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Field-theoretica1 approach to multicritical behavior near free surfaces
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The critical behavior of a semi-infinite n-vector model in 4 —e dimensions near the special
transition is studied. The renormalization of the relevant surface operators is discussed and ex-
plicitly carried out in two-loop order, It is found that the crossover exponent @, related to the
square of the order parameter in the surface does not satisfy the relation re, =1 —v due to Bray
and Moore.

Renormalization-group (RG) methods of field
theory have been applied with considerable success in

the study of bulk critical phenomena. ' In a recent
paper3 (hereafter referred to as I) similar methods
were used to investigate the effects of free surfaces
on critical behavior. The analysis in I was based on a
semi-infinite n-vector model and restricted to the or-
dinary transition. "' This transition occurs in fer-
romagnetic systems when the coupling between the
magnetic moments in the surface is less or only
slightly stronger than in the bulk. However, if the
surface coupling is sufficiently strong, the surface
may order at a higher temperature than the bulk.
The bulk then orders in the presence of the ordered
surface. This is the extraordinary transition. The
lines of ordinary, surface, and extraordinary transi-
tions meet in a multicritical point that describes the
special transition.

In this Communication we will analyze the critical
behavior of the semi-infinite n-vector model in
d =4 —e dimensions near the special transition. Pre-
vious work on this transition was based on mean-
field theory, ' position-space RG methods6 '0 (for
the Ising case n = I), and e-expansion tech-
niques. '" '3 Bray and Moore'4 also discussed the
n = ~ case. In addition, they proposed' the scaling
relation Q, =1 —u (where v is the bulk correlation-
length exponent) for the crossover exponent $, relat-
ed to the square of the order parameter in the sur-
face. An analogous prediction y~~ = v —1 was made
for the susceptibility exponent y~~ at the ordinary
transtition. Both relations are satisfied by the semi-
infinite n-vector model to order e. %e will show that
the relation $, =1 —v is in generai not valid. For the
other one this has been shown already. '"

With the exception of Reeve's work, ' previous
analyses of the special transition based on the e ex-
pansion were limited to first order. Reeve presented
results to order e2 for surface exponents, but did not
calculate $,. He renormalized the usual bulk opera-
tors and identified surface exponents by exponentia-
tion. However, a systematic RG analysis of critical

phenomena in semi-infinite systems requires that one
incorporates al/relevant, i.e., bulk and surface opera-
tors into the renormalization program. This require-
ment is less important in the case of the bulk-driven
ordinary transition discussed in I where a single sur-
face operator (the normal derivative of the order
parameter) had to be renormalized. The inclusion of
this operator into the RG was partly a matter of con-
venience only, but needed to derive the surface scal-
ing laws. Since the special transition is described by a
rnulitcritical point that involves relevant surface
operators, we believe that a careful study of these
operators is indispensable.

An extension of the analysis in I to the special
transition turns out to be nontrivial. New conceptual
and technical difficulties appear, For example, the
(Neumann) boundary condition, the two-point corre-
lation function satisfied at the special point is de-
stroyed already in first order of perturbation theory. '6

(The corresponding Dirichlet boundary condition at
the ordinary transition holds to all orders. 3'6 ")
Thus an expansion of the order parameter in terms
of eigenfunctions that satisfy the mean-field boun-
dary condition is less advantageous. These difficul-
ties are characteristic for systems in which transla-
tional invariance is broken by surfaces or defect
planes. %e therefore believe the present study to be
of some general interest.

Our approach is based on recent work of Syman-
zik, ' who discussed general aspects of the renormali-
zation of surface operators. His work also shows that
critical phenomena in semi-infinite systems are relat-
ed to other problems in field theory. Once the
relevant surface operators have been renormalized,
the powerful machinery of Callen-Symanzik equa-
tions can be directly applied to surface quantities of
interest. As we will see, critical exponents, tran-
sients, and crossover exponents follow in the usual
straightforward way form the renormalization (Z)
functions.

The model we consider is defined by the free-energy
functional
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(

F = „d~ 'r J7dz 2
('7g)2+ 'r—g2+ —(P2)2 + —'coyz(r, 0+)

)

for the n-component order parameter $(x), where z
measures the distance from the surface and x = (r, z),
with a d —1-dimensional parallel component r.

The critical behavior of the Gaussian model that
results when g =0 is well known '": special and or-
dinary transitions correspond to c =0 and c )0,
respectively, surface and extraordinary transitions to
co ( 0. At the special point (r =0, co =0) the paral-
lel Fourier transform of the correlation function
G (x,x') for spins at sites x = (r,z) and x' = (r', z')
becomes in this approximation

Gp"'(;z') = Iexp(-Ipllz -z'I)

+exp[ —Ip I(z +z') ] I/(2lp I), (2)

which translational invariance is broken by surfaces
and related to the fact that points in the surface are
exceptional in a similar sense as x —x' =0 is for
G (x,x') in the translationally invariant theory. In
both cases the counterterms that cure the divergences
at nonexceptional points are insufficient, and addi-
tional counterterms with support at the exceptional
points are needed. This means, in particular, that the
order parameter $(r, 0+):= Pt(r) on the surface
must be treated as a separate operator whose
anomalous dimension does not follow from bulk ex-
ponents.

