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Three-component model and tricritical points: A renormalization-group study.
II. General dimensions and the three-phase monohedron
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(Received 24 March 1981)

In Part I the global phase diagram of the general spin-l, nearest-neighbor, ferromagnetic Ising
model was studied for d =2 dimensions using an approximate renormalization-group approach
of the Migdal-Kadanoff type. Here general d is considered with emphasis on ~ = d —1 expan-
sions and on the variation of the tricritical exponents with d «4. A dilution field is introduced
which can be chosen to yield tricritical exponents for d =2, in better agreement with more reli-

able estimates and conjectured exact results. The three-phase monohedra, which describe the
densities of coexisting phases near a tricritical point, are calculated quantitatively for d =2, and

their shape contrasted with that predicted by classical theory: they are found, in particular, to be
significantly flattened.

I. INTRODUCTION

An important task, still outstanding in the theory
of multicritical phenomena, is to provide a detailed
understanding of the equation of state of a system in

the vicinity of a tricritical point. In particular, the in-

terplay of the nonclassical critical and tricritical
behavior in two- and three-dimensional systems and
the precise role of the four relevant scaling fields re-
quires further elucidation. Additionally, concrete nu-
merical predictions describing three-phase coexistence
near tricriticality in specific models are needed.

In the first part of this work' (to be denoted I) an
attack on these problems was initiated using a real-
space renormalization-group approach. Specifically a
form of Migdal-Kadanoff approximate renormaliza-
tion group' was used to study a spin-1 Ising model
with Hamiltonian

=H gs, —D gs
kgT

+q ' X [Js;sj+Ks' sj +
2

H3$'sj(s'+sj)1
(&J )

Here the spin variables take the values s; =+1,0,—1,
while q is the coordination number of the lattice and
the pair interactions act only between nearest neigh-
bors. Note that the Hamiltonian (1.1) includes all
single-site and nearest-neighbor pair interactions
which respect the full symmetry of the lattice.

The fixed-point topology and corresponding phase
diagram predicted for this model by the renormaliza-
tion group used were described in I. Detailed numer-
ical results for the fixed points in d =2 dimensions
were presented and attention was focused on the
renormalization-group description of the tricritical

points for which the interaction parameters
(J,D, H, H3) provide the basis for a complete set of
symmetry-breaking fields. '

In this paper the results presented in I are extend-
ed in two directions. First the dimensionality depen-
dence of the fixed points and exponents is discussed,
An expansion4 in powers of e=d —1 is shown to
provide a link between the exact results' for dimen-
sion d =1 and the approximate results for higher
dimensions. The predicted variation with dimension
of the tricritical exponents is investigated and is

found to be some~hat surprising in that for some ex-
ponents it is not at all smooth.

Second a "dilution field" is introduced into the
Hamiltonian. This provides a free parameter which
can be adjusted to provide recursion relations which
are expected to yield an improved quantitative
description of real systems near a two-dimensional
tricritical point. Using these recursion relations vari-
ous thermodynamic functions are evaluated. In par-
ticular, the three-phase monohedron, ' which pro-
vides the basic representation of the thermodynamic
densities at points of three-phase coexistence, is dis-
cussed. The problems involved in pursuing a similar
approach for three-dimensional systems are outlined.

For convenience we recapitulate briefly the
relevant notation and symmetry properties of the
spin-1 model described in I. The spin-1 model is

equivalent to a three-component lattice gas and the
latter description was predominantly utilized in I.
Here it is more convenient to work in terms of the
magnetic Hamiltonian (1.1). Note first that (1.1)
maps onto the same form under any permutation of
the three spin states. For certain subspaces of the
five-dimensional parameter space (J,K,D,H, H3) the
Hamiltonian is invariant under some or all of these
permutations. Those which will be referred to here
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are the three-dimensional even. subspaces, namely,

H =H3=0 (1.2)

H =H3=0, E =3J, D =2J (1.5)

invariant under any permutation of the spin states.
The Migdal-Kadanoff recursion scheme considered in
I preserves the three-state permutation symmetry and
hence the subspaces listed above are closed under the
renormalization-group flows, It is helpful to
remember that, as a consequence of the three-state
permutation symmetry, fixed points in general occur
in equivalence classes consisting of six fixed points
with identical exponents. Fixed points in the even
subspaces, however, occur in equivalence classes of
three fixed points, those on the Potts line occur only
once.

%e follow the Griffiths thermodynamic notation
employed in I where 3 and 3 denote manifolds of
two- and three-phase coexistence, respectively, while
B, BA, C, and Y denote critical, critical end point, tri-
critical, and three-state Potts manifolds, respectively.
To distinguish fixed points from manifolds the
relevant symbol is enclosed in angular brackets; for

/

example (C) denotes a tricritical fixed point. Fixed
points belonging to the same equivalence class are
distinguished by subscripts n, P, y, for those points
lying within the even subspaces: otherwise by nP,
/3

The fixed points obtained are listed in Sec. II
where properties of the renormalization-group
transformation for d =1+e dimensions are dis-
cussed. The notation used is

a = —(J+K —H3), b = —(J+K+H3), c =2J

(,/(& = exp(2H + H3)

(q/$, = exp [—D —H + —,(J + K —H3) ]

+fy+f, =I

(1.6)

This notation is chosen to reflect the symmetries of
the spin-1 model in that all fixed points within an
equivalence class can be listed by simultaneous per-
mutation of the fixed-point labels and of both the
sets of coordinates, a, b, c and $„(b, (,.

The Migdal-Kadanoff-type renormalization: scheme
considered here' comprises two steps: (i) bond mov-
ing; and (ii) a one-dimensional exact decimation or

3J —K+H3=0, 2H+H3 —2D+ J+K =0, (1.3)

3J —K —H3=0, 2H+H3+2D —J —K =0, (1.4)

which remain invariant under (1,0, —1)~ (—1,0, I ),
(1,0, —I) = (0, I, —I), and (1,0, —I) —(I, —1,0),
respectively, and the one-dimensional Potts subspace,
namely,

dedecoration. On-site terms are divided equally
among the q bonds incident upon a site and moved
with those bonds'; this choice is advantageous be-
cause it yields exact results for ground-state energies.
The steps (i) and (ii) may be performed in either or-
der yielding two different approximations. The
predicted exponents are independent of the order, as
is the fixed-point topology. However, the fixed-point
values in terms of (J,K, D, H, H3) differ between the
two schemes by a factor b '. Hence there is a quan-
titative difference in the phase diagrams predicted.
For example, the tricritical point coordinates for
K =0 are (D =2.13, J/q =1.08) for the implementa-
tion [(i),(ii)] but (D =4.26, J/q =2.15) for the im-
plementation [(ii), (i)]. A comparison with previous
estimates (I; Table V) suggests that the two results
bound the exact value. As b 1 the two schemes
become identical and better quantitative results are
expected at the expense of increased numerical com-
plexity. In I and Secs. II and III of this paper the se-
quence [(i),(ii)] was adhered to; the results presented
in Secs. IV and V follow from the sequence [(ii),(i)].
Our primary interest is in the asymptotic equation of
state which should be universal and hence indepen-
dent of the quantitative features of the phase dia-
gram. Thus we need not be too concerned by the
differences. There is no direct evidence for prefer-
ring a particular order of implementation within the
Migdal-Kadanoff scheme. Furthermore, the fact that
both schemes are exact for a particular realizable sys-
tem (see Appendix), '" albeit without the usual
translational invariance, should be borne in mind,

