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The phase diagram of MnP was determined from magnetostriction and 'differential susceptibil-

ity measurements. Data were taken from 4.2 K up to the Curie temperature Tz =290.9 K. The

applied magnetic field HD was parallel to the b axis. The focus of the measurements was on the

upper triple point ( T =121 + 1 K, Ho =—16,5 kOe) where the paramagnetic (para}, ferromagnetic

(ferro), and fan phases meet. The transitions on the para-ferro boundary Ho&(T) and on the

para-fan boundary H~& (T) were of second order. The ferro-fan transitions on the boundary

Hp&( T) were of first order. At the upper triple point, all three phase boundaries were tangent

to each other, and the A, line [composed of the boundaries Ho&(T) and Ho'„(T)] had an inflec-

tion point. These qualitative features agree with those expected at a Lifshitz point (LP}. A

quantitative analysis of the difference Hp&
—

Hp& as a function of T gave a crossover exppnent

@=0.63 +0.04. This value agrees witn the calculated value for the LP. The correspondence

between the scaling axes near the upper triple point and those in the theory of the LP is dis-

cussed. The phase diagram near the upper triple point was also measured as a function of the

angle 8 between Ho and the b axis. The field Ho was in the bc plane, and its c component Ho,
played the role of the ordering field for the ferro phase. The results were interpreted in terms

of predictions for a LP, supplemented by considerations of demagnetization effects. In addition

to the usual parallel differential susceptibility, BMlBHc, the transverse differential susceptibility

was also measured near the upper triple point. Here, the applied dc field Ho was parallel to b,

the applied modulation field ho was parallel to c, and the measured quantity was BM, /Bho. The

transverse susceptibility showed the features expected near a LP. Additional evidence, from

two recent neutron studies, that the upper triple point is a LP is summarized. The global phase

diagram of MnP, the para-ferro boundary near T&, and the screw-ferro transition at T =46 K,
are also discussed.

I. INTRODUCTION

Recent theoretical activity concerning the Lifshitz
point' has stimulated experimental attempts to ob-
serve this multicritical point in a real physical system.
In the present work we describe such an attempt, and
show that the data which we obtained in Mnp are in
agreement with those expected for a Lifshitz point.

Magnetic materials exhibit a variety of magnetic or-
ders. Among them are the ferromagnetic order in
which the magnetization is uniform in space, and the
helicoidal order in which the magnetization varies in
space with a periodicity which is characterized by a
wave vector q. Simple examples in which the hel-

icoidal order is preferred over a ferromagnetic (or an-
tiferromagnetic) order can be constructed by consid-
ering appropriate combinations of competing ex-
change interactions. ' The wave vector q of the hel-
icoidal phase may depend on parameters such as
pressure P-, temperature T, magnetic field H, or ma-
terial composition. For example, the pressure may
affect the relative strengths of the competing ex-
change interactions, resulting in a change of q. The
transition temperature T& from the disordered
paramagnetic (para) phase to the ordered helicoidal
phase will then depend on P. If the ordered phase is
ferromagnetic (ferro), then the para-ferro ordering
temperature T~ also will depend on P. The transi-
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tions at both T& and T~ are assumed to be of second
order.

Consider a magnetic system which has a helicoidal
phase. An interesting situation arises when the wave
vector q can be tuned continuously to zero by chang-
ing the pressure or some other thermodynamic
parameter. In that case, the system possesses both
helicoidal (q &0) and ferro (q =0) ordered phases.
The phase diagram in the TP plane then consists of
(at least) three phases: para, ferro, and helicoidal.
The three phases meet at a triple point. This triple
point divides the A, line into two segments: the para-
helicoidal segment T~ (P), and the para-ferro seg-
ment T~(P). Such a triple point is called a ferromag-
netic Lifshitz point. In addition to the two segments
of the h, line, there is also a phase boundary T~(P)
between the ferro and helicoidal phases. The phase
diagram is sketched in Fig. 1.

The Lifshitz point (LP) was introduced theoretical-
ly by Hornreich, Luban, and Shtrikman. Since then,
considerable theoretical efforts have been devoted to
this multicritical point. As pointed out in Ref. 1,
there are other types of Lifshitz points besides a fer-
romagnetic LP. In general, the ferro phase (q =0)
may be replaced by a phase with q = qo =const.
Then the wave vector q in the helicoidal phase ap-
proaches qo continuously as the LP is approached.
Lifshitz points may also exist in nonmagnetic sys-
tems, such as liquid crystals and crystals undergoing
structural phase changes. More general types of
Lifshitz points than those introduced in Ref. 3 were
also discussed. For present purposes it will be suffi-
cient to consider ferromagnetic Lifshitz points only.

