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Macroscopic solitons in thermodynamics
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We examine semiclassically the P theory in three space dimensions, and relate the cir-
cumstances which allow its macroscopic kinks to arise spontaneously in the system.

Solitons have gained a central position in many
branches of condensed-matter physics. ' They ap-
pear for example in the treatment of incommensurate
systems, as textures in liquid He, and as the
basic ingredient of a microscopic theory of superfluid
He."The possibility that solitons work as Bloch

walls, breaking up a given system into locally ordered
domains, has also been considered. ' Here, we

study the reason why macroscopic planar solitons can
nlturally sprout in the thermodynamics of three-
dimensional fluids. To this purpose we analyze the
kinks described by the Hamiltonian density
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in three space dimensions. @ is a real boson field,
and $ —@ symmetry is spontaneously broken.

As noticed by Krumhansl and Schrieffer, ' in one
dimension, ~here the kink has finite energy, it does
occur in thermodynamics at every temperature.
Three-dimensional solitons are, on the other hand,
infinite sheets of infinite energy, and, at first sight,
one may think they do not play any thermodynamic
role. However, the presence of a soliton induces
modifications in the fluctuation spectrum, and the
consequent change of entropy gives life to the macro-
scopic sheet, above a critical temperature T, (h.).

Our aim is to verify the existence of this critical
temperature and to compute it in a semiclassical
scheme. At temperatures larger than T, (h. )
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where F„„=Oand F„i= E„Iare, respectively, the
vacuum and the soliton energies; F0xc is the vacuum
excitation free energy, whereas F,'„, is the excita-
tions free energy on the state that contains a kink.
This decomposition F„i+F,„,has been done in Ref.
10. Whenever inequality (2) holds, the macroscopic
sheets are statistically favored and the system goes to
a phase of solitons.

The analysis presented below, although showing
the spontaneous generation of planar solitons, does
not yet provide a clue to the problem of counting sol-

/go| = tanh
m mx

2

represents a soliton at rest, parallel to the (y, z) plane.
In the classical theory, the energy it contains per unit
of area is
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Dashen, Hasslacher, and Neveu" (DHN) and
Goldstone and Jackiw' carried out the semiclassical
quantization of the one-dimensional version of Ham-
iltonian (1). This semiclassical approach is reliable
for small values of h, (X « mz in one dimension,
and h. « 1 in three dimensions). By following the
method of DHN we computed the first quantum
correction to o.,l„, in three space dimensions:
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The three-dimensional @4 theory is not superrenor-
malizable, so that coupling-constant renormalization
is an additional complication in getting O-q„,„,. The
numerical results we present further are not much af-
fected by the quantum correction, because we limit
ourselves to the region ) « 1, where the semi-
classical scheme can be trusted.

Before continuing to analyze the soliton thermo-
dynamics, we define the theory in a box of volume
V = AL, where A is an area parallel to the soliton

itons. To know how many kinks exist at a given
temperature T ) T, (X), one must know first how
they interact, and this is a very hard nonlinear prob-
lem. The treatment of separate solitons done here
certainly holds in a small vicinity of the critical point,
as argued by Bak et al. 3 and Pokrovsky and Talanov, 4

in the context of incommensurate-systems theory.
But unfortunately the number of kinks, such an im-
portant quantity, is still missed.

If x is a particular coordinate, then
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sheet. Let us also consider periodic boundary- condi-
tions.

If no solitons exist, sts„, = +m/JX, and the free en-
ergy will be (as usually, take P =1/ks T)

Lq„+5(q„) = 2sr n (7)
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(6)
because the energy of an elementary particle of
momentum p is (p2+2m2)' 2.

When the system contains one soliton, the spec-
trum changes as follows:

(i) There exist two classes of excitation bound to
the soliton. Let k be a two-dimensional momentum
vector, parallel to the kink surface. The energies of
the bound excitations are } k

~
for the first set, and

(k2+ —m2)'~2 for the second one. Notice that the

first set of bound states is related to the zero-
frequency mode of the one-dimensional theory, and
the other set is associated with the mode of frequen-
cy 43/2m. ""

(ii) The density of states in the continuum is also
modified by the kink. " Let us define q as the excita-
tion momentum orthogonal to the kink surface. q is
the x momentum. Once momenta k and q are given,
the energy of an unbound excitation is
(k'+q'+2m')'~'. The requirement of periodic
boundary conditions implies"

In the semiclassical treatment adopted here, quasi-
particles interact with the soliton, but do not interact
among themselves", so, the excitation's statistical
mechanics is exactly solvable.

We are now in a position to write explicitly the
one-soliton-system free energy, F„]+F,'„,. F„& is the
contribution of the soliton itself (i.e., the one-
soliton-sector free energy before we consider the
fluctuation's contribution)

sol A ( srclass + srquant) (10)
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and U is the contribution of the unbound particles

U = ks T gin(1 —exp[ —P( k~~+ ksl +q„'+2m )'~']}

(13a)

According to Eqs. (7) and (9), the continuum limit
(L,A oo) leads to the replacements

Owing to the change in the excitation spectrum, F,'„,
differs from F,„,

F,'„, =B)+B2+U

where B~ and B2 refer to the two sets of bound states

where n is an integer, and 5(q) is the phase shift of
an unbound excitation with x momentum q, scattered
by the soliton (recall that in this theory there is no
reflection in the kink), " and
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Besides, if m and I are the quantum numbers of y
and z directions, then
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the phase-shift derivative being
(