The layout of the paper is as follows. In Sec. II the
expansion in e with d =1+e is discussed. As the
fixed-point topology is identical for d =1+e and
d =2 dimensions this provides a review of the most
important results obtained in I. In Sec. III the
dimensionality dependence of the fixed-point ex-
ponents is presented. The dilution parameter is in-
troduced in Sec. IV and its effect on exponents and
phase diagrams discussed. Section V concerns the
thermodynamic densities and predictions for the
shape of the three-phase monohedron in two dimen-
sions. The Appendix discusses the realizability of the
Migdal-Kadanoff scheme, particularly with respect to
the introduction of dilution fields.

II. 1 + e EXPANSION

Krinsky and Furman5 have provided an exact solu-
tion of the spin-1 model for dimension d =1 using
the transfer matrix technique. In particular these au-
thors have listed the fixed points occurring for d =1.
An expansion in e = d —1 about these fixed points
provides a bridge between the exact one-dimensional
results and the results obtained in I for d =2.
Indeed, the fixed-point topology found originally for
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TABLE I. Fixed points for d = 1 + ~ related to the critical fixed points and the three-state Potts fixed
point for d =1. Results exact to all orders in e are starred. The notation introduced in I is fol-
lowed.

(A2)o (B)', (A2)„ (B), (A'),. (B),.

b/q

c/q

1

4
1

4
1

2

p'

1

4
1

4
1

2

E
-1

p4

2

2

p
+

—ln2
1

2

—ln2
1

2

2

2

p
+

1—ln2
2

1—ln2
2 -1

]

2

2

p+

p

2

2

p+

p+

(A3) (BA)~' (C)r

a/q
b/q
c/q

3

3

3
J/g

1

3
1

3
1

3

-1

1

3
1

3
1

3-1
-1

3

31"
3-1
-1

E'
—1

'Degenerate with (BA )

d =1+e persists through all higher dimensions.
To illustrate the 1+e expansion consider a

Migdal-Kadanoff-type recursion relation2 for the d-

dimensional, spin- —Ising model in zero field, namely

2d-1
2XI

X X=e
1+x4

-2J/k~ T
(2.l)

Here J is the usual, ferromagnetic nearest-neighbor
interaction. For d =1, fixed points x'=0, 1

( T'=0, ~) describe a critical transition at zero tem-
perature and a high-temperature sink, respectively.
Recall that d =1 is the lower critical dimension for
the Ising model; when d ) 1 the critical transition oc-
curs at nonzero temperature. For d-=1+ e fixed
points occur at x' =0 (T' =0, low-temperature sink),
x' = e ' ' (critical) and x' = l (high-temperature
sink). Thus the critical fixed point at zero tempera-
ture for d =1 bifurcates into a critical fixed point at
nonzero temperature and a residual low-temperature
sink which, on introducing a field, is seen to describe
the expected first-order transition.

All the critical fixed points in the spin-1 model
behave identically bifurcating, for d = 1+e, into a
critical fixed point which moves away from zero tem-
perature as e is increased and a residual first-order
fixed point. These are listed in Table I. As in I, only
one fixed point from each equivalence class is listed
in the table. It is useful in understanding the con-
nectivity of the phase diagram to note that the fixed
points describing a first-order surface and its bound-

ing critical line form a natural pair for d =1+~.
A three-state Potts fixed point ( Y) is also found

for d =1 dimension. This exhibits more complicated
behavior as illustrated in Fig. 1. When e becomes
positive this fixed point splits into a cube of 8 fixed
points with one vertex fixed at the origin while the

—b
e

(BA&„(c)a
y 'w

c

p t' I ((
'~

(BA) ~r. &

e
FIG. 1. Fixed points in dimension d =1+e which spring

from the Potts fixed point in d =1. Note the three-state
permutation symmetry about the line joining the Potts fixed
point ( Y) and the three-phase fixed point (A3). The tri-

critical lines terminating at the tricritical fixed points
(C), (C)&, and (C), the critical end-point surfaces, and

the three-dimensional manifold of triple points are indicated
schematically by solid, broken„and dotted lines, respectively,
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TABLE II. Critical exponents for dimension d =1.+ ~. Results exact to all orders in e are starred.

Fixed Point. y4

&y)

(C)~
(B)',
(B),
(B)„.
(BA )
(BA )

1+a
1+6

—1 + e(1 —in2)

1+6

1+a

—2+a

body diagonal through this vertex lies on the Potts
line. The invariant point, (A3), becomes the triple
point for d ) 1 and the opposite vertex the three-
state Potts point (I'}. Of the remaining vertices
three represent the critical end points, (AB }~, (and
their satellites, ' (AB)„, which occur at the same po-
sition in parameter space with the choice of variables
used in the table) and three the tricritical points,
(C}~. These fixed points are listed in Table I. The
connectivity under renormalization-group flows of
the higher-order fixed points, which persists through
all higher dimensions, is most easily calculated for
d =1+a and is depicted in Fig. 1. Note that this fig-
ure illustrates the three-state permutation symmetry
of the spin-1 model around the Potts line as axis.

Table II lists the exponents of the fixed points for
d =1+~. Fixed points within the same equivalence
class have identical exponents and are therefore listed
only once. In the majority of cases the first-order
predictions agree well with the numerical results for
the critical exponents for d & 1.6 (see Fig. 2).
Results which are exact to all orders in ~ for d =1+a
and hence which can be used to predict numerical
values for higher dimensions, are starred in Tables I
and II.

III. GENERAL DIMENSIONS

The fixed-point structure obtained in 1+e

dimensions persists through all higher dimensions.
Thus, although it is very plausible that the
renormalization-group described here predicts the
true phase diagram in low dimensions, the results ob-
tained differ significantly from those predicted by
mean-field theory'2 (see also the discussion in I)
which is expected to be correct for higher dimen-
sionalities. In particular, the upper borderline dimen-
sionality for tricritical behavior is d =3: For d & 3
the tricritical exponents remain constant and equal to
their mean-field value. " " Within a renormaliza-
tion-group context dimensionality expansions in the
region of the borderline dimensionality suggest that

y; = (lnA;)/Inb (3.1)

where b(=2) is the rescaling factor of the
renormalization-group transformation and A& denotes
an eigenvalue of the recursion equations, I(3.2) and
I(3.3), linearized about the appropriate fixed point.
Results from the 1+e and 3 —~ expansions, " from
the best previous real-space renormalization-group
calculations' ' and from conjectures for the leading
thermal and magnetic eigenvalues' are shown for
comparison. The leading thermal, y2, and magnetic,
y~, eigenvalues are in good agreement with exact and
conjectured results in both two and three dimensions.
Other eigenvalues are, however, represented rather
poorly by the transformation. This suggests that nu-
merical calculations of thermodynamic properties in
the tricritical region on the basis of these recursion
relations should be interpreted with caution and
motivates the introduction of the dilution field in the
next section.

