Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published are included in Brief Reports.) A Brief Report may be no longer than $3\frac{1}{2}$ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Rectangular type-II superconducting wires carrying axial current

Albert Shadowitz Fairleigh Dickinson University, Teaneck, New Jersey 07666

(Received 4 May 1981)

Previous calculations for the distribution of \vec{J} and \vec{B} in a type-II superconducting wire with a square cross section carrying an axial current are here extended to obtain corresponding results for a rectangular cross section. We do this (a) for wires and thick films, (b) for whiskers, and (c) for thin films. The superconducting self-inductance in the first case varies as λ ; in the cases of thin films and whiskers the variation is as λ^2 . This agrees with reported results. We know of no definitive experimental results for the \vec{J} and \vec{B} distributions for comparison with our theoretical results.

I. INTRODUCTION

In this paper we extend the results previously reported for an axial current through a wire of square cross section¹ to the case of an axial current through a wire of rectangular cross section. The former is simpler theoretically; the latter is much more common in actual practice.

We take the origin at the center of a cross section with $-a \le x \le a$ and $-b \le y \le b$. Let

$$
J_z = J_1 \cosh(x/\lambda) + J_2 \cosh(y/\lambda) \quad . \tag{1}
$$

Then

$$
I = \int J_z dS = \alpha J_1 + \beta J_2 ,
$$

where

$$
\alpha = 4\lambda b \sinh(a/\lambda) ,\n\beta = 4\lambda a \sinh(b/\lambda) .
$$
\n(2a)

The energy density, $u = -\frac{1}{2} \vec{J} \cdot \vec{A}$, becomes

$$
u = (\mu_0 \lambda^2 / 2) [J_1^2 \cosh^2(x/\lambda) + 2J_1 J_2 \cosh(x/\lambda) \cosh(y/\lambda) + J_2^2 \cosh^2(y/\lambda)]
$$

The energy per length, $U_I = \int u \, dS$ is then found to be

$$
U_l/\mu_0\lambda^2 = \gamma J_1^2 + \delta J_1 J_2 + \epsilon J_2^2 \quad , \tag{3}
$$

$$
\underline{4}
$$

with

$$
\gamma = b[a + \lambda \sinh(a/\lambda) \cosh(a/\lambda)] ,
$$

\n
$$
\delta = 4\lambda^2 \sinh(a/\lambda) \sinh(b/\lambda) ,
$$

\n
$$
\epsilon = a[b + \lambda \sinh(b/\lambda) \cosh(b/\lambda)] .
$$
 (2b)

II. WIRES, THICK FILMS $(a \gg a, b \gg a)$

Here

$$
\alpha = 4\lambda b \sinh(a/\lambda) ,
$$

\n
$$
\beta = 4\lambda a \sinh(b/\lambda) ,
$$

\n
$$
\gamma = (\lambda b/2) \sinh(2a/\lambda) ,
$$

\n
$$
\delta = 4\lambda^2 \sinh(a/\lambda) \sinh(b/\lambda) ,
$$

\n
$$
\epsilon = (\lambda a/2) \sinh(2b/\lambda) .
$$
 (4)

Putting $J_2 = (I - \alpha J_1)/\beta$ into the energy expression gives

$$
U_I/\mu_0 \lambda^2 = [\gamma - (\alpha \delta/\beta) + (\alpha^2 \epsilon/\beta^2)]J_1^2
$$

$$
+ [(\delta/\beta) - (2\alpha \epsilon/\beta^2)]J_1 + (\epsilon/\beta^2)I^2 = 0.
$$

Taking the derivative with respect to J_1 and equating to zero yields

$$
J_1 = (\alpha \epsilon - \frac{1}{2}\beta \delta) I / (\beta^2 \gamma - \alpha \beta \delta + \alpha^2 \epsilon) \quad . \tag{5}
$$

The second derivative of $U_l/\mu_0\lambda^2$ with respect to J_1 is positive when

$$
\frac{a}{\tanh(a/\lambda)} + \frac{b}{\tanh(b/\lambda)} > 4\lambda ;
$$

24 2841 [©]1981 The American Physical Society

or, here, whenever $(a + b) > 4\lambda$. So for this case Eq. (5) always gives that current density component varying along x which minimizes the tatal energy.