We add bulk and surface magnetic field terms to F
and define connected correlation functions by

Gp satisfies the Neumann boundary condition

lim B,G~ (z,z') =0
I

s )0, s~o

To include the effects of the Q4 interaction, we use
perturbation theory. The ultraviolet (uv) singulari-

ties can be regularized with the help of a momentum
cutoff A. (One can work in a pz representation and

cut off parallel moments only. ) However, for calcu-
lational purposes, dimensional regularization is

preferable.
In the conventional translationally invariant $4

theory the uv divergences can be absorbed by a few

counterterms related to order-parameter, tempera-
ture, and coupling-constant renormalization. '
These divergences originate from the singular
behavior of the bulk propagator Gt(0~(x) —lx I

z+' at
short distances. If translational invariance is broken

by a surface, the propagator G(+(x,x') differs from
Gb' by an image term which in our case is equal to
the bulk propagator Gbto'(x —x ) between x and the

I
mirror image x =(r', —z') of x'. This term becomes

I

singular when x x and gives rise to new diver-

gences." As discussed in detail in Ref. 16 one can
therefore absorb these divergences by local surface
counterterms.

One-particle irreducible (1PI) parts can be defined
in terms of Feynman graphs. However, their renor-
malization does not render the correlation functions
finite. 3'6 This is a general new feature of systems in

where the average ( . ) is meant with respect to
the Boltzmann factor

exp F+ ha „d—"xP+hto „d4 'rP)

Next we introduce renormalization functions Z„
(tt=p, t, u, l, c) as follows:

p =Z'tz $" r = p, 2Z, t +)5, g = tt, '2~w~tzZ„u

0)
$, =(Z~Z, )'t'y", , c'= t Z,c+3„.
Here p, is an arbitrary momentum scale. Z&, Z„and
Z„are the usual bulk Z factors and can be found in
I. The new features mentioned above are described
by the other functions. 5, —A and 4, —A specify
the shift of the Gaussian special point and are needed
to absorb quadratic and linear divergences, respec-
tively. They vanish in (minimal) dimensional renor-
malization. As noted by Symanzik, (QtQ))~pt re-
tluires an additional counterterm -8(z) $(r, 0+) B,g.
However, this counterterm is annihilated in correla-
tion functions due to the Neumann condition, pro-
vided the derivative is taken at z =0 and the argu-
ments of the Q) fields approach the surface after-
wards. (The renormalization of ($2), ($2)), (Qz$z),
etc. , would also require further counterterms, but will

not be considered here. ) Z) and Z, can be calculated
by minimally subtracting the poles of G " and
($@@zt)«„„.Our results'8 are

n +2 + (n +2)(n +5) n +2 z„2+0(„3)
)

( )

Z, =1+ n+2 „+ (n+2)(n+5) + n+2 e(1 —4m ) e u +O(u
3 9 36

(4)
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The renormalized functions

G (/¹,L) —Z N/2 (—Z Z ) L/2—G(N, L)
R Q $ 1

satisfy the RG equations

[ p 8„+p„B„—(2 + g, ) t (), —(1 + q, ) c 8, + [qd(N + h 8„)+ ( qd + r)) ) (L + h) 8/, ) ]/2 j G)I" =0,

with h = Zd') 2ho, h) = (Z~Z))'/'h)o, and the ilson functions p„=pB~~()u, q„=pB„~olnZ„(~ = ¹t,l, t, e), where

()„~() denotes a derivative at fixed bare parameters. p„, 7)d„and g, are the same as in I. r)( and 7), follow from
Eq. (4). At the infrared stable fixed point u', g) becomes to O(d2)

7)) = (n—+2)(n +8) 'e —3(n' —4)(n +8) 'e'

Using Eq. (5) one can study the scaling properties of G/InL) as usual. Setting u = u' we find, for example, that
6& can be written in the form

G(0 2)(r r'u¹' r e h h ~) ~d 2(~p) — II f ( r¹cr s d/2h—
r ) (d+2)/2—hr a)—

where p= Ir —r'], g~~=q+r)) with g= r)(du),
v=[2+g, (u')] ', y, =v[1+v),(u')],
6) = v(d —q~~)/2, and 5 = v(d +2 —g)/2. The ex-
ponents introduced here are bulk (r), v, /¹ ) and sur-
face exponents (q~~, 6)) in the commonly used nota-
tion. '9 Our result for 7)~~ which follows from Eq. (6)
is consistent with the one given in Ref. 13. The
result for b ~ establishes a well-known scaling law. '

The scaling laws g) = (g+ r)~~)/2, y)) ='v(1 —
q~~),

y) = v(2 —gq), P) = v(d —2+q~~)/2 for the correla-
tion function exponent qq, the susceptibility ex-
ponents y)), y(, and the exponent P) for the magnet-
ization in the surface follow similarly.

Our result for the crossover exponent Q, is

1 n+2 + n+2
2 4(n +8) 8(n +8)3

x [gn2(n +8) —(n2+35n +156)]e2+O(e3)

which differs from 1 —v at order ~ . As a result of
the asymptotic nature of the e expansion the numeri-
cal value $, =0.68 for n = I obtained by setting e = 1

cannot be trusted. It is, however, closer to the
position-space results =0.55 of Ref. 9 and 0.67 of
Ref. 10 than 1 —v =0.36.

By a similar analysis one can study the corrections
to scaling near the ordinary fixed point that result
when c differs from the corresponding fixed-point
value ~. '
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