The behavior of the plots between d = 2 and d = 3
dimensions deserves comment. For d = 2.2 the

this should be described by the tricritical fixed-point
crossing and exchanging stability with a Gaussian
fixed point. ' Such a fixed point does not appear
within the truncated par~meter space used in the
present approximate real-space renormalization
group. Indeed a fixed-point structure describing the
crossover to mean-field behavior as the dimension is
increased has not, to our knowledge, been observed
in real-space renormalization-group calculations, even
for simple spin- —Ising systems.

In the following section we introduce an additional
field into the Hamiltonian which can be adjusted to
"tune" exponents to give good agreement with exact
and conjectured'7 results for d =2. However, the
dimensionality, d, itself appears as a free parameter
in the recursion equations and it is therefore interest-
ing to discuss first the dependence of the exponents
on d. The results prove somewhat surprising.

Figure 2 shows the variation with d of the tricritical
exponents or eigenvalues
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FIG. 2. Predicted variation of the
exponents (a) y2, (b) y4, (c) y6, (d)

y~, and (e) y3, for the principal tri-

critical fixed point lying in the even
space (0=03=0}with the dimen-

sionality, d, and the dilution activity,
z. The leading results given by the
1+a and 3 —~ expansions are indi-

cated by arrows. The level lines for
d )3 represent the classical results
which are correct in this region. The
open circles in the plots for y~ and y2
mark the conjectured exact values
for. d =2, The best previous real-

space renormalization-group results
for d =2 are indicated by crosses.
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second even eigenvalue, y4, exhibits an extremely
sharp minimum which is mirrored in the behavior of
the other eigenvalues. A closer investigation of this
region indicates that the "kinks" in the exponent
graphs are not actually singularities, as they appear to
be on the scale of Fig. 2, but rather are only rapid
changes in slope, occurring at slightly different values
of d for each exponent. The exponents behave in
this way because the motion of the tricritical fixed
point with d changes direction rather sharply within
the five-dimensional parameter space at d = do
=2.195. One would expect this to be a consequence
of the close approach of another fixed point repelling
the first, as in the variation of the eigenvalues of a
matrix. No such fixt'. d point exists within the real
physical parameter space, but a conjugate pair of
complex fixed points do approach the tricritical fixed
point sufficiently closely to affect its behavior. A

priori it seems unlikely that this sharp behavior

represents the true variation of the eigenvalues and
exponents of the spin-1 Hamiltonian appropriately
continued to arbitrary dimensionality. However, it is

interesting to recall that our Migdal-Kadanoff-type re-
cursion relations are exact for a realizable, albeit non-
translationally invariant, lattice. ." We may note,
however, that the eigenvalues of all other fixed
points vary smoothly with dimensior. ality throughout
the range, d =1 to 4, examined. Furthermore, the
dilution, to be introduced in the next section, can be
adjusted to give a smoother variation of the tricritical
exponents with d, together with more believable
values of the exponents for d =2 and 3 dimensions.

IV. INTRODUCTION OF A DILUTION FIELD

Let us now attempt to introduce a new parameter
into the Hamiltonian (other than the dimensionality,
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d) which might be adjusted to yield values for critical
exponents in better agreement with the exact, conjec-
tural, and other approximate bgt reliable results. If
the recursion relations for the new model are still ex-
act for some suitable pseudo-lattice structure, " they
should provide a thermodynamically sensible descrip-
tion of behavior near tricritical points in real systems
that will also, by adjustment, yield reasonably accu-
rate exponents. To this end, consider a new local
density, t; = 1, 0, describing the concentration or dilu-
tion of the magnetically active sites, and let the new
Hamiltonian be

=H gs, r, DXs—, r,
—P gr;

kg T

+ q
' X [Js, s, + Es,'s, '

&0)

where s; takes the values 1, 0, and —1 as before
when t; =1 but only, say, s; =0 when t; =0. The new
field P is evidently the reduced chemical potential
which controls the degree of dilution.

Now, for any fully translationally invariant lattice it
is not hard to see that the effect of the dilution field
P can be completely absorbed into the value of D in
(1.1), since this field equally controls the density of
sites in the state s; =0 (which are then effectively
decoupled from the rest of the lattice). However, as
we discuss in the Appendix, the hierarchical struc-
tures of the pseudo-lattices for which Migdal-
Kadanoff recursion relations are exact, " allow free-
dom in the way the fields are assigned to the dif-
ferent levels of the hierarchy. The special properties
of a dilution field in cases like this permit one to in-
troduce P in such a way that it is not equivalent
merely to a change in D but, nonetheless, still corre-
sponds to a definite, realizable pseudo-lattice struc-
ture. Furthermore, we can arrange that P itself is a
renorrnalization-group invariant, i.e., P' = P, while the
recursion relations for the other parameters
(J,E,D,H, H3) depend parametrically on P (see Ap-
pendix), We then find that the overall fixed-point
structure is almost identical for all values of P but the
exponent values and the numerical details of the
phase diagrams predicted by the new recursion rela-
tions, evolve with increasing P. This should be con-
trasted with the results obtained by Nienhuis, Berker,
Riedel, and Schick6 who first proposed the introduc-
tion of a dilution field, This enabled them to
describe correctly the behavior of the q-state Potts
model near q =4. In their study the dilution variable
provided an additional degree of freedom for flows
within the parameter space and fixed points occurred
only at specific values of the dilution field.

Note that only sites with s; = + 1 are affected by
the introduction of dilution; thus s; =0 becomes the

I I I I t I I I I I I I I

0
0 0.5

FIG. 3. The phase boundary of the three-component
model in the even space (H = H3 =0) with E =0 for vari-
ous values of the dilution activity, z, The bold curves
represent first-order phase boundaries while the thin curves
depict the critical or lambda lines. The tricritical points are
indicated by open circles.

increasingly favored local state. This is illustrated by
Fig. 3 which shows a cross section of the phase boun-
dary within the even space H =H3=0 (D/J vs q/J
for E =0) for various values of the dilution field.
For increasing z = e ~ the Ising transition tempera-
ture in zero field moves to lower temperatures indi-
cating that the spins s; = + 1 are becoming more di-
lute and are therefore ordering less readily. Simul-
taneously the tricritical point moves to lower values
of the field, D/J, indicating favoring of the zero-spin
state. It follows that for z AO the three-state permu-
tation symmetry of the model is broken. Note, how-
ever, that the inversion symmetry (s; ~—s;) is
preserved. Thus the symmetry of the wings of the
tricritical phase diagrams about the plane containing
the lambda line is preserved only for the tricritical
point lying in the even space H =H3 =0. The major-
ity of the material presented in the remainder of this
paper will pertain to this tricritical point which will be
referred to as the principal tricritical point.