Ignoring the two δ terms in Eq. (5)—they are much smaller than the other pertinent terms —gives $J_1 = I/[4\lambda (a+b)\sinh(a/\lambda)]$. Then

$$
J_2 = I/ [4\lambda (a+b) \sinh(b/\lambda)]
$$

and

$$
\vec{J} = \hat{z} \frac{I}{4\lambda(a+b)} \left[\frac{\cosh(x/\lambda)}{\sinh(a/\lambda)} + \frac{\cosh(y/\lambda)}{\sinh(b/\lambda)} \right] . \tag{6}
$$

From $\vec{B} = -\mu_0 \lambda^2 \vec{\nabla} \times \vec{J}$ the field is

$$
\vec{B} = \frac{\mu_0 I}{4(a+b)} \left[-\hat{x} \frac{\sinh(y/\lambda)}{\sinh(b/\lambda)} + \hat{y} \frac{\sinh(x/\lambda)}{\sinh(a/\lambda)} \right] . \tag{7}
$$

The energy expression

$$
(U_l/\mu_0\lambda^2)_{\min} \simeq (\gamma J_1^2 + \epsilon J_2^2)_{\min}
$$

gives

$$
(U_l/\mu_0 I^2)_{\min} = \lambda/[16(a+b)]
$$

We have shown¹ this is $(1/2\mu_0)$ times the kinetic inductance, L_{ks} , of the superconducting wire per length. This inductance equals the self-inductance, L_s , for superconducting wires

$$
L_s = \mu_0 \lambda / 8(a+b) \quad . \tag{8}
$$

The variation $L_s \propto \lambda$ for $a \gg \lambda$, $b \gg \lambda$ has been reported experimentally^{2,3} in thick rectangular films
where $a \gg b \approx 10\lambda$.

III. WHISKERS $(2a \leq \lambda, 2b \leq \lambda)$

We return to the parameters $\alpha - \epsilon$ listed in Sec. I, Eqs. (2a) and (2b). From $I = \alpha J_1 + \beta J_2$ we obtain, if we set $J_0 = I/4ab$, $m = a/\lambda$, and $n = b/\lambda$, the expression

$$
J_0 = J_1 \left(\sinh m\right) / m + J_2 \left(\sinh n\right) / n
$$

Putting J_z from this into $U_l/\mu_0\lambda^2$ and taking the derivative with respect to J_1 gives $J_1 = (N/D)J_0$, where

$$
N = \frac{(abn^2/m)(\sinh m)}{(\sinh^2 n)} + \frac{\lambda^2 n^2(\sinh m)(\cosh n)}{(\sinh n)} - [2\lambda^2(\sinh m)]
$$

$$
D = (ab) + [n\lambda^2(\sinh m)(\cosh m)] - [(4\lambda^2 n/m)(\sinh^2 m)] + \frac{(abn^2/m^2)(\sinh^2 m)}{(\sinh^2 n)} + \frac{(n^2\lambda^2/m)(\sinh^2 m)(\cosh n)}{(\sinh n)}
$$

Inserting a Taylor series through the fifth power in small quantities gives $N = ab(2n^4/45)$ and $D = ab2(m^4 + n^4)/45$. Then

$$
J_1 = (I/4ab) [b4/(a4 + b4)] ,
$$

\n
$$
J_2 = (I/4ab) [a4/(a4 + b4)] ,
$$

and to this order, by expanding the hyperbolic functions in Eq. (1) ,

$$
J_z = \frac{I}{4ab} \left[1 + \frac{b^4}{2(a^4 + b^4)} \left(\frac{x}{\lambda} \right)^2 + \frac{a^4}{2(a^4 + b^4)} \left(\frac{y}{\lambda} \right)^2 \right] \tag{9}
$$

J has almost the constant value $I/4ab$, but there is a small added elliptical variation.

