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Atomic hydrogen in an inhomogeneous magnetic field:
Density profile and Bose-Einstein condensation
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The density profiles for an interacting gas of atomic hydrogen in an inhomogeneous axial

magnetic field are determined by extending the Gross-Pitaevskii theory to finite temperature.

The profiles can be used as an identifying feature of Bose-Einstein condensation for all T. Radi-

al inhomogeneities in the field are also treated.

The recent success at stabilizing atomic hydrogen"
(Hi) to moderate densities (10'o—10"atoms/cm1)
has provided a new opportunity to further understand
Bose systems. Achievement of densities sufficiently
high for Bose-Einstein condensation (BEC) and its
detection is presently an area of intense research ac-
tivity. It has been suggested by Walraven and Sil-
vera' that an inhomogeneous magnetic field may be
exploited to study BEC in this system. The idea is
that the ground-state atoms will be localized in the
region of highest magnetic field, and BEC into this
state will result in a density profile which will be a
characteristic distinguishing feature of the conden-
sate. Walraven and Silvera illustrate this by consider-
ing a noninteracting gas of Hi atoms in a parabolic
axial magnetic field which has an exact solution in
terms of harmonic oscillator wave functions for the
axial translational states. They also treated interac-
tions at T =0 K and showed that the condensate can
be broadened by orders of magnitude; however, they
did not address themselves to finite temperatures.
This left open the question of whether the conden-
sate could at all be distinguished from the normal
component under realistic experimental conditions
(in particular near T, where first experimental obser-
vation would be made) and thus left some serious
doubt as to the usefulness of their method. In this
Communication we extend the T =0 theory for an
interacting Boson gas in an inhomogeneous field to
finite temperature to determine the density profile.
%'e find that, indeed, this suggestion for studying
BEC remains valid for all T. Finally, we give some
consideration of the effect of a radial field gradient
which must be present in a real magnetic field.

%e begin by formulating a microscopic Gross-
Ginzburg-Pitaevskii4 theory for a weakly interacting
Bose gas in an external field at finite temperatures.

Let the external field be denoted by u,„,(r) and

u( r ) be the 3X+ interaction5 between the H j atoms.
[We shall assume that this interaction can be de-
scribed by a scattering length a so that u( r )
= ups( r ) = (lr'/m )4 m a 5( r ); we ohtaino a =0.74 A

and vp=0. 447 X 10 's mKcm3. ] The second quan-
tized Hamiltonian 0 takes the form:

0 = Xw(p;q)ar ap+ —Xu(pq;rs)ap apta, a,
pqrs

where w =p'/2m + u, „,( r ) and the matrix elements
of the operators are taken with respect to an ~s yet
undetermined single-particle basis (Q~( r ) ). Con-
structing a free-energy functional in the manner of
Bogolyubov' and minimizing with respect to occupa-
tion numbers, we obtain Hartree-Fock (mean-field)
equations for bosons'.

(h'/2m ) V'—Pk( r ) +2[p„( r ) + pp( r ) ]vpPk( r )

+u,„,( r )@k( r ) = ekyk( r ), (1)

I

(tr1/2m ) '724o( r ) +2pn( r ) volvo{ r )

+ pp( r ) upgo( r )+ u,„,( r ) Qp( r ) = eptPo( r ), (2)

where

kAO

is the density of uncondensed particles [hereafter
referred to as the "normal component„" without
any implication that p„(r) is necessarily identical to
the "normal density" defined in two-fluid hydro-
dynamics]. pp( r ) =No~i)tp( r ) ~2 is the condensate
density, rlk = (exp[(ek —

p, )/kT] —1 )
' and No

= (exp[(ep —p, )/kT] —1 )
' are the occupation

numbers, and p, is the chemical potential. Above the
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transition temperature T„No —O(1), po( r ) =0,
and we only need consider Eq. (1). Below T„
No = O(N), p, = oo+ 0(N '), po(r) ) 0, and both
Eqs. (1) and (2) must be considered simultaneously.