Figure 2 depicts the variation of the exponents of
the principal tricritical point with dimensionality for
chosen values of z. The leading thermal and magnet-
ic exponents, y2 and y~, respectively, which were in

good agreement with previous results' ' for z =0
exhibit only a weak dependence on z. Values of the
nonleading exponents, however, improve consider-
ably as z is increased; in addition the exponent curves
exhibit a much smoother variation with dimensionali-
ty. The choice z = 20 gives the best agreement with

previous results'7' for d =2 for all the tricritical ex-
ponents. To obtain a similar matching to the mean-
field values for d =3 the eigenvalue y6 should be-
come marginal. This would be expected to involve a

change in the stability of the tricritical fixed point as
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TABLE III. Fixed-point exponents for d = 2 and z = 20. Fixed points controlling the phase diagram
of the principal tricritical point are starred.

Fixed point y2 y4

(y)
(C)~

(C) (C)p

0.895
1.852
1.706

1.832
0.846
0.453

0.764
—0.726
-2.270

1.868
1.867
1.960

0.895
0.862
0.903

(B)',

(B)„
(B)., (B)p

(B),. (B),p
(B)., (B)p,
(B).p, (B)p.

0.820
0.857
0.747
0.855
0.747
0.855
0.855

1 ~ 864
1 ~ 860,

1(-=d -1)
1

1.879
1.860
1.879
1.860
1.860

0.209
-1.102

0.121
0.321

—0.253
—0.555
-1.087

(BA )
( BA ), (BA )p

(BA ), (BA ) p
(BA ) „, (BA )p
( BA ) p, (BA )p

0.747
0.855
0.747
0.855
0.855

2(=—d)
2

2

2

2

1.879
1.860
1 ~ 879
1.860
1.860

0.782
0.449

—2.615
—0.719
-2.613

d passes through d =3, which, for the principal tri-
critical point, does not occur for any values of z and d.

Table III lists the critical exponents of the fixed
points for d =2 and z =20. Fixed points which
describe the phase diagram of the principal tricritical
point are indicated by an asterisk. The results should
be compared to those for z =0 in I, Table III. The
notation used in I is maintained but, due to the
breaking of the three-state permutation symmetry,
fixed points which belonged to the same equivalence
class no longer have the same exponents. For the
secondary tricritical points the exponents become less
accurate with increasing z. Exponents of the critical
and critical-end fixed points do not show a marked
dependence on z with the exception of y3. Variation
of y3 is much more strongly marked: for (B)o, (B) Op

it changes sign as z is increased indicating a change in
the connectivity of the fixed points. This, however,
does not affect the fixed-point topology describing
the principal tricritical point.

To adjust the exponents it might seem easier to in-

troduce free parameters directly into the recursion re-
lations, rather than into the Hamiltonian. However,
there would then be no guarantee that the resulting
approximate recursion equations could generate a

physically sensible, positive, convex free energy.
Conversely the introduction of a dilution field, P or
z, into the Hamiltonian leads to a renormalization-
group scheme that is realizable in the sense of Berk-
er" in that it describes exactly the behavior of a sys-
tem with the Hamiltonian (4.1) on a special,

hierarchically structured "lattice. " A point worth
noting, however, is the following: a priori the hy-

pothesis of universality would suggest that the tricriti-
cal and critical exponents of such a lattice should not
depend continuously on the dilution field (even if the
exponents for z ~ 0 were different from those for
z )0). The fact that z itself does not flow under the
exact recursion relations for the model means that
such universal behavior could occur only if the eigen-
values of the fixed points were z independent. As
explained, however, this is not the case. This
nonuniversal tricritical behavior does not seem physi-
cally plausible for d ( 3, indicating that the behavior
of the Berker system differs substantially from that of
real two- or three-dimensional lattice systems. (See
also the results for various "fractal lattices" dis-
cu'ssed by Gefen, Mandelbrot, and Aharony. 'o)

V. THREE-PHASE MONOHEDRON

The three-phase monohedron, described by Grif-
fiths, ' Widom, and others, provides the representa-
tion of the thermodynamic densities at points of
three-phase coexistence lying in the tricritical region
of the phase diagram. It is by considering this figure
that experimental results on the tricritical behavior of
real, four-component fluid mixtures have been most
directly displayed. ' The general shape of the three-
phase monohedron which emerges from the classical
phenomenological or Landau theory is illustrated in
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m, =m, , m3=m3 —m3 g(T),

m3 m3 c(T)mt
(5.2)

Fig. 4. At each temperature below tricriticality there
is a line of points in the field space (D,H, H3) with K
fixed, describing three-phase coexistence and ter-
minating at two critical end points. Each point om

this triple line defines a triangle within the conjugate
density space with coordinates

mt = (s;)=, m3= (s; ) = ——OF 2 9F
gH ' 9D

(5.I)9Fm3= (s sJ) =2
3

~here s; denotes a general spin with nearest neighbor
sJ and F =F(J,K,D,H, H3) is the appropriate reduced
free energy. Each vertex of the triangle in the space
(mt, mq, m3) describes the densities of the three cor-
responding coexisting phases. On moving along the
triple line in the field space (D,H, H3) a stack of con-
tiguous coexistence triangles is built up in density
space as illustrated in Fig. 4. Approaching the top or
bottom of the stack corresponds to approaching one
or other of the critical end points in field space; the
coexistence triangles become narrower as the densi-
ties of the two phases which will achieve criticality
become more nearly identical. The stack ends in the
critical end-point tie lines E C+ and E+C . The ver-
tices of the coexistence triangles form a curvilinear
locus, E 0 C OC+0+E+, in the three-dimensional
density space (mt, mq, m3), the edge of the three-
phase monohedron. The sides of the three-phase tri-
angles form the single continuous, smooth ruled face
of the monohedron.

