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Previous calculations for the distribution of J and B in a type-II superconducting wire with a

square cross section carrying an axial current are here extended to obtain corresponding results
for a rectangular cross section. We do this (a) for wires and thick films, (b) for whiskers, and

(c) for thin films. The superconducting self-inductance in the first case varies as A,; in the cases
of thin films and whiskers the variation is as A. . This agrees with reported results. We know of
no definitive experimental results for the J and B distributions for comparison with our

theoretical results.

I. INTRODUCTION

In this paper we extend the results previously re-
ported for an axial current through a wire of square
cross section' to the case of an axial current through
a wire of rectangular cross section. The former is
simpler theoretically; the latter is much more com-
mon in actual practice.

We take the origin at the center of a cross section
with —a «&& ~ a and —b ~y ~ b. Let

J, =J~cosh(x/A. ) +J2cosh(y/h. )

Then

I = „I J, dS = nJi +pJ2,

y = b [a + h. sinh(a/X) cosh(a/A ) ]
8=4k sinh(a/X) sinh(b/X)
~ = a [ b + X sinh( b/X) cosh( b/X) ]

II. WIRES, THICK FILMS (a )) A, , b && A, )

Here

n=4zb sinh(a/) )

P =4Xa sinh(b/X)

y = (kb/2) sinh(2a/k)
g =4k' sinh(a/X) sinh(b/A).
e = ( Xa /2) sinh(2 b/X)

(2b)

(4)

where

n =4) b sinh(a/l~)

P =4ka sinh(b/h. )

The energy density, u =—,J A, becomes

u = (pot'/2) [J)' cosh2(x/X)

+2 J&J2cosh(x/A. ) cosh(y/k)

+J2 cosh'(y/i~) ]

(2a)

Putting Jq ——(1—nJ~)/p into the energy expression
gives

UI/poz' = [y —(ns/p) + (n'e/p') ]Jj'

+ [(5/P) -(2n./P')11J, +(./P') 1'=O .

Taking the derivative with respect to J~ and equating
to zero yields

Ji = (ne —,
' Pg)1/(P'y —nPS+—n'e)

The energy per length, UI = Jt u dS is then found to
be

The second derivative of U~/pak2 with respect to J~ is

positive when

UI/pok = yJ) + 5J)J2+ g J22 (3)
+ &4k;

tanh(a/k) tanh(b/X)
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or, here, whenever (a +b) & 4K. So for this case
Eq. (5) always gives that current density component
varying along x which minimizes the tatal energy.

Ignoring the two 8 terms in Eq. (5)—they are
much smaller than the other pertinent terms —gives
Ji =I/[4A. (a +b)sinh(a/h)]. Then L, =(i(,pli./8(a+b) (8)

We have shown this is (I/2((, p) times the kinetic in-

ductance, Lk„of the superconducting wire per
length. This inductance equals the self-inductance,
L„ for superconducting wires

and

J2 = I/[43. (a + b) sinh(b/X) ]

(

I cosh(x/A. ) cosh(y/A. )
4X(a + b) sinh(a/X) sinh(b/A. )

(6)

The variation L, 0 X for a » A. , b » A. has been re-
ported experimentally in thick rectangular films
where a » b =10k..

III. WHISKERS (2a & h„2b & X)

From B = —ppA. 7 x J the field is

(((oI - sinh(y/A. ) - sinh(x/)i. )
4(a + b) sinh(b/X) sinh(a/X)

The energy expression

( U(/p'o~ )min ( v Jl + ~J2 )min

We return to the parameters a—e listed in Sec. I,
Eqs. (2a) and (2b). From I=nJi+PJ2 we obtain, if
we set Jp= I/4ab, m = a/h, and n = b/A. , the e.xpres-
sion

Jp= Ji (sinhm)/m+ J~ (sinhn)/n

gives

( U(/p pI )min
= "/ [16(a + b) ]

Putting J, from this into U(/ppX' and taking the
derivative with respect to Ji gives Ji = (N/D) Jp,
where

(abn /m)(sinhm) + X n (sinhm)(coshn)
(sinh'n ) (sinhn)

(ab) + [n) 2(sinhm) (coshm) ] [(4) 2n/m) (sinh2m) ] + (abn /m ) (sinh m) + (n & /m) (sinh m) (coshn)
(sinh'n) (sinhn)

or
U(/p, oI2 = h.~/8ab

L, = p, ph. 2/4ab (10)

When a = b = s this gives the value previously ob-
tained for square whiskers.

Inserting a Taylor series through the fifth power in
small quantities gives N = ab(2n4/45) and
D = ab 2 ( m4 + n4) /45. Then

Ji = (I/4ab) [b4/(a'+b') ]

J =(I/4ab) [a4/(a +b )]
and to this order, by expanding the hyperbolic func-
tions in Eq. (1),

1

4ab 2(a4+b4) I 2(a +b4)
(9)

Jhas almost the constant value I/4ab, but there is a
small added elliptical variation.