In

$$
U_l/\mu_0\lambda^2 = \gamma J_1^2 + \delta J_1 J_2 + \epsilon J_2^2
$$

we now have $\gamma = \epsilon = 2ab$, $\delta = 4ab$ giving

$$
U_l/\mu_0 I^2 = \lambda^2/8ab
$$

or

$$
L_s = \mu_0 \lambda^2/4ab
$$
 (10)

When $a = b = s$ this gives the value previously obtained for square whiskers.

The field, $\vec{B} = -\mu_0 \lambda^2 \vec{\nabla} \times \vec{J}$, is

$$
\vec{B} = [B_0/(a^4 + b^4)][-\hat{x}a^4(y/\lambda) + \hat{y}b^4(x/\lambda)] , \quad (11)
$$

where $B_0 = \mu_0 \lambda J_0$. The constant current contours, which are also the field lines, are ellipses.

IV. THIN FILMS ($a \gg \lambda$, $2b \leq \lambda$)

Here

$$
\alpha = 4\lambda^2 n \sinh m ,
$$

\n
$$
\beta = 4\lambda^2 m \sinh n ,
$$

\n
$$
\gamma = \lambda^2 n \sinh^2 m ,
$$

\n
$$
\delta = 4\lambda^2 (\sinh m) \sinh n ,
$$

\n
$$
\epsilon = \lambda^2 mn + (\lambda^2 mn/2) \sinh 2n .
$$
\n(12)

 J_1 is again evaluated by minimizing U_l via Eq. (5). $d^2U_l/dT_l^2 > 0$ for $a > 2\lambda$. The numerator in Eq. (5) is now

 $N = (2\lambda^4 m \sinh m)(2n^2 + n \sinh 2n - 4 \sinh^2 n);$

inserting a Taylor series to the fifth power in n for sinh n gives

 $N = (2\lambda^4 m \sinh m)(4n^6/45) = \frac{8}{45}\lambda^4 n^6 m \sinh n$

Similarly, the denominator in Eq. (5) becomes

$$
D = 16\lambda^6 (m^3 \sinh^2 m) (n \sinh^2 n)
$$

Then

$$
J_1 = [2n^5/(45 \sinh m)](1/4ab) \quad . \tag{13a}
$$

Even for the thickest thin film, $n = \frac{1}{2}$, the quantity in brackets is very small and we would ordinarily write

$$
J_1 = 0 \tag{13b}
$$

However, this small but finite J_1 leads to a finite B_{ν} . Measurement of the relative variation of this small perpendicular component has been reported by Rhoderick and Wilson"; we will keep this term in order to make a B_y comparison possible, at least to some extent. J_2 then becomes

$$
J_2 = \frac{1 - 2(b/\lambda)^5}{45(a/\lambda)} (I/4ab)
$$
 (14a)

or, for all practical purposes,

$$
J_2 = I/4ab \quad . \tag{14b}
$$

Thus,

$$
\vec{J} = \hat{z} (I/4ab) \left(\frac{\frac{2}{45} (b/\lambda)^5 \cosh(x/\lambda)}{\sinh(a/\lambda)} + \cosh\frac{y}{\lambda} \right) . (15)
$$

Ignoring the first term, for $2b/\lambda = 1$, J varies about 13% between $y = 0$ and b; but as b gets smaller and smaller the values of *J* becomes more and more constant.