A similar monohedron may be constructed for each
temperature less than the tricritical temperature, T,.
To specify the shape of the monohedron it is first ap-
propriate to introduce the scaling densities which are,
asymptotically, fixed linear combinations of the den-
sities m;. The symmetry under s; ~—s; simplifies
the form of these, and we may take

C

where the subscript 0 denotes the central point la-
beled 0 in Fig. 4, which corresponds to the sym-
metry plane H =H3=0 and m1=m3=0: thus
mq o( T) is the value of mq in the disordered phase
on the triple line at temperature T where it intersects
the symmetry plane. The choice of the mixing
parameter c ( T) will be explained shortly. If the re-
duced temperature deviation from tricriticality is de-
fined, as usual, by

r = (T —T, )/T, = (J,/J) —I (5.3)

the size of the monohedron shrinks as t 0 accord-
ing to

Pg
mJ, E+ I J,E+I r

I
', pl = (d —yJ)/y4 ~ (5.4)

for j=1,2, 3, where the subscript E+ denotes the
critical end point E+ (see Fig. 4) which specifies the
maximal extent of the monohedron (with respect to
the central point 0 where m ~

= mq = m3 =0). Since
p] ) pQ ) p3 (see Table IV) the monohedron shrinks

FIG, 4. A general view in the space of densities
(m1, m2, m3) of the three-phase monohedron as predicted by
classical theory. Coexistence triangles, the vertices of which
represent the densities of the three coexisting phases, are in-
dicated by dashed lines. The points C+ and C are critical
points coexisting with noncritical phases E and E+ and thus
represent the critical end points. The "central point, " 0, is
the point of asymptotic symmetry, The m& label the scaling
densities and correspond to linear combinations of the den-
sities m;.

TABLE IV. Exponents for the tricritical monohedron. The overdot denotes the wing critical exponent.

Classical

p
1

2

P1
1

2

P3
11—
2

d=2
z=0
z =20

0.162
0.164

0.122
0.157

0.437
0.175

2.29
1.34

Previous

results

'Reference 18.
Reference 19.

1

8

(exact)

0.077'

0.091b

0.083+ 18d

0 177a

0.255b

0 227c

0.24+ 4'

'Reference 21.
dReference 22.

1.23'

1.12b

1 04+9
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as t 0 first to, asymptotically, a triangle, then to a

line, and finally, at tricriticality, to a single point.
Our aim here is to characterize the three-phase

monohedron for two-dimensional systems with the
expectation or, at least, hope that experimental data
will become available in the future for comparison
with theory. However, to put our results in perspec-
tive and to bring out the somewhat peculiar nature of
the monohedron it is useful to review briefly the
results predicted by the classical phenomenological
theory. ' 9 If we neglect logarithmic corrections, "'
which are probably small in this respect, and the ef-
fects of nonclassical critical behavior at the critical
end points C+ and C, which remains to be quanti-
fied, the phenomenological theory may be expected
to describe three-dimensional systems correctly:
indeed it accounts surprisingly well for the observa-
tions on four-component fluid mixtures. The shapes
of the monohedra are most easily assimilated and
compared by looking at three canonical projections,
namely, onto the three natural scaling planes defined
by m3 =0, m2 =0, and m~ =0. It is also helpful to in-
troduce the reduced scaling densities

wt = mj/&q, E+I t
I
',P (5.5)

in terms of which the coordinates of the end points
E+ and E are simply w~ = + w2 = w3 = + 1 (while the
central point 0 is located at the origin w& = w2= w3
=—0, and we assume odd or even symmetry under

w&
——wj, which is certainly correct when the tricrit-

ical point lies in a plane of spin inversion symmetry
as in the cases we shall discuss).

The asymptotic shape of the monohedron as
predicted by classical theory' is then specified by
the projections of the edge as

w2= w, , (parabolic, m3=0)

w3 = wt, (cubic, m2 =0)

w3 = + wz3 ', (cuspoidal, m
&

= 0)

(5.6)

(5.7)

(5.8)

These projections of the classical monohedron are
represented by the dotted lines in Figs. 5(a), (b),
and (c). The critical end-point phases C+, E, C,
and E+ are indicated by small solid circles: the points
0+ and 0, representing the phases coexisting with
the central-point phase 0 (see Fig. 4), are located by
small open circles. The descriptive names "parabol-
ic," "cubic, " and "cuspoidal" will be retained to
designate the corresponding three projections of the
monohedra also for two-dimensional systems even
though, as will be seen, the plots are no longer per-
fect parabolas or cubic curves.

At this point it is also convenient to explain the
specification of the cubic mixing coefficient, c(T), in

(5.2): this is chosen so that the slope of the cubic
projection vanishes at the origin. As a function of
temperature, this choice also serves to cancel out the

strongly varying power It I

' from, say, m3 p+( T) to
P3reveal the weaker scaling power It I
'. The corre-

sponding "rectification" of the monohedron can be
specified similarly in situations lacking an exact spin
inversion symmetry or its equivalent but the ap-
propriate prescription is more complicated.

As discussed in connection with the infinite-
component limit (n ~) in a three-dimensional sys-
tem, where the shape of the monohedron may be
quantified conveniently in terms of the dimensionless
ratios

tRgt = [O~O],/[E+O]~

tR, t = [C+Ol, /[EpO]t

(5.9)

(5.10)

where, in general, [PO]J denotes the length of the
line segment PO in density space when projected onto
the m& (or wt) axis. The values of the ratios predict-
ed classically are listed in the first line of Table V.

We have studied the shape of the three-phase
monohedron predicted. for a two-dimensional system
by the Migdal-Kadanoff-type recursion relations ex-
plained in I and by the modified recursion relations
incorporating the dilution parameter described in Sec.
IV above. In both cases we have utilized the se-
quence [(ii), (i)] which, as mentioned in Sec. 1, is ex-
act for a hierarchical lattice structure. " In the latter
case attention has been confined to the principal tri-
critical point lying in the even subspace, H = H3 =0.
For the dilution activity we have chosen the value
z =20, which, as evident from Fig. 2, reproduces the
fixed-point exponents y; with reasonably good overall
accuracy. However, in the case of the size and shape
of the monohedron the most important exponents
are, first, the ordinary or "wing" critical point ex-
ponent

p (d Yl(B))/Y2(B) (5.11)

which describes behavior on the critical surfaces and
at the critical end points; in particular, this exponent
controls the degree of "flatness" of the edge of the
monohedron around C+ and C; and, second, the
three tricritical exponents P~, Pq, and P3. The values
of these exponents predicted classically, given by our
recursion relations, and found, via (5.4) by previous
calculations, ' ' '" are listed in Table IV. In classi-
cal theory the ratios P2/P~ and P3/P2 are 2.0 and 1.5,
respectively, which values indirectly reflect the para-
bolic and cuspoidal character of the projections. Two
previous calculations, '8'9 yield P2lP~ = 2.30,
P3/Pp 6.9, and 2.80 and 4.4, respectively. The
differences between the two sets of estimates prob-
ably provide a fair indication of their accuracy. Evi-
dently the monohedron flattens to a triangle, and
then to a line, more rapidly in two dimensions than
in three. From our present recursion relations we
find Pz/Pt =3.6 and P3/P2 -—5.2 for z =0, and 1.1
and 7.7 for z =20. A comparison with the earlier cal-
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FIG. 5. Projections of the three-phase monohedron for z =0, K =0, and q/J =0.20 (or T =0.43T, ): (a) parabolic, (b) cu-

bic, and (c) cuspoidal (solid curves). The predictions of classical theory are indicated by the dotted curves for comparison. The
central coexistence triangle, 0+OO, and the critical end-point tie lines, C+E and C E+, are indicated by dashed and dot-dash

lines, respectively (see also Fig. 4). The inset in each figure expands the region around the central point, O.

culations suggests that, in this respect, some inter-
mediate value, say z = 5 or 10, might represent a
better compromise. However, inasfar as these ratios
affect the shape of the monohedron —as indeed they
appear to in some significant respects —it is reason-
able to hope that the true behavior will be bracketed
by the results for z =0 and z = 20.