FIG. 1. Schematic for the phase diagram near a Lifshitz
point (LP). Tand Pare temperature and pressure, respec-
tively. The heavy line is the X line between the disordered
para phase and the two ordered phases (ferro and hel-

icoidal). The X line has two segments: Tz(P) and Tz (P).
The light line is the phase boundary T~(P) between the two

ordered phases.

A relatively simple model which exhibits a LP is
that of a simple cubic material with ferromagnetic
nearest-neighbor interaction, and a competing antifer-
romagnetic interaction between next-nearest neigh-
bors along a single cubic axis. ' If J~ and J2 are the
nearest-neighbor and next-nearest-neighbor exchange
constants then mean-field theory gives a LP at
J2/J~ =—0.25, whereas high-temperatures-series cal-
culations for Ising spins give a LP at J2/J~ =—0.27.'
It is noteworthy that the same model with Ising spins
[so-called anisotropic next-nearest-neighbor Ising
(ANNNI) model] has interesting properties other
than the LP.

A more general treatment of the LP starts from a
Landau-type expansion for the free-energy density F,
including contributions from the spatial derivatives of
the order parameter. ' For an isotropic system with a
scalar order parameter M,

P =a2M +a4M~+a6M + .

+~(VM)'+P(V'M)'+
It is assumed that the coefficient P is positive. The
coefficient a is assumed to depend on P, and to
change its sign at P =PI. When .a(P) is positive, a
ferromagnetic order is established. When a(P) is
negative, an helicoidal order is established. The LP
occurs at the pressure Pl. where n vanishes. For this
isotropic example the number of components of q in
the helicoidal phase is equal to the spatial dimen-
sionality d. For anistropic crystals, the number m of
components (for the vector q) may be smaller than
d. Thus, in general, m ~ d. In addition, M may be a
vector with n components rather than a scalar. Thus,
a LP is characterized by d, n, and m.

The allowed types of ferromagnetic Lifshitz points
for different crystallographic structures were dis-
cussed by Hornreich. ' For a (three-dimensional)
orthorhombic crystal, such as the one investigated in
the present work, a ferromagnetic LP should be
characterized by d =-3, n =m =1.

In contrast to the numerous theoretical results for
the LP, previous experimental evidence for the ex-
istence of a LP was scant and tenuous. The difficulty
of observing a LP stems from the insensitivity of the
parameter n, in most materials, to changes. in ther-
modynamic variables such as P. Thus, n must be in-

itially quite close to zero if it is to change its sign as a
function of an experimental variable. In addition,
some promising candidates for observing a LP under-
go a first-order transition from the disordered phase
to the ordered phase (or phases), instead of the re-
quired second-order transition. Among the previous
experimental works on the LP are the measurements
on the uniaxially stressed RbCaF3, which suggested a
tricritical Lifshitz behavior. Very recently, Sinha
et al. ' carried out a neutron study on UAs, and con-
cluded that the transition was near a LP. However,
the observed transition was of first order. Moreover,



2782 SHAPIRA, BECERRA, OLIVEIRA, AND CHANG

the ordered phase (which was commensurate) had a
fixed qo which differed appreciably from the wave
vector q of the competing helicoidal phase. At a true
LP, the transition is of second order, and q qo.

The present work on MnP was motivated by previ-
ous data on this material, which are summarized in
Sec. II. These data showed that MnP possesses ferro
and helicoidal phases which meet the para phase at a
triple point. Although the available data for the
phase boundaries near this triple point appeared to be
inconsistent with a LP, we suspected that a closer
study might lead to the opposite conclusion. Accord-
ingly we have undertaken detailed measurements of
the phase boundaries near this triple point. %e also
carried out susceptibility measurements in an experi-
mental configuration for which characteristic features
of the LP should be observed. Both types of mea-
surements strongly suggested that the triple point was
a LP. A preliminary report was then published. "-

The present paper contains a detailed exposition of
these results, as well as data for the entire phase dia-
gram (i.e., not only near the triple point). The
dependence of the phase diagram on the ordering
field for the ferro phase is also discussed.

