form of a one-dimensional
integral. Specializing further to the harmonic oscil-
lator,

i
D

i
=(1/2a)' where, reintroducing fi, a

=m*co/A', with m* the renormalized effective mass
of the proton. In the two-well problem considered
by Sussmann, al = Vo/(fico/2) where Vo is tQe

barrier height at g =0, where the two parabolas in-

tersect, and fico/2 is the zero point ene-rgy of each
effective one-dimensional oscillator. It follows that

(D i
/I =fico/(4Vo), (32)

whence, from Eq. (30), omitting the primes on kI
and kF, for the first excitation,

A = (p'/8)(kp/kI )(irico/Vo), (33)

where k~ and kI are related by energy conserva-
tion. It is evident that the oscillator model parame-
ters enter the expression for A only through the ra-
tio y, where

(34)y= irico/Vo .
To the extent that Vp represents the actual barrier
height of a realistic (renormalized) potential, it is
clear that the tight-binding approach adopted here
applies to the first-excited oscillator states only if y2 I sha11 treat y as a parameter to be deter-
mined by comparison with experiment of the cross-
s~ction ratio defined by A with the theoretical ex-
pression, once corrections for well asymmetry have
been taken into account in the next section. For

The primes on various momenta designate the
values associated with these quantities which are ap-
propriate for the higher-energy experiments and re-

flect the fact that the kinematic boundaries are not
identical in the two experiments.

Whereas Eq. (29), together with the results of the
lower-energy experiments and a model of the two-
well potential, can be used to estimate the differen-
tial cross sections for the higher-energy experiments
under quite general assumptions, for reasons of sim-

plicity, I shall estimate them under the follawing
special assumptions: (i) q' and q are parallel, i.e.,
q' =pq where p is some constant. (ii) q and q'
are allowed to become small in the sense that ex-
pansions of the quantities F ( q ), F( q'), and
sin (q r/2) are meaningful. Then, to lowest order
in q, for transitions to the first excited state,
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H)i —e H)p

Hi2 Hi(+@ (36)

ease of reference in later discussions, it is convenient
to rewrite Eq. (33) in the form

As = (V'/g }(kF/kr )y (35)

where the subscript S has been added to signify the
result obtained for symmetric wells. The result for
A when well asymmetry is taken into account is

readily expressed in terms of A& and the mixing an-

gle 8 defined in Sec. I.
Before considering the eff'ects of well asymmetry

in detail, several remarks concerning the validity

and application of Eq. (35) are in order. (i) It was

obtained by letting q' and q become small such
that their ratio remains constant and equal to p. In
the actual experiments, intensity considerations re-

quire maximizing both q' and q. It seems reason-
able to select a value for p which lies close to its ac-
tual value under realistic conditions and then let q
~0. (ii) The errors introduced in making the

small-q expansion in both the numerator and
denominator of the. expression for A given by Eq.
(29) tend to cancel in taking the ratio. (iii) Since Vo

is, by definition, the barrier height in the idealized

potential where it represents the height of a cusp at
the intersection of two parabolas, whereas the actual
potential should be smooth at g =0, the above

bounds on y do not have a precise physical mean-

ing. Nonetheless, in order of magnitude, if y & 1,
then the theory developed here applies and imposes
constraints on the model as a whole. (iv) Since, for
fixed kr and k+, there exists a minimum value for
the magnitude of q', namely kI —kz, then for fixed

value of p, there exists a minimum physical value of
q, namely (kr —kF)/p. This latter value may or
may not be sufficiently small as to allow small-q

expansions. However, this circumstance need not
be the cause for undue concern. We may simply

regard the small-q limit as a process of analytic
continuation and proceed to take the formal limit q
~0. This limit exists and is given by Eq. (30},
which ultimately reduces to Eq. (35).