We have generated the monohedra by integrating
the recursion relations for m~, m~, and m3 at various

temperatures for z =0 and z =20 with K/J =0 and
K/J = I. The shape ratios tRo,. and tR, J are presented
in Table V for the monohedra considered in detail.
The corresponding: densities and mixing parameters
needed to set the size and position of the monohedra
are listed in Table VI. For q/J =0.2 which corre-
sponds to a temperature of about 43% of T, (see Fig.
3), and three projections of the monohedron for
K/J =0 and z =0 are shown as the solid lines in
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TABLE V. Shape parameters for the three-phase monohedra. The ratios (Ro& and I,&
are defined

through (5.9) and (5.10) with the aid of Fig. 4.

(aO, 1 +c, 2

Classical

(~ef. 9) {3/4) 1/2

=0.866

3

4
(3/4) 3/2

=0.650

1

2

1

4

1

8

z=0, K=O
q/J =0.20

=0.45
0.997
0.947

0.997
0.930

0.993
0.845

0.500
0.50

0.497
0.43

0.420
0.33

z=20, K=J
q/J =0.20 1.000 1.000 1.000 0.05 0.05 0.03

z=20, K=O
q/J =0.20

=0.332 30
0.990
0.86

0.990
0.86

0.981
0.83

0.048
& 0.05

0.046
& 0.05

0.028
& 0.05

Figs. 5(a), (b), and (c). The most striking ways in
which this monohedron differs from the classical pre-
diction are in its flatness, as seen in the cubic projec-
tion, and in the comparative straightness of the two
"arms" of the edge. These features seem to be
mainly a consequence of the large value of 1/P
(which would be larger still in a more accurate
representation of the Ising-like wing critical
behavior). The characteristic, rounded, parabolic,
and cubic aspects and the pointed cuspoidal shape of
the projections of the monohedron become apparent
only very near the central point 0: see the insets in
Fig. 5. The critical end points C+ and C arc indicat-
ed by solid circles. In the parabolic and cubic aspects
these, together with the central point 0, roughly
quadrisect the edge of the monohedron, i.c., (R, 1 is

close to the classical value —,. However, as evident

from Table V, (R, 2 and I, 3 differ significantly from

the classical values because of the straightness of the
edges of the monohedron. Because T is, in this case,
rather far below T„some distortion of the
monohedron from its asymptotic tricritical shape is
certainly expected since m1 and m2 are close to their
saturation values (see Table V): this is the reason
the ratios Roj, which locate the points 0+ and 0
(open circles in Fig. 5), are so close to unity. How-
ever, even for q/J =0.45, which corresponds to
it i

= 0.03, the value of tao t has dropped only to
0.947, which is 9% higher than the classical result.
The values of @0,2, @0,3, (R,, 2, and (R,, 3 are also
smaller than at low T, so that the monohedron close
to tricriticality is slightly less flattened with respect to
classical predictions: however, the overall appearance
is still not very different from that illustrated in Fig. 5.

For z =20 and q/J =0.2 the monohedron was con-
structed for lt'/J = l as well as for K/J =0, in order

TABLE VI. Size parameters for the three-phase monohedron for K = 0. See (5.1) and (5.2) for the
definition of the scaled densities, etc.

q/J m1 E+ m2, E+ m3 E+ m20

0.20
0.45

0.9998
0.7965

0.9924
0.4268

0.9095
0.0270

0.007 36
0.3934

0.090
0.8834

20 0.20
0.332 30

0.9987
0.3620

0.9960
0.3115

0.9204
0.002 24

0.002 66
0.0849

0.077
0.862
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to test the sensitivity of the shape to an irrelevant
variable. Note that the same tricritical fixed point
controls the shape of the monohedron for all K, so
that the asymptotic shape close to tricriticality is cer-
tainly universal for fixed z. As confirmed by Table V
the shapes are scarcely affected by the value of E
even at such a large deviation from tricriticality. (For
z =20 one has q/J, =0.33233.) A surprising
feature, however, is the small value of the ratios R,&,

which imply that the critical end points, C+ and C,
are now very close to the central point 0. This

feature of the monohedra remains even for q/J
=0.332 30, corresponding to ~t

~

= 10 ", as can be
seen from Table V and the projections plotted in

Figs. 6(a), (b), and (c). These plots again exhibit
the striking flatness of the monohedron and the
straightness of the two arms of the edge.

The data reported in Table V and Figs. 5 and 6

suggest that the flatness of the monohedra is a true
feature of tricriticality in two-dimensional systems. If
the degree of flatness is measured by $, the max-
imum departure of the scaled cubic projection of the

2

0
-1 0

E,

Wp

0
0

0
I I I I l t I I t

1

2

2

FIG. 6. Projections of the three-phase monohedron for z =20, K =0, and q/J =0.33230 (corresponding to
~ r~ =10 4). As

in Fig. 5 the edge of the monohedron is shown as a solid curve; the central coexistence triangle, 0+OO, and the critical end-

point tie lines, C+E and C E+, are indicated by dashed and dot-dash lines, respectively.
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mi, o+ =&],o+I r
I

'(I + bir~
P) (S.I2)

and its analog for mq, yields a good fit near T, with

Bi,0+=1.303 +7 bi =0.61, and B2,0+ 1 315 +8
bq ——0.57 (the uncertainties referring to the last de-
cimal place). The relatively small values of the
correction amplitudes show that the monohedra are
probably quite close to their asymptotic forms for T

edge of the monohedron from the diagonal w3 w],
one finds 5= —, (—)' ~ =0.272 for classical theory,

whereas our calculations close to tricriticality yield,
for d =2, 5=0.12 when z =0 and 5=0.03 when
z =20. As suggested in discussing the value of the
exponents PJ, the true value of 5 is probably bracket-
ed by these estimates. The asymptotic positions of
the points 0+ and 0, representing the phases coex-
isting with the symmetric, central phase at 0, are
probably also bracketed by the values of $0J in Table
V. We conclude that they lie somewhat closer to the
end points E+ and E than classically predicted, say
with R0, ~

=0.90 in place of 0.866.
However, the true location of the critical end

points C+ and C is more problematical. As noted
before, the value of S, ~ for z =0 is close to the clas-
sical result ~; however, for z =20 values of 0.05 or

smaller are found. (The lack of precision in the last-
row values for the tR, J in Table V arises from the ac-
cumulation of roundoff errors in the iterations, which
becomes severe for small t, particularly near the criti-
cal end points where two fixed points compete. )
While it is certainly reasonable to guess that the true
position of the critical end points lies between these
extremes, it is clear that a further study using a more
accurate renormalization-group approximation with a
larger parameter space is needed to derive any more
useful and convincing estimate! Despite the unex-
pected sensitivity of this aspect of the tricritical
monohedron to the value of the dilution parameter,
we do feel that the flatness of the monohedron in

two dimensions and the estimates for the 0+ points
are trustworthy.