%e shall now solve these equations for the density
under conditions similar to those which may be ex-
perimentally accessible for H'. 9 Assume that N
atoms are confined in a tube in a magnetic field con-
figuration, B( r ), identical to that of Ref. 3:

r

B„(r)=B,1 —,+-x 1 fJ

xm 2 xm,

xrgB p8&=, , 8@=0, x~ =51 mm
xl5

Neglect for the moment the radial dependence of
B( r ), then

u,„,( r ) = —,
'

m o)2ox'

(3a)

where

coo =2p pBo/mx' (3b)

x h
= (2kT /m o)') '/' =0.2 cm (p/10") '/'

x;„,and x,h give the approximate half-widths of the
condensate and normal components, respectively.
Noting the thermal de Broglie wavelength

k(T, ) = (2nt2/mkT )'/2 = 140 A(10' /p)'/

we observe that the inequality:

h. ( T) « x,o « x;„,& x,„
holds in a broad range of densities and temperatures.
One additional length of interest is the healing
le ng th4' p

g
—= (gma p) '/' (=2x' /x, )=230 A(10' /p)'/

This is the characteristic length required for the con-
densate to spatially adjust to a nonuniformity im-

posed by a boundary condition or a rapidly varying
potential. The fact that h. (T) is much smaller than
x t and xth allows one to use the %KB solutions" for

Furthermore, assume that Bo = 10 T (coo = 6.5 x 10
rad sec '), and that the central densities involved are
of the order of 10" atoms/cm'. It is useful to first
take note of the relative magnitude of the energies
which are involved: the zero-point energy,

p fGt)p = 5 & 10 mK; the interaction energy,
o;« —pro =0.4 mK(p/10"); and the thermal energy,
e,„—kT, =16 mK(p/10")'/'. Associated with these
are the following lengths:

x,o
= (g/2m cu ) ' = 2 x 10 ' cm,

x = (2puo/m coo) =Q.Q4 cm(p/10 )

Eq. (1) and to write

p„(x) = A. g3/2(exp {[p, —2p„(x)uo 2po(x) uo

—u,„,(x) ]/kT }) (4)

where g3/2(z) = $/=, z'// is a so-called Bose in-

tegral. " Furthermore, because f «x;„, (except just
below T„as discussed later), the kinetic energy term
in Eq. (2) can be neglected and one can express the
condensate density as

po(x) = [p/vo 2p„(x) u „t(x)luo]

x O(p, —2p„(x)uo —u „t(x)) (5)

—u,„,(x) ~/kT] } (6)

If the number of particles, N, is kept constant, as it is
in the present case, p, must satisfy the additional con-

straint N = „d3r [p„(r;pT) + po(r;p„T) ] for all

temperatures.
As an illustration consider the temperature depen-

dence of the density profiles of 1Q'6 H }atoms which
are confined by a tube having a cross-sectional area
3 =0.01 cm', in an axial parabolic field described by
Eq. (3). For a given temperature T, Eqs. (6) and (5)
can be solved simultaneously for p„(r) and po(r).
Below some critical temperature T„ the condensate
begins to be occupied (po ~0). For Bo=10 T, T,
was calculated to be 29.34 mK, while the result for
the noninteracting simple harmonic oscillator (SHO)
is 30.2 mK [T " =li (6N/mA )'/ /mksx„]. Figure 1

shows density profiles for three temperatures in the
neighborhood of T,. As the transition temperature is
crossed the condensate grows as a clearly discernable
peak above the normal component. At 26 mK
Np = 2 1 .6% and the width of the condensate is -0.1

cm. The results indicate that in this model the onset
of BEC can be easily detectable by observing the den-
sity profiles. For the simple harmonic oscillator
(noninteracting) problem one would expect the fol-
lowing behavior for the condensate fraction:

where O(x) is the Heaviside unit-step function.
Equation (5), which generalizes the work of Ref. 3 to
finite temperatures, expresses the fact that the con-
densate density will adjust itself so that the interac-
tion energy balances the energy of the external field.
Note that po(x) vanishes at and beyond the classical
turning points of Eq. (2). Neglecting the kinetic en-
ergy terms means that Eq. (5) is valid everywhere ex-
cept in a small neighborhood

Sx/x.,«~ = -'(g/x, )2/' = 7 x 10 4(10is/p

about the turning points, where po(x) must go to
zero smoothly. By substituting Eq. (5) into (4) one
can obtain a more symmetric form for p„(x) which
does not explicitly depend on pp.