In addition to the phase boundaries and susceptibil-
ity data which are presented here, there is now strong
evidence for a LP in MnP from a neutron study of q
in the relevant helicoidal phase, ' and also from
another neutron study of the dispersion curves for
spin waves. '3

This paper is arranged as follows. Some properties
of MnP which are relevant to the present study are
summarized in Sec. II. The experimental techniques
are reviewed in Sec. III. The phase diagram, with
emphasis on the para-ferro-helicoidal triple point, is
presented in Sec. IV. The phase diagram near this
upper triple point is analyzed in Sec. V. Data for the
dependence of the phase diagram on the orientation
of the magnetic field are presented in Sec. VI, In
Sec. VII susceptibility data that show expected
features of a LP are presented. In Sec. VIII we con-
clude by reviewing the evidence for a LP in MnP.

II. SOME PROPERTIES OF MnP

Manganese phosphide has an orthorhombic struc-
ture. Two choices of the orthorhombic axes have
been used in the literature. Here we shall use the
choice a & b & c (a =5.92 A, b =5.26 A, and
c =3.17 A), which is the more common in the recent
literature. MnP is metallic and exhibits several mag-
netic phases which have been the subject of many in-
vestigations for more than a decade. These investiga-
tions included measurements of the magnetiza-
tion i4-16 differential magnetization, ' torque &8 ther-
mal expansion, ' "magnetostriction, ""ultrasonic
attenuation 23, 24 resistivity, 25, 26 magnetoresis-

tance, ' ' ' Bragg scattering of neutrons, "'
spin-wave dispersion curves, '3 3 dependence of tran-
sition temperatures on hydrostatic and uniaxial pres-
sures, ' " and the de Haas —van Alphen effect."

At zero magnetic field MnP undergoes a para-ferro
transition at the Curie point T& =291 K. ' Below Tc,
the ferromagnetic moment is parallel to the c axis,
and the b and a axes are the intermediate and hard
axes, respectively. The transition at Tc is of second
order. The critical behavior near Tc was investigated
by several workers &6, 2&, 24

If H is maintained at zero, a second magnetic
phase is observed at temperatures below T =—47 K.
Neutron-diffraction experiments ' indicate that
this low-temperature phase is a spiral with a propaga-
tion vector q which is parallel to the a axis, and
whose magnitude corresponds to a period of nine lat-
tice spacings approximately. This spiral phase is
known as the screw phase. The local magnetic mo-
ment in this phase rotates in the bc plane as one ad-
vances along the a direction. Pictorial representations
of the magnetic order in the screw phase are given in
Refs. 29 and 30. The zero-field transition at T
(from the high-temperature ferro phase to the low-
temperature screw phase) is of first order. The value
of T is slightly dependent on sample purity. "

%hen a magnetic field H is applied parallel to the b
direction, a second helicoidal phase is observed in a
certain range of temperatures and fields. In this
phase also, q is parallel to a. ' However, the local
magnetic moment does not undergo a full rotation in
the bc plane as one advances along the a direction.
Instead, the moment wobbles about the b direction,
remaining always in the bc plane. " Because the mag-
netic order resembles a fan, the phase is known as
the fan phase.

The salient features of the phase diagram in the
THplane, for H II b, were determined in earlier inves-
tigations. ' '" In Fig. 2 we show our own results for
the global phase diagram. The gross features of this
figure are similar to those observed earlier. Four
phases are present: para, ferro, fan, and screw. The
first three phases meet at an upper triple point (para-
ferro-fan triple point), while the last three meet at a
lower triple point (ferro-fan-screw triple point). A
crucial difference between our detailed measurements
of the phase diagram and the earlier data is that the
phase boundaries near the upper triple point do not
meet at finite angles, but instead are tangent to each
other. The main focus of our work was on this
para-ferro-fan triple point.

Early investigations (e.g. , Ref. 15) showed that the
para-ferro and para-fan transitions are of second or-
der. It is believed that the para-to-ferro transition is
associated with the development of a uniform mag-
netization component parallel to the c axis. As Hde-
creases, this component, M„ increases while the b
magnetization component, Mq, decreases. As H 0,
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FIG. 2. Phase diagram of MnP, for applied magnetic field

Hp parallel to b. These data were obtained from magneto-
striction and thermal expansion measurements on sample 3.
The screw phase is designated as SCR. Some data points
were deleted, to avoid overcrowding.