The field becomes, if $B_0 = \mu_0 \lambda (I/4ab)$,

$$
\vec{B} = -\hat{x}B_0 \sinh(y/\lambda) + \hat{y}B_0[2(b/\lambda)^5/45] \frac{\sinh(x/\lambda)}{\sinh(a/\lambda)} \quad .
$$
\n(16)

Rhoderick and Wilson' reported measurements of the B_v component to check the variation against that resulting from a postulated \overline{J} distribution suggested by W.A. Bowers (unpublished). That \vec{J} is assumed to be constant through the thickness (here $2b$) but varies along the width $(2a$ here but w there) with a equal to a constant \simeq 1. $J(x)$ is given by $J_0[1-(2x/w)^2]^{-1/2}$ if x is not too close to $x=w/2$

while, close to
$$
x = w/2
$$
,

$$
J(x) \sim \exp\left[\frac{-[d(w/2-x)]}{a\lambda^2}\right];
$$

and the two solutions are joined at a point distant $a \lambda^2/2d$ from the edge. Rhoderick and Wilson modified the Bowers distribution to make the central variation extend to $2x = w$; I is finite despite the result-

- ¹A. Shadowitz, Phys. Rev. B 23, 3250 (1981).
- 2R. Meservey and P. M. Tedrow, J. Appl. Phys. 40, 2028 (1969).
- ³J. W. Baker, J. D. Lejeune, and D. G. Naugle, J. Appl.

ing infinity in J at the edge. Their results gave excellent agreement with the variation of B_{v} calculated from the modified Bowers expression for J. It is interesting to note that the Bowers expression for \vec{J} near the edge $(x = a \text{ here})$ gives an exponential behavior; so does the small, x -varying component, the first term of our Eq. (15); and the modified Bowers expression also gives J predominantly near the edges. Other authors^{2,5} have used similar expressions; in Ref. 3, p. 5047, the authors write $-$ "the current distribution. . .is predicted to be sharply peaked at the edges of the film. " This is the behavior displayed by the first, small, term in Eq. (15); but we know of no experimental measurements of B_x , which would be connected with the cosh (y/λ) term in Eq. (15) when $y \approx b$. Consequently we have difficulty comparing Eq. (16) with the measured results.

To find the self-inductance we evaluate $U_l/\mu_0 l^2$ from Eq. (3) using the coefficients from Eq. (12) and setting

$$
J_1 = [b^3/90\lambda^4 a \sinh(a/\lambda)]I
$$

 $J_2 = I/4ab$.

Then

$$
\gamma J_1^2 = \left(\frac{(b/\lambda)^9}{8100}\right) \frac{I^2}{a^2} , \quad \delta J_1 J_2 = \left(\frac{(b/\lambda)^4}{90}\right) I^2/a^2 ,
$$

$$
\epsilon J_2^2 = \left(\frac{(\frac{1}{16})(a/\lambda)}{(b/\lambda)}\right) \frac{I^2}{a^2} .
$$

So

$$
\frac{U_l}{\mu_0 \lambda^2} = \left[\frac{(b/\lambda)^9}{8100} + \frac{(b/\lambda)^4}{90} + \frac{(a/\lambda)}{16} \frac{1}{(b/\lambda)} \right] \frac{l^2}{a^2}
$$

$$
\frac{U_l}{\mu_0 l^2} = \frac{1}{m^2} \left[\frac{n^9}{8100} + \frac{n^4}{90} + \frac{m}{16n} \right],
$$
 (17)

$$
L_s = \frac{2\mu_0}{m^2} \left[\frac{n^9}{8100} + \frac{n^4}{90} + \frac{m}{16n} \right].
$$

This simplifies, when $(b/\lambda) \ll (a/\lambda)^{1/5}$, to the last term alone,

$$
L_s = \mu_0 \lambda^2 / 8ab \quad . \tag{18}
$$

The λ^2 variation for thin films has been verified experimentally in numerous reports.²⁻⁴ The more complicated behavior in Eq. (17) would apply to the narrow transition region $\lambda \leq b/2 \leq 10\lambda$. For $20\lambda < b$ one has $L_s \propto \lambda$ while for $b < 2\lambda$ one has $L_s \propto \lambda^2$.

Phys. 45, 5043 (1974).

- ⁴E. H. Rhoderick and E. M. Wilson, Nature 194, 1167 (1962).
- $5R$. E. Glover, III, and H. T. Coffey, Rev. Moc. Phys. 36 , 299 (1964).