.d8 = —2 42m 1+-
dq q2 +2m2 2q2 + m2

s

In this limit, the unbound particles contribution can
thus be written as [see Eq. (6)]

U=F„„+F,„,—ksTA Ji dkdq —,+» ln(1 —exp[ —p(k'+q'+2m')'~']}
2sr 3 q" +2m2 2q2+m2 (13b)

Combining Eqs. (10)—(13), one gets the free-energy corresponding to one soliton [Af, ( T) ]:

Af, (T) =(Fso~+Fa«) —(F,«+F,„,) =A [oc~ass+oq»« —ksT(G&+ G2)] (14)
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where Gt(T) and G2(T) are given by
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d k "+
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In Ref. 13, Bishop presents a quite general treatment of one-dimensional-soliton thermodynamics. There is
much similarity between our calculations and those he shows. Notice for example that the fluctuation's contribu-
tion to the soliton free energy, 2 (Gt + Gq), is the three-dimensional analog of the function o., which appears in

Eq. (44) of Bishop's paper.
If one defines s = k', t = k'+

2 m, and r = k'+ q +2 m2, then after integration in q, it follows:
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Now look at the following properties of
G;(T)(i =1,2).

(a) G;(0) =0. This is obvious.
(b) G;(~) = ~. To see that this is true, we ob-

serve that

1 t'2m 2

G, ( T) & g, ( T) = — dr ln [ 1 —exp ( —PJr ) ]4~ »
because (2/n)arctanv'r/2m2 —1 ( I. Hence, proper-

ty (b) holds for G, ( T), since gt(~) = ~. An analo-

gous procedure shows that it also holds for G2( T).
(c) G;( T) are monotonic functions. It is easy to

verify this last property by inspecting the derivatives
dG;/dT

Because G;(T) do not depend on X, properties (a),
(b), and (c) ensure that, for every positive h. , there is

a critical temperature T, (h. ), above which the right-
hand side of Eq. (14) becomes negative. In this situ-
ation the macroscopic kink has enough statistical
weight to arise spontaneously in the system.

Figure 1 shows the function T, (h. ) in the region of
small A. , where the semiclassical'approximation works
well.

One may not conclude that the spontaneous pro-
duction of solitons would lead to a catastrophe. The
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FIG, 1. The function 1/T, for smail values of the cou-
pling constant A..

total number of solitons is in fact controlled by their
own interactions. To gain an insight into this con-
trolling mechanism, let us consider cubic config-
uratiori's of solitons at rest, defined in a cubic box of
volume L3, and having the following properties: (a)
the 1Vth configuration contains 3W solitons; (b) there
are N solitons parallel to each face of the cube; (c)
the distance between any soliton and its nearest
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parallel neighbor is always the same, b =L/N; and
(d) 6 is much larger than the soliton width,
6 )) 1/m.

Before taking into account the interactions among
solitons, the free energy of the Nth configuration
would be 3NAf, (T) =3L3f,(T)/5 (recall that
A = L') No. w, for simplicity, let us suppose that in-

teractions occur only over the lines where solitons
cross. Therefore, the interaction between two per-
pendicular solitons amounts to a positive energy pro-
portional to the length of the crossing line:0.L. Since
there are 3A' crossing lines, the total interaction en-
ergy is 3N'L n =3L'u/5' The.refore, the free energy
of such a system will be

3L (f,(T)/6+u/5 )

This expression is obviously incomplete, because we
had discarded some interactions between solitons
(the interaction between parallel solitons, for in-

stance). But it serves well to illustrate the mechan-
ism which forbids the solitons' collapse. The total
number of solitons is given by 3N0=3L/50, where
bo is the value of 4 which minimizes expression
(17). Above T„ f,(T) is negative, so that, were it
not for the positive interaction term a/h2, we would
have 50='0 (which means No= ~). The role of the
interaction term is thus to keep bo finite, and, as a
consequence, the number of solitons proportional to
the box length. In summary, the quantum fluctua-
tions make the system produce solitons, and the in-

teractions among them forbid the system collapse.
By examining the relativistic Q4 theory, we verified

that macroscopic solitons indeed appear naturally in
three-dimensional systems, by virtue of the distor-
tions they provoke on the excitation spectrum. This
result has probably a quite general character, and can,
we think, be extended to most theories exhibiting
solitons.

In a previous paper, studying the microscopic
theory of superfluidity (the nonrelativistic ~@~

theory), we had already reached the same conclusion.
However, the calculations of that paper suffer from
two deficiencies we overcome here: there, the modi-
fications on the density of unbound state are not tak-

en into account, and the bound-state energies are ob-
tained by means of a variational approach. Besides,
instead of a unique type of kink, that theory has a
continuum family of different solitons, which makes
its treatment more difficult.

Recently, Wallace and Zia' studied the statistical
mechanics of an interface between two discrete ther-
modynamic phases. Their field f, representing the
deviation from planar of an essentially sharp inter-
face, is a field of bound excitations. The $ kink is
analogous to this interface, and our analysis stresses
the need of considering changes in the density of un-
bound excitations as well.

The spectrum modifications caused by solitons are
particularly important in the microscopic theory of su-
perfluidity, "where we noticed a great similarity
between the set of bound excitations and the spec-
trum of liquid 4He, obtained in neutron scattering ex-
periments.

The study of soliton thermodynamics has been
developing rapidly. As an example, we mention the
papers by Maki and Takayama, "which deal with
some one-dimensional theories, including the @4

model, whose three-dimensional version is discussed
here.
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