was grown more than a decade ago in the Lincoln La-
boratory, MIT. All samples were rectangular paral-
lelepipeds, with faces parallel to the a, b, and c crys-
tallographic faces. The linear dimensions, I;, along
the ith crystallographic direction were as follows. For
sample 1: 1, =4.0 mm, lb=3.0 mm, 1, =0.5 mm.
For sample 2: 1, =0.97 mm, lb=2. 67 mm, 1, =0.84
mm. For sample 3: I, =0.9 mm, lb =2.6 mm,
I, =2.6 mm. The shapes of the samples are signifi-
cant because the demagnetizing field (which was im-

portant in some cases) depended, in part, on the
sample's dimensions. It is noteworthy that the recent
neutron Bragg scattering experiments" were carried
out on sample 3.

Measurements of the resistivity p of sample 2 (per-
formed at H =0, with the electric current along b)
gave p(273 K)/p(4. 2 K) =67.

B. Susceptibility measurements

the magnetic moment in the ferro phase becomes
parallel to the c axis. Because the +c directions are
equivalent, one expects two types of domains in the
ferro phase, with opposite signs for M„but with the
same Mb. The para-to-fan transition is associated
with the development of an oscillatory magnetization
component along the c.axis. In the fan phase, the
magnitude of this oscillatory c component increases
with decreasing H. Near both the para-ferro and
para-fan transitions there is a continuous variation of
Mb. All the transitions between the magnetically or-
dered phases (i.e., ferro-fan, ferro-screw, and screw-
fan) are of first order.

Early neutron diffraction data ' showed that at 77
K the magnitude of q in the fan phase corresponded
to a period of order of ten lattice spacings, and that q
was H dependent. This meant that q could be tuned
by changing thermodynamic parameters.

Very recently the spin-wave dispersion curves, co vs
k, were determined at H =0 as a function of T."
For spin waves with wave vector k parallel to a, the
dispersion curves are relatively flat for small k, and
they show a marked dependence on T. The disper-
sion curves for k II a were fitted to a model with two
exchange constants, J~ and J2. This model is similar
to that mentioned in Sec. I. The data led to values of
J2/J~ which were slightly T dependent, but were near
—0.25. Such values for J2/J~ are close to those ex-
pected at a LP (see Sec. I). Moreover, because J2/J~
changes with T, one might expect that at some partic-
ular temperature this ratio will match that at a LP.

III. EXPERIMENTAL TECHNIQUES

A. Samples

The three samples which were used in the present
experiments were cut from one single crystal which

The isothermal differential susceptibility BMI/Bhp
was measured by applying a small oscillatory magnet-
ic field hp (superimposed on the applied dc field Hp)
and measuring the periodic change in a component
MI of the net magnetization 9 of the sample. Two
types of susceptibility measurements were performed:
parallel and perpendicular. By parallel susceptibility
we mean a situation in which hp is parallel to Hp, and
MI =M~ is the component of M along Hp. In this
case, BM&/Bhp=BMtt/BHp. All the data for BMtt/
aHp were taken with Hp parallel to a symmetry axis,
so that M~ was equal to M Thus, the parallel dif-
ferential susceptibility was BM/BHp

By perpendicular susceptibility we mean a situation
in which hp is perpendicular to Hp, and M~ = MI, is
the component of M along hp. This terminology
differs from the standard usage of the term "perpen-
dicular susceptibility. " Ordinarily the differential
susceptibility which is measured is BM~/BHp, and the
terms "parallel" and "perpendicular" refer to the
direction of Hp relative to the easy magnetization
direction. Measurements with a modulation field hp
perpendicular to Ap are not common, and there is no
standard terminology to describe them. Our terminol-
ogy is useful for present purposes.

The measurements of the parallel and perpendicu-
lar differential susceptibilities were performed in two
different laboratories (at USP and at MIT, respective-
ly). The measurement techniques were somewhat
different,

1. Parallel deferential susceptibility

The parallel differential susceptibility BM/BHp was
measured with an ac mutual inductance bridge, simi-
lar to that described by Maxwell. ' The arrangement
included a primary modulation coil, and a set of two
pickup coils wound in opposition and serving as a
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secondary. During the measurements the sample was
placed inside one of the secondary coils. The fre-
quency of the modulation field hp was 1550 Hz, and
its amplitude was 3 Oe. Checks made with frequen-
cies as low as 50 Hz showed that the phase boun-
daries which were determined from the susceptibility
data were independent of the measuring frequency.
The measurements were carried out in a NbTi super-
conducting magnet with a 51-mm-diam bore. The
field homogeneity near the center of this magnet was
0.01% over a 25-mm-diam sphere. The field calibra-
tion was accurate to 1%. The field was read with a
precision of 10 Oe.