A final point deserves comment, namely, the ex-
tent of the asymptotic tricritical region. Since the ex-
ponent P~ is rather small, the value of mt even very
close to the tricritical point remains quite large (see
Table VI), and one may reasonably doubt that the
monohedra studied are close enough to tricriticality
to represent the desired asymptotic forms accurately.
To the extent that the numerical results are more
sensitive to the value of the dilution activity z than to
the temperature, the question is somewhat academic.
Nevertheless, it is conveniently answered by using
the values of P~ and Pq, as calculated directly from
the linearized recursion relations at the tricritical
fixed point, to fit the functions m, o+( T) and

mq o+(T), which are fairly easy to compute accurate-
ly. For z =20 the form

within 2 or 3/o of T,. Since the leading correction to
scaling exponent, y6, is moderately large at d =2, this
conclusion is probably also correct for real systems.

VI. SUMMARY AND CONCLUSIONS

To conclude, a brief summary of the main results
obtained is in order. In Part I' a Migdal-Kadanoff-
type recursion relation' was applied to a general
spin-1 Ising model. The resulting global phase dia-
gram was elucidated for d =2 dimensions. In this
part general dimensionality, d, has been considered.
The renormalization-group fixed-point structure is
found to be identical for all values of d; a brief dis-
cussion of the consequent failure of this renormaliza-
tion group to predict a crossover to mean-field
behavior for d =3 or 4 was presented. This problem
is general for real-space renormalization-group
schemes and deserves further attention. Results for
d =1+e with ~ small have been found to provide a
numerically useful link to the exact results available
for d =1. The behavior of the tricritical exponents as
a function of dimensionality is surprisingly irregular
for d =2.2, a phenomenon found to reflect a sensi-
tivity to the close approach of nonphysical fixed
points lying within the complex plane. This indicates
the circumspection with which results obtained from
real-space renormalization-group calculations should
be evaluated.

A dilution field introduced into the Hamiltonian
may be adjusted to tune the tricritical exponents to
better agree with previously calculated and conjec-
tured values for d =2." '9 Using the original and
modified recursion relations the characteristics of the
three-phase monohedron have been studied. Signifi-
cant differences from classical theory are predicted:
the monohedron is almost "flat, " except very close
to the origin, and the points 0+ and 0, coexisting
with the central or symmetry point 0, lie close to the
limiting end points E+ and E (see Fig. 4 and Table
V). It is encouraging that the leading tricritical ex-
ponents, which agree quite well with conjectured
results, and the overall shape of the monohedra
depend only fairly weakly on the added dilution field.
However, the nonleading tricritical exponents and,
especially, the relative positions of the critical end
points depend strongly on the degree of dilution.
These parameters should be universal quantities and
such dependence on a simple property of the Hamil-
tonian highlights the inadequacies of the simple
Migdal-Kadanoff type of renormalization-group
schemes. It should be recalled, however, that, as
demonstrated in the Appendix, the renormalization-
group schemes employed here are exact for Berker-
type hierarchical lattices": thus our calculations ex-
pose the degree of nonuniversality displayed by such
nontranslationally invariant (or fractal'o) systems.
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And, finally, our calculations provide some support
for the hope that, by using the freedom to adjust the
exponents to take optimal values, the asymptotic
thermodynamic functions may be predicted more
reliably.
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APPENDIX: REALIZATION OF THE MIGDAL-
KADANOFF RECURSION RELATIONS ON A

HIERARCHICAL LATTICE AND THE
INTRODUCTION OF FIELDS

As pointed out by Berker (see also Forgacs), " one
can construct special hierarchically structured lattices
or pseudo-lattices for which recursion relations of the
Migdal-Kadanoff type constitute an exact renormali-
zation group. Here we discuss the renormalization-
group transformation of such pseudo-lattices under
the Migdal-Kadanoff scheme with particular reference
to single-site or field terms. Thereby we will

motivate the recursion equations utilized in Secs. IV
and V for the Hamiltonian (4.1), (describing the
spin-1 model with a "dilution" field) and establish
their realizability.

The particular hierachical lattice structure which
realizes the two-step Migdal-Kadanoff scheme of
one-dimensional decimation or dedecoration" fol-
lowed by a bond-moving transformation, is most
easily visualized by starting from a single bond and
iterating the renormalization group in reverse. (The
same procedure may be used for the alternative
scheme [(i), (ii)] discussed in Sec. I.) In the (ap-
proximate) application to a d-dimensional hypercubic
lattice with a renormalization of the linear scale by a
factor b, the bond-moving step groups a set of
p = b ' parallel bonds to form a single new, renor-
rnalized bond. Thus on reversing the process the sin-
gle starting bond is replaced by a set of p equal, paral-
lel bonds linking the two original terminal sites. Re-
versal of the decimation step then corresponds to
decorating each of the p parallel bonds with (b —1)
new sites coupled equally in linear sequence resulting
in a total of pb = bd riew bonds. Repeated iteration of
this procedure for each new bond generates an infin-
ite pseudo-lattice, which might be called a "Berker
lattice"; it has a hierarchical structure characterized
by the two independent parameters b and p. In prin-
ciple both b and p should be integral but, as will be

seen, the recursion relations extend naturally to gen-
eral values so corresponding to a continuous effective
dimensionality d = II +lnqp. 2o

The zeroth level of the hierarchy, Io, comprises all
lattice sites of coordination number qo = 2. At the
next or first level, I~, the coordination number of the
sites is q~ =2p. The nth level, I„, contains all sites of
coordination number q„=2p". The number of sites
in I„, per bond of the infinite structure, is
(b —I )/b"+'p" It. is because the infinite lattice con-
tains (for p ) I ) infinite sets of sites of unbounded
coordination number that true phase transitions can
occur at positive temperature in contrast to the simi-
lar "truncated tetrahedron lattice" introduced by Nel-
son and Fisher. '3

