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Structure of a compressible superfluid
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A simple model of the spin-polarized hydrogen system in an external field is developed. The
thermal and interaction support of the fluid work to prevent its collapse when the Bose-Einstein
condensation occurs, The existence of the condensate causes a reduction in the thermal support
of the fluid; the condensate is modeled with a local Ginsburg-Landau functional. The effects of
temperature, sample size, and external field on the evolution of the fluid are explored.

One of the goals of experimental studies' of the
spin-polarized atomic hydrogen (H j) system is to see
the superfluid transition and to try to elaborate the
relationship of this transition to the phenomenon of
Bose-Einstein condensation' (BEC). The superfluid
transition in Hi may be quite different from that in
'He. The 'He system is self-bound (a liquid) so that
the superfluidity occurs in a piece of material whose
structure (density, profile, etc.) has been established
by energetics much larger than that involved in the
occurrence of superfluidity. Thus, the occurrence of
superfluidity goes almost unnoticed in the gross prop-
erties of the helium system; i.e., the density, pres-
sure, etc. , show no dramatic signature. The Hi sys-
tem is not self-bound3 4 (it is a gas) so that the densi-
ty of the system is determined by the number of H i
atoms plus the volume of the container in which they
reside, and possibly, by the strength of a confining
magnetic field. The energetics associated with the oc-
currence of superfluidity could be comparable to that
associated with establishing the structure of the fluid.
Thus the occurrence of superfluidity could well
change that structure drastically. (The BEC causes
an ideal gas confined by a field to "collapse" into the
localized ground state determined by the field. )
While the Hi system (gas) is not as strongly interact-
ing as the 4He system (liquid), it is not so weakly in-
teracting that the ideal gas model is useful. %e have
developed a simple Ginsburg-Landau model that we
believe correctly incorporates the qualitative features
of the important physical events occurring in the in-
teracting Bose fluid.

Consider a Bose fluid at a constant temperature, T,
residing in a cylinder of cross-sectional area A. The
confinement in the x direction is achieved by an
external field, which we take, as Walraven and Sil-
vera' did, to be harmonic: B(x) =80[1—(x/d)'],
where 80 is the strength of the field at the center of
the magnet and d is a constant. (If one wanted to be
rigorous, one should choose a solenoidal field, but
this would clutter up the formalism. Our treatment
yields essentially the correct features of the axial dis-

tribution of the densities. ) A wall in the plane x =0
keeps the fluid in the x )0 region. If n (x) is the
number of particles per unit volume and I' = p, ttBO/d',
where p, ~ is the Bohr magneton, the magnetic field
contribution to the energy density for particles in the

m, = —
—, electronic spin state is dE = , n ( —x)

& I x dx. The fluid is able to support itself because of
its thermal energy (and pressure), dE& = n(x) ktt Tdx
and because of its interaction energy (and pressure)
dEt =2m eoa3n2(x) dx Here eo =. tr /ma' and we have
taken the first term in an expansion for the hard-
sphere model. 4 5 The diameter of the hard spheres is
a =0.72 A. The primary effect of the BEC is to ex-
tract the thermal energy from the particles that go
into the ground state and to reduce accordingly the
thermal pressure available to support the fluid. As
this BEC occurs the fluid shrinks because of a reduc-
tion in its thermal support. Consequently, the aver-
age density of the fluid increases and so does the
condensation temperature. This latter event drives
more particles into the ground state and further
reduces the thermal support for the fluid, etc. Even-
tually, at suitably low temperature the thermal sup-
port gives way to interaction support, and a further
reduction in temperature produces little change in the
structure of the fluid. The events outlined here are
described by the equations of hydrostatic equilibrium
for the fluid. If P is the hydrostatic pressure, we
write

dP (x, y) = —I'xn (x) dx

The pressure in the fluid is

P(x, p) =2rreoa3n (x) +ka Tin (x)

(2)

where ~P(x) ~2 is the superfluid density at x and h. is
a constant of order 1 (h. ~1) which accounts for the
proportion of atoms in the superfluid that actually be-
long to the condensate. The first term on the right-
hand side of Eq. (2) accounts for the interaction sup-
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port of the fluid and the second term accounts for its
thermal support. We have introduced the effect of the
BEC on the pressure by simply removing the particles
which go into the condensate from the thermal sup-

port term. Finally, we need an equation for p. We
write a Ginsburg-Landau energy occurs at

[O-l

IO

N = A J n (x) dx (4)

Equations (1)—(4) constitute a closed self-consistent
system, which is relatively easy to solve if the spatial
variation of P is assumed to be slow enough that the
curvature term in Eq. (3) can be ignored. (This ap-

proximation can be checked self-consistently. ) Be-
fore going on to look at the solution to Eqs. (1)—(4),
it will be useful to discuss their content. Beginning
with a fixed number of particles in a sample
chamber, at high temperature and low density the
fluid is supported against the external field by its
thermal energy. As the temperature is lowered, ther-
mal support of the fluid gives way to interaction sup-
port. From Eq. (2) this crossover occurs at
n'(x) = T"/2m, where we define n (x) = n (x)a3 to
be the dimensionless density of particles and
T'= ks T/ap. Since the most dense fluid is at the
center of the system, this crossover occurs first at the
center and we have n "(0)= T"/2m. In Fig. 1 we

show the separation of the n "(0)—T" space into
thermal and interaction support regions along the line
n'(0) = T"/2m. We also show the transition tem-
perature at the center, T,'(n "(0)). The superfluidity
onset in a piece of fluid having a density n"(x) oc-
curs at T,"(n'(x)) = yn "(x)2~

where n and P depend upon the local density and
temperature. If T ( T, (n (x)), we write

n(n(x), T) =n (p(n )x)[I —T/T, (n(x))]",
P(n(x), T) =Pp(n(x))[1 —T/T, (n(x))]&,

where

ksT, (n(x)) =yE'pa n(x)

(for the ideal gas BEC, y =3.31/32 3). [Note that,
strictly speaking, the expansion (3) is valid only
when the coherence length g( T) = (it'2/2ma)' 2 is at
least of the order of the interatomic distance, n '~'.