Data for BM/BHO were taken between 80 and 150
K. The cryogenic arrangement was as follows. An
insert Dewar (anti-Dewar) consisting of a double-
wall, vacuum-insulated, stainless-steel tube was in-
serted into the bore of the magnet. The inside of
this insert Dewar was connected to the liquid-helium
bath of the magnet by a small tube equipped with a
needle valve which was controlled from the top of
the cryostat. ' An adjustable stream of cold liquid
vapor was produced inside the insert Dewar by con-
trolling the needle valve and by pumping with dif-
ferent speeds on the insert Dewar.

A second Dewar consisting of a long, vacuum-
insulated, double-wall, glass tube was placed inside
the insert Dewar. This glass Dewar was supported
from the top by a stainless-steel tube, as described by
Oliveira and Quadros. 4o A manganin heater was

placed outside this glass Dewar. A 370-0, 0.125-W,
Allen-Bradley carbon resistance thermometer was
also placed outside the glass Dewar, and served as
the temperature sensor for a feedback loop which
controlled the heater. The magnetoresistance of the
carbon thermometer was negligible. By controlling
the stream of helium vapor inside the insert Dewar,
and the heater, the temperature outside the glass
Dewar was held constant to within 0.1 K. The tem-
perature inside the glass Dewar was then constant to
within 0.01 K for periods as long as 1 h.

The primary coil of the mutual inductance bridge
was attached to the outer wall of the glass Dewar, but
the set of secondary coils was inside this Dewar. The
sample was housed in a cylindrical capsule made of
epoxy resin. The capsule fitted snugly into one of
the secondary pickup coils. The temperature of the
sample was measured with a platinum resistance ther-
mometer. Thermal contact between this thermome-
ter and the sample was through strips of "coil foil" '

which were attached to both the thermometer and
the sample by cotton threads and Apiezon-N grease.
Additional thermal contact was through helium gas
which was present in the glass Dewar. The magne-
toresistance of the platinum thermometer was cali-
brated and was corrected for. At the temperatures
and fields which were used, this magnetoresistance
was equivalent to 0.03 K or less.

2. Transverse differential susceptibility

The transverse differential susceptibility was mea-
sured using a set of primary modulation coils, and a
set of two pickup coils wound in opposition and serv-
ing as a secondary. The set of primary modulation
coils consisted of two separate coils which were at-
tached to the outer surface of the tail of a glass
Dewar. These two coils were on opposite sides of the
tail. They were connected so that their magnetic
fields (inside the tail and on a line joining the centers
of the coils) were in the same direction. To optimize
the homogeneity of hp, the design of Ref. 42 was fol-
lowed. The dc field Hp was in the vertical direction
(along the axis of the Dewar), and ho was in a hor-
izontal direction.

Each of the two secondary coils consisted of a pair
of coaxial coils which were wound in the same direc-
tion, and which were separated by a smail gap (i.e.,
resembling a pair of Helmholtz coils). The common
axis of the pair was parallel to hp. The sample could
be moved in and out of the gap separating the pair by
changing its vertical position. The entire assembly
of secondary coils consisted, therefore, of two
Helmholtz-like pairs which were wound in opposition
to each other. These two pairs were placed one
above the other.

The susceptibility measurements were performed
by monitoring the imbalance voltage between the two
secondary coils, with the sample in one of the coils.
The imbalance signal was measured with a lock-in
amplifier whose output in the absence of a sample
and at H =0 was adjusted to zero. The phase of the
lock-in amplifier was adjusted so that only the real
part of the susceptibility was measured. (This was
the phase where the voltage from either Helmholtz-
like pair was maximum in the absence of the sample.
A check of the quadrature signal from the sample
showed that it was only 3—4% of the in-phase signal
from the sample, for 88 ( T (140 K. The quadra-
ture signal did not vary appreciably with H. The
smallness of the quadrature signal indicated that
losses caused by the finite conductivity of the sample
had a negligible effect on the results for the T and H
dependences of the susceptbility. ) The frequency
and amplitude of hp were 188 Hz and 4 Oe, respec-
tively.