III. ASYMMETRIC WELLS

A. Ground-state doublet

If, as a consequence of, say, strains, the well mini-

ma within each two-center complex are displaced

with respect to each other by varying amounts, 2e,
then, quite generally, the Hamiltonian matrix can be
written in the form

ments H ii and H i2 exist if one adopts the efFective

one-dimensional harmonic-oscillator model. For
the present discussion it suffices to note that the
mixing angle 8 in Eq. (1) satisfies the relation

sin 28=J /(J + e ), (37)

R = (sin 28),„
~

~

~

~F(q)
~

sin
2

(3g)
( [P(q) ['&

If P(e) is characterized by a half-width eo that is

large compared with J, then it follows from Eq. (37)
that

(sin 28),„J/eo . (39)

If, furthermore, one can ignore anisotropy in F( q),
then Eq. (38) reduces to the approximate relation

As noted in the Introduction, Wipf et al. arrive at
the result (40} by assuming that P(e) is Lorentzian
and employ the (assumed) smallness of (sin 28),„
to explain their experimental result, R =O(l%%uo). I
sha11 next consider the eff'ect of the asymmetric dis-

placement of the wells on the transitions to the ex-
cited states.

(40)

B. Excited-state transitions

I assume that the tunnel splittings are sufficiently
small compared with the separation between the
ground-state and excited-state doublets that the
lowest (4X 4) Hamiltonian matrix is block diagonal
in two (2X 2) matrices. Both (2X 2} matrices are of
a form given by Eq. (36). Both sets of approximate
eigenstates are of a form given by Eq. (1}and the
excited-state mixing angle i}}satisfies an equation
similar to Eq. (37)

where J= ~Hi2 —Hiibii(0)
~

when overlap is in-
. cluded. Then, at 0 K (doldQ);„ is given by the

right side of Eq. (8) multiplied by the factor
(sin 28),„. The average over mixing angle is to be
taken with respect to some assumed probability dis-

tribution P(e) for the displacement of the well bot-
toms. At finite temperatures, the same thermal fac-
tors Z ' and Z 'exp( P5E—) enter for neutron

energy loss and gain, respectively, as did for the
case of the symmetric wells. Moreover, the cross-
section ratio R as defined in Sec. II A is given by
the result of multiplying Eq. (13) by this same fac-
tor. That is,

H is real as a consequence of time-reversal invari-

ance. Explicit formulas for the independent ele- sin 2/= J /(J +e ), (41)
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where J=
~

H i2 —H»b, i2(0)
~

in an obvious nota-
tion.

In the following, I shall also assume the same ex-

perimental scenario as was assumed in discussing
the excited-state transitions for symmetric wells in

Sec. II B. To be definite, I consider the cross sec-
tion for transitions from the unresolved ground-state
doublet ~g&, ~

u& to the g excited state, where ~g&

and
~

u & are defined by Eq. (1) and, for general 8,
are neither even nor odd under reflection in the
midplane. Neglecting the overlap h(q), the corre-
sponding T-matrix elements are

T~ =a cos(P 8) co—s q r
2

L

+ i cos(/+8) sin E(q), (42)
2

related,

R =~sRs (47)

where As is given by Eq. (29). Moreover, Az is fin-

ite as q and q' approach zero at fixed ratio p, as
was shown in Sec. II. Equation (46) can also be ex-

panded in powers of q and q'. To lowest order,

II= — ((q' /d)'& iD i'.
k

(50)

where I have added the subscript S to denote the
quantities A and R as determined for the symmetric
well model in Sec. II. We have already seen that

R = (sin 28&,„Rs . (48)

Hence, as a consequence of Eq. (47), quite generally,

A=As/(sin 28&,„,

T =a sin(P —8) cos
q. r

gQ 2

I
Estimating the angular average by —,,

1 &F
(51)

—i sin(P+ 8) sin E( q ) . (43)
2

Thus, the diA'erential cross section for transitions
from the unresolved ground-state doublet to the ex-
cited state

~
g,E,„& is given by the relation

(44)

From Eqs. (42) and (43) it follows that this cross
section directly determines (

~
F(q)

~
&, i.e.,

dn= I
(45)

The expression for the cross section for transitions
to the component

~
uE,„& of the excited-state

doublet is identical. Comparison of Eq. (45) with
Eq. (22), Sec. II B, shows that this cross section. for
the asymmetric wells is identical to the correspond-
ing cross section for the symmetric wells, i.e., is in
dependent of the mixing angles 8 and P, hence of
the degree of asymmetry, e. Letting II be the ratio
of this invariant differential cross section to the
similarly invariant sum of inelastic and elastic
cross sections within the ground-state doublet,
which can be shown to be given by Eq. (12), it fol-

lows that

(46)

As defined, the cross-section ratios H, A, and R are

If the excited-state doublet can be resolved, a mea-
surement of II yields a value for

~

D ~, provided an
expansion in powers of (q'D) /3 is meaningful.
Within the idealized oscillator model'

~

D
~

=y'~2d/4. Hence, by measuring II, one can place
restrictions on y, provided lower-energy measure-
ments associated with the ground-state doublet yield
an independent measure of d.