In

U(/p, p
k2 = y J(2 +8J(J2 + eJ2

we now have y = e =2ab, 5 =4ab giving

The field, B =—p,pX2 V x J, is

B = [Bp/(a +b4)][—xa (y/A. ) +yb (x/X)]

where Bp = p,pA, Jp. The constant current contours,
which are also the field lines, are ellipses.

Here

IV. THIN FILMS (a » A., 2b ( h. )

(12)

inserting a Taylor series to the fifth power in n for
sinh n gives

N= (2h. m sinhm)(4n6/45) =
4, ) n m sinhm

n =4k. n sinhm

P =4k. m sinhn

y= A, n sinh m

8=4K (sinhm) sinhn

e = X'mn + (An2/m2) sin.h2n

Ji is again evaluated by minimizing U( via Eq. (5).
d2U(/dI(2 & 0 for a & 2X. The numerator in Eq. (5)
is now

N = (2A."m sinhm) (2n2+ n sinh2n —4sinh2n);
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Similarly, the denominator in Eq. (5) becomes

D = 168(m'sinh'm) (n sinh'n)
Then

J, = [2n'/(45 sinhm) ](I/4ab) (13a)

Even for the thickest thin film, n = 2, the quantity

in brackets is very small and we would ordinarily
write

J) =. 0 (i3b)

1 —2(b/Z)' (I/4 b)
45(a/a)

or, for all practical purposes,

J2=I/4ab
Thus,

(14a)

(14b)

However, this small but finite J~ leads to a finite By.
Measurement of the relative variation of this small

perpendicular component has been reported by Rho-
derick and Wilson"; we will keep this term in order to
make a B~ comparison possible, at least to some ex-
tent. J2 then becomes

ing infinity in J at the edge. Their results gave excel-
lent agreement with the variation of B~ calculated
from the modified Bowers expression for J. It is in-
teresting to note that the Bowers expression for J
near the edge (x = a here) gives an exponential
behavior; so does the small, x-varying component,
the first term of our Eq. (15); and the modified
Bowers expression also gives J predominantly near
the edges. Other authors" have used similar expres-
sions; in Ref. 3, p. 5047, the authors write —"the
current distribution. . .is predicted to be sharply
peaked at the edges of the film. " This is the
behavior displayed by the first, small, term in Eq.
(15); but we know of no experimental measurements
of B„,which would be connected with the cosh(y/~)
term in Eq. (15) when y = b Con.sequently we have
difficulty comparing Eq. (16) with the measured
results.

To find the self-inductance we evaluate Uilppi
from Eq. (3) using the coefficients from Eq. (12) and
setting

Ji = [b3/90X4a sinh(a/) ) ]I

—,', (b/Z)'cosh(x/Z)
J =z(I/4ab) . +cosh~

sinh a X
. (is)

J~=I/4ab
Then

Ignoring the first term, for 2b/A=i, J varie. s about
13% between y =0 and b; but as b gets smaller and
smaller the values of Jbecomes more and more con-
stant.

The field becomes, if Bp= pph. (I/4ab),

8 = —XBpslnh(y/X) +yBp[2(b/Z) /45] —.sinh(x/Z)
sinh(a/~)

(i6)
Rhoderick and Wilson' reported measurements of the

B,, component to check the variation against that
resulting from a postulated J distribution suggested
by W.A. Bowers (unpublished). That J is assumed
to be constant through the thickness (here 2b) but
varies along the width (2a here but w there) with a
equal to a constant =1. J(x) is given by
Jp[1 —(2x/w)'] ' 2 if x is not too close to x = w/2;
while, close to x = w/2,

J( )
—[d(w/2 —x)]

aX

and the two solutions are joined at a point distant
a A2/2d from the edge. Rhoderick and Wilson modi-

fied the Bowers distribution to make the central vari-

ation extend to 2x = ~; I is finite despite the result-

t

(b/X)' I 8J J (b/~)4 I,l,
8100 a 90

( —,', )(a/Z)
eJ2 =

(b/X) ,
a'

So

Ui (b/")9+ (b/')4+ (a/k) 1
'

12

8100 90 16 (b/X) a

1 n' n4 m

pm
2 8100 90 16n

1

2po n n m

m2
~

8100 90 16n

(17)

This simplifies, when (b/X) «(a/~)'~5, to the last
term alone,

L, = p,pA'/gab. (18)

The A.
' variation for thin films has been verified

experimentally in numerous reports. ' " The more
complicated behavior in Eq. (17) would apply to the
narrow transition region A. & b/2 & 10K. For 20K & b

one has L, ~A. while for 6 & 2A. one has L, ~ X'.
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