If v = I as in the usual Landau theory, then g(T)
= n ' 3 when T,(x) —T =0.16T,(x).] The constants
ap and Pp are fixed by the physical arguments
limp p(ap/Pp) =n(x), limp p(ap/2Pp) =ks
x T, (n (x))n (x). If we fix the number N of particles
in the system, a normalization condition must be sa-
tisfied:

10'

n (0)
FIG. 1. Schematic evolotion of two typical samples

(N =10'~ and 10' atoms) in the n'(0) —T plane. ~e
take d =5 cm and y=3.31/3

When the fluid is supported thermally, the density
at its center is

nr'(0) =(Na'/A )(2I'/m ppT')' ' (5)

It is clear that as the size of the hydrogen sample is
decreased (say, to N =10'') the effect of temperature
becomes more important (evolution toward the ideal
Bose gas behavior). As the size of the hydrogen
sample is increased the effect of the interactions be-
comes increasingly important, and at N = 10", the
thermal influence on the structure of the sample
when the BEC occurs is notably reduced (evolution
towards 4He behavior).

Equations (1)—(4) can be transformed and in-

tegrated: (a) form dP/dn from Eq. (2) for use in Eq.
(1), (b) find

~
&~2 from the local solution to Eq. (3)

(with the curvature term set equal to zero), (c) set
u =1, p, =0. Then

The curve A A' A" shows the evolution of a
sample of N =10"particles in a field of 10 T. We
note that the sample will undergo the BEC at A', a
temperature somewhat above A" at which thermal
support gives way to interaction support. Thus one
might expect the profile of the sample to show evi-
dence for the loss of thermal support as T' evolves
from T„' to T„'„. Eventually the sample will end up

at A"' supported only by the interactions. The T =0
profile of the sample and the location of A'" are
found from the solution of Eqs. (1), (2), and (4) for
T =0; e.g. ,

nf (0) =(3Na /4A ) ~ (T/2nap)'~
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C(1 —y) —Dtlny+ Et—2(y '3 —1) (x «R, )

C(1 —y) D—'t lny + 2-D-„t lnr + —Er(1 —t) (x «R, )

where

The dimensionless superfluid density is

x'(x) —= a'Iy(x) I'= n'(0)y(1 —ry '~')

(x «R„ t «1)
(9)

Equations (6) to (9) are a set of implicit equations,
and the normalization condition, Eq. (4), has to be

y = n'(x)/n'(0)

r = T/T, (n'(0))

C = gmapn'(0)/I'

D =2yaon (0) (1 —X)/I'=D' —D„

E =2yao) n'( 0)'r'/3r

and 8„ the location of the superfluid to normal tran-
sition, is (if r «1)

R,' = C (1 —r'~') ——,'Dt inr + , Et (1 —r )—

I

implemented numerically. The asymptotic behavior
of the density of particles is given by

n "(x) = n'(0) exp( —x'/D'r)

if x )) (D t), and

n '(x) = n'(0) [1 —x2/( C +Dt +Er') ]

if x 0.
In Fig. 2 we show the profile of a sample of

N =10"atoms in an external field of 10 T. At t =1
a condensate appears at the center; it becomes larger
and larger as t decreases. The evolution of the sys-
tem as a function of the field at t = 1[T = T,(x =0) )

is depicted in Fig. 3 for N =10'8 atoms. The effect
of the field in the n'(0) T' plane c-an be roughly
assessed from Eq. (5).

At low densities and high temperatures, the ther-
mal support term in Eq. (2) is much larger than the
interaction support term, and we can obtain an expli-
cit solution of the system of Eqs. (1)—(4) in terms of
N, t, and I . The results are somewhat cumbersome,
but some of their features are worth noting: (1) The
superfluid fraction N, /N depends only on t. (2) The
functional dependence of the densities is
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FIG. 2. Total and superfluid density profiles at several
temperatures. We have taken A, = 1 and y =3.31/3 . The
numbers by the curves are the dimensionless temperatures.
Note the change in the slope of n (x) at x =R, and the spa-

tial effect of the condensation. Although the t =0.68 curves
lie outside the supposed range of validity of our theory, we

plot them because they emphasize the expected features of
the system. In the inset we show the profile of the system
at t =0. (The density units are those in the main figure. }
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FIG. 3. Change in the density profile as a function of Bo.
We keep d =5 cm. In the inset we show the superfluid frac-
tion N, /N as a function of the temperature if we fix Bo =10
T, ~=1, and p=3.31/3'/'.
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n'(x) = n'(0) ft ( t,x'/N' '), X'(x) = n "(0)
x f, (t,x'/N'~') (.3) The superfluid density goes
linearly to zero when x R, . (4) At x =R„ the
derivative of the total density has a jump,

%'hile our model places the important effects
operating in the fluid in proper relation to one anoth-
er, we do not expect it to yield an exact description of
the fluid. We do believe that the physical picture this

model gives of the behavior of the fluid is qualita-
tively and semiquantitatively useful.
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