Now at each site i let there be a "spin" variable s~

which might be a simple Ising spin, as in our explicit
calculations, but which may equally well be any
discrete or continuous type of variable. Let j„(s),
for IM, =1,2, . . . , represent various single-site or
field terms and k„(s,s'), for v =1,2, . . . , represent
coupling terms between nearest-neighbor spins. In
our case we have jt(s) = s, j2(s) = s2, and

k&(s, s') =ss', kq=s s, and k3= —'(s s'+ss' ).
Then we consider the general class of Hamiltonians
given by

$ H, „j,(s, )+ g QK„k„(s,,s, ) .
ga n 0 iCl„v (iJ)

(Al)

In order to carry the information about the renormal-
ization of the free energy is also useful to include a
"constant" term, ko —= l. Note particularly, that we
allow for fields, 0, of different strengths on dif-

p, ,n

ferent levels of the hierarchy, even though we sup-
pose all bonds represent identical couplings, K„, in-

dependent of the levels of the hierarchy to which the
terminal sites belong. (Clearly, at the cost of even
further loss of the restricted translational invariance,
one could generalize to allow for K couplings. )

v, n, n

Now define the renormalized fields and interac-
tions obtained by the decimation or dedecoration of a
linear chain (the case p =- I) by a scale factor b as23

Kv -=K„~((H, ,}, (K,}),
H~, -=Hv((H, ,},(K„}) . (A3)

Note that H~o and E„can be computed in terms of
the bth power of the appropriate transfer matrix or
integral operator. If the eigenvalues of this operator
are A, ((H„O}, (K„}), r =0, 1, 2, . . . , the transforma-
tion can clearly be expressed as a weighted sum on
r ~0 of the powers (A, )». This clearly provides a
natural extension to arbitrary b.

The exact general recursion relations of the
Migdal-Kadanoff type renormalization group for arbi-
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trary b and p can now be written compactly as

K„' =pK~([H„,}, [K,}), (A4)

In any event it is not hard to check for the hierar-
chical lattices that when (AS) holds the special as-
signment

H,'„=p"+'[Hv, ((H, ,}, [K„})-H„,]+H„„„,
(As)

r (p p)—(rp)" + (1 —r)p
"+'

f„,„=-f.=
p rp

(A9)

H„„=f„„H„with H„—= H„o (A6)

where, as the thermodynamic conditions, i.e., the
fields, and couplings, H„and K are varied the fac-

V

tors f„„remain fixed. Indeed it is easy to verify that
the "standard assignment"

f =f' —=p" (A7)

is, for any given p, , preserved under the renormaliza-
tion-group recursion relation (AS). This assignment
is the one that corresponds to the usual implementa-
tion of the Migdal-Kadanoff-type schemes which we
have used for the fields D and H throughout this pa-

per. ' Evidently the fields at the nth level then in-

crease exponentially in direct proportion to the coor-
dination number q„.

In general, any assignment differing from (A7) will

not remain invariant under renormalization. However,
if for some p, = p, , with H„- 0

—= H, the special condition

H —= H ([H„},(oK„})=rH (A8)

is satisfied, another invariant choice is possible. This
condition, in which the factor r is supposed fixed, in-

dependent of all the H„o and K„, is motivated by
what happens when a dilution field is introduced in

the spin-1 Ising model we have been addressing. It is

then found that (AS) holds generally with r = 1. The
origin of this simple result is that dilution, by remo-
val of a spin at a site i on a one-dimensional chain,
yields essentially the identical decoupling of the ter-
minal spins as does the occurrence, already allowed
for, that the spin i is in the state with s; =0. Thus
the only effect of the dilution field is to reweight the
zero spin state relative to the s&

= +1 states. Indeed
on a standard, uniform space lattice the Hamiltonian
(4.1) with dilution maps onto the original, undiluted
Hamiltonian (1.1) with transformed interactions
(J,K, D,H, H2) = (J,K,D + DO, H, H2) where

D, = —q ln(1 +z).1

for n =0, 1, 2, . . . . The second relation follows by
considering the association of the single-site terms
with the bonds at each level of the hierarchy and not-
ing that sites of level n +1 become the new sites at
level n. Thus a field H„o, provided equally by the
sites at each end of every bond, is associated with
each bond, while a field H„„—p"H„o remains on
each site in I„during the dedecoration process.

Now we are at liberty, in selecting models, to
choose the values H„„at the nth level of the hierar-

chy in any convenient fashion! To this end it is na-
tural to set

where p is arbitrary, is invariant under the recursion
relation (AS) which then reduces to

H„'„=f„pH~O =f„rpH„o-
or equivalently, simply to

H =rpH

(A 10)

(Al I)

u =exp[ —(J+K —D —H)/q]

v =exp[ —(J + K D+ H)/q]—

w =exp[(2H +H2)/q]

x =exp[ —(J+K —2D)/q]

y =exp( —2J/q), z =exp(2P/q)

(A12)

(A13)

(A14)

(A IS)

(A16)

Then the recursion relations become z' = z, reflecting
the invariance of the dilution field, and, recalling that

p bd-1

[wu+xu(1+z) +yu]'
Q

[ w2 +y2 + u2(1 +z) ]I~2[ w 2 +y2 + v2(1 + z) ]P~2

(A17)
[uy + ux (1 + z) + uw ']&

[ w'+y'+ u'(1+ z) 1'"[w '+y'+ u'(I + z) ]&"

(A18)

w2+y2+ u2(1+z)
w +y +u (1+z)

[u +x (1+z) +1t ]r
X

[w +y +u (1+z)] [w +y +v (I +z)]~
(Azo)

[ wy + w 'y + u u (1 + z) ]~

[w +y +u (I +z)]~ [w +y +u (I +z)]~
(Azl)

There is also an independent relation, which we do

Evidently if one chooses p so that rp = 1, the spe-
cial field H becomes a renormalization-group invari-
ant (corresponding to a fixed marginal operator).
For our spin-1 model with r =1 for dilution, it thus
suffices to take p = 1 to obtain an invariant dilution
field. This then corresponds to the rather natural as-
signment f„=1 (all n) corresponding to choosing the
same dilution field, H =—P, at all sites whatever their
level in the hierarchy! For the other fields in the
model, namely, H and D, for which the one-
dimensional recursion relations do not have the, spe-
cial form (AS), we retain the standard assignment (A6).

It is appropriate finally to record explicitly the re-
cursion relations for the dilute system which we actu-
ally utilize. It is convenient to introduce the notation



2840 JULIA M. YEOMANS AND MICHAEL E. FISHER 24

not quote, for the "constant term" in the Hamiltoni-
an which is needed to determine the free energy, etc.

It is worth remarking that if the dilution field had
been introduced with the standard assignment (A7)
its recursion relation would have been z' = z~ while
(A17) to (A21) would not change. Fixed points

would then be: (a) z'=0 which clearly yields the ori-
ginal, undiluted results; (b) z" =1, which is unstable
but has the new exponents reported for z =1 in the
invariant case; and (c) z'= ~, which, by a change of
variables as z ~, can be shown to yield essentially
the same results as z =0.
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