'

p (x) A. 3g3/2{exp[-Ip -2p. (x)uo
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FIG. 2. Temperature dependence of the condensate half-
width, x;„t. Dashed line; Eq. (8).
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FIG. l. Axial density profiles of atomic H 1 for various
temperatures in the neighborhood of T, . The inset shows

the behavior of the chemical potential p, and single-particle
ground-state energy ep in the neighborhood of T, . Belo~
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As can be seen from Fig. 2, Eq. (8) gives a good esti-
mate for the temperature dependence of x;„,. A simi-
larly good agreement for the condensate density at
the center, pp(0), is obtained with Eq. (7).

For temperatures arbitrarily close to T„both x;„,

Np/N = 1 —( T/T, )~. Numerical evaluations show
that for the interacting gas this behavior is very close-
ly displayed.

The temperature dependence of the condensate
half-width, x;„„is plotted in Fig. 2. Neglecting the
effect of the normal component interaction, one
would expect

and pp(0) tend to zero, and the assumption x;„,» g
will fail. Using Eqs. (7) and (8) one finds the regime
of validity of the inequality to be ( T, —T) /T, « 3 /

(N6nax, p) = 10 s, which amPly justifies our as-

sumption for all practical purposes (cf. Ref. 8).
A realistic external field must be divergenceless as

in Eq. (3a). In this case the absolute maximum field
is in the central plane (x =0) at the wall of the con-
fining tube. In the radial direction atoms will experi-
ence a magnetic potential that decreases, up to an in-

finite barrier at the wall. For small N, BEC will first
occur in an annulus at the wall of the tube. This
results in enormous density gradients' or values of
pp(wall)/pp(center). However, as more particles are
introduced there will be a point where pp is finite at
the center of the magnet (x =0, rt=0) This condi-.
tion is reached when the number of particles is

greater than

p = (v 2rr/15) m tpp2rp /up = 34 x 10ts(Bpr p )

where Bp is in T and rp (the tube radius) in cm. This
implies. that in present-day geometries (2rp = 1 cm)
and densities, the condensate will be confined to the
surface of the container. However, by reducing the
cross section to A =0.01 cm' (rp =0.1 cm) at B =10
T, then v = 2 x 10' atoms which is much smaller
than the 10' atoms used in the example. In this case

pp(wall) /pp(center) = 1 + rp /(2x;„, ) = 1.13

implying that the cross-sectional density is essentially
uniform.
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80bviously we do not expect Eq. (1) to give a correct
description of the normal spectrum in the low-energy lim-

it, when it will presumably have phononlike behavior as in

the homogeneous case. However, it follows from the or-
der of magnitude estimates given below for the case of

practical interest [or for T ~ pouo =0.4 mK (p/10 ) ]
most of the normally excited particles have energies such
that the true Bogolyubov-like spectrum is well approxi-
mated by the solution of Eq. {1).The scattering-length
approximation should be valid for thermal wavelengths
greater than atomic dimensions, or T & 2 && 104 mK.
Furthermore, we have neglected in Eqs. (1) and (2) mix-

ing terms which preserve the orthogonality of the conden-
sate and the excitations. Here this only affects states with
zero-transverse momentum and, of these, only low-lying

states (spacing & 10 mK) which are confined to the vi-

cinity of the classical turning points of the condensate.
This does not measurably affect the obtained results. We
note also that the Hartree-Fock approach is likely to fail in

the critical region very close to T„which, however, for

the case considered is d. TIT, —10 2. [T. J. Greytak
(private communication) .]

in a gas of Hl there are two hyperfine states, a and 6, with

a splitting of 55 mK in a field of 10 T. We shall assume
that only the lowest is populated at T„although in the ex-
ample below, T, is 30 mK and 14% of the atoms will be in

state b.
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