Whereas, as presented, the discussion in this sub-
section relates only to excitations to the first
excited-state doublet, the results through Eq. (49)
are quite general (if one includes possible degenera-

cy factors associated with motion transverse to r)
and apply to excitations from the ground-state
doublet to the tunnel-split component of any
excited-state doublet lying below the central barrier.
(An additional factor of 2 enters if the excited-state
doublet cannot be resolved. ) Equations (50) and
(51) are considerably more restricted, but can be
generalized to include higher excitations, provided a
change in parity occurs; otherwise D =0. The sub-
sequent expression for

~

D
~

is restricted to the first
excitation.

IV. EXPERIMENTS ON NIOBIUM

The ground-state tunnel splittings have been ob-
served in a polycrystalline sample of hydrogen- and
oxygen-doped niobium and also in single crystals,
where the data are still preliminary. Moreover, in
the latter experiments, at least one excited peak has
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been observed with %co =O(100 meV) and kF/kr
=0.16. This peak is presumably to be associated
with the (unresolved) first-excited-state doublet.
The earlier lower-energy data, which were taken at

q =2.5 A ', have been fitted by the following
parameter values: (sin 20),„=0.049, d 0.8 A.
Because the single-crystal data are still too prelimi-
nary to allow a detailed comparison with the
theory developed here, I shall limit the discussion
to a few brief remarks, which are based upon the
limits for the value of A which I obtain in the
small-q, q limit, within the idealized oscillator
model. The higher-energy peak has been observed

0
with values of q' as high as 8 A '. Therefore, in-

corporating the low-energy data, I have chosen p
=3.2 in Eq. (35), whence As ——0.20y, and Eq. (49)
reads A =0.20y/(sin 28),„=4.1y, where in the
last equality the value 0.049 taken from the fits to
the polycrystal data has been used. Recall that A
is the ratio of the inelastic differential cross section
of the high- to the low-energy experiments, assum-

ing the first-excited-state doublet can be resolved.
If this doublet is not resolved, the experimental ra-
tio of inelastic cross sections should be compared
with the quantity 2A =8.2y. Since y =fico/Vp if
the first-excited state is tightly bound, it follows
that y & —,. (If it is not tightly bound, the estima-

tion procedure for A that was employed is invalid. )

Experimentally, it may be possible to place lower
bounds on y, as well, since too small a value of y
would imply too many bound states. This, togeth-
er with the experimental determination of the ine-
lastic differential cross-section ratio, can test the
validity of the small-q prediction for A, or possibly
the model, itself, since it happens that A depends
sensitively on the value of (sin 28),„employed to

fit the low-energy experiment. Unfortunately, be-
cause of the diAiculties associated with the ideal-
ized oscillator model, as were discussed in Sec.
II 8, arguments based upon the precise value of y
lose some of their force. Also the small-q expan-
sion introduces errors. Nevertheless, the results of
the present analysis, together with the ongoing ex-
periments, may begin to impose some constraints
on the model.

V. OUTLOOK

It is hoped that the general theory of neutron-
induced transitions of a trapped proton from a tun-
nel split ground-state doublet to tightly-bound ex-
cited states developed here will find increasing ap-
plication as the ongoing experiments on neutron
scattering from hydrogen in metals come to com-
pletion and new experiments come on line.

Note added in proof Since .the high- and low-

momentum transfer experiments are run under
quite different conditions, quantitative comparison
of the cross sections requires the solution of several
diAicult experimental problems in normalization.
Hence, a reliable experimental estimate for the im-

portant quantity A has yet to be determined.
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