A major difficulty was the vibration of the primary
modulation coils, which was caused by ac torques.
The torques were related to the fact that hp was per-
pendicular to Hp. To reduce the vibration we used,
the following precautions: (1) The primary coils were
impregnated with epoxy while the coils were wound.
(2) The primary coils were epoxied to the tail of the
glass Dewar. (3) The motion of this tail was reduced
by attaching its lower end to a heavy cylinder which
rested on the ground. With these precautions, the
background caused by the vibration was a small frac-
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tion of the signai from the sample. To eliminate the
smail remaining background, the following procedure
was used. The imbalance signal from the two secon-
dary coils was first measured as a function of Hp,
with the sample in one of these coils. The measure-
ment mas repeated with the sample in the other
secondary coil. The susceptibility of the sample, as a
function of Hp, was then obtained by subtracting the
two traces. The data acquisition was automated, and
the data processing was performed with the aid of a
small computer.

The susceptibility measurements were performed in
a Bitter-type magnet with a bore of 254 mm. The
unusually large bore allowed the glass Dewar to be
tipped by up to several degrees. This option was
used to align Ao parallel to the b axis of the sample.
The measurements were carried out at 88 K, and at
several fixed temperatures between 103 and 146 K.
The data at 88 K were taken with liquid argon inside
the glass Dewar. The higher temperatures were pro-
duced in a bath of Freon 14 whose vapor pressure
was regulated. To achieve temperature stability in
the Freon-14 bath (particularly at the lowest tempera-
tures), a heater was placed at the bottom of the
Dewar. The heat input was sufficient to produce
bubbles in the bath. In addition, the hydrostatic head
was kept small. Temperatures were measured with a
platinum resistance thermometer, which was inside
the liquid bath and close to the secondary coils.

C. Magnetostriction and thermal expansion

Magnetostriction (MS) is the H-induced change in
the sample's dimensions at constant T. Thermal ex-
pansion (TE) is the change in the sample's dimen-
sions as a function of T at constant H. Both types of
measurements were carried out with capacitance dila-
tometers made of copper. ' The sensitivity for the
fractional change in the length of the sample, Al/I,
was between 10 and 10 . We shall use the unit
vector l to specify the crystallographic direction along
which the length l was measured.

As discussed earlier, 44 the sample in our dilatome-
ters is always subjected to a small uniaxial pressure
exerted by the springs which hold it in place. In the
present experiments, this uniaxial pressure was of or-
der 30 bars (the exact value varied from run to run).
The uniaxial pressure was always parallel to l. Near
the upper triple point, no noticeable dependence of
the phase boundaries on the (small) uniaxial pressure
was observed. However, a slight effect of the uniaxi-
al pressure on the measured values of T~ and T was
expected, and will be discussed later.

The arrangement for controlling the temperature
was as follows. The capacitance dilatometer contain-
ing the sample was surrounded by a copper can which
contained helium exchange gas. This inner-copper
can was surrounded by an outer-copper can, and the

space between the two cans was evacuated (P ( 10~
Torr). The entire arrangement was immersed in a
cryogenic liquid. We used liquid helium, liquid nitro-
gen, or Freon 12, depending on the desired tempera-
ture. The thermal contact between the inner-copper
can and the liquid bath was poor. The temperature
of the inner can was controlled by a heater which mas
wound on the outer surface of this can. The heater
worked against the small heat leak from the inner can
to the bath. The temperature was either stabilized
(in the MS measurements), or allowed to drift slowly
(in the TE measurements).

Temperatures above 15 K were measured with a
platinum resistance thermometer attached to the
capacitance cell inside the inner can. The only data
below 15 K were taken at 4.2 K, with helium ex-
change gas between the two cans and with a bath of
liquid helium. Above 15 K, the small magnetoresis-
tance of the platinum thermometer was corrected for
when necessary. The precision of the temperature
measurements in the important region between 77
and 1SO K was 0.02 K, and the accuracy was 0.05 K.
In other temperature regions, the precision and accu-
racy mere better than 0.1 K, except for two data
points near 15 K where the accuracy was 0.3 K.

Two magnets were used in the MS measurements:
a NbTi superconducting magnet with a maximum
field of 90 kOe, and a 12-in. O. S. Walker elec-
tromagnet with a maximum field of 20 kOe. The ad-
vantage of the superconducting magnet was the
higher field. The advantage of the electromagnet was
that it could be rotated so that the direction of Hp
could be varied in one plane. The angular setting of
the electromagnet would be read with a precision of
0.1'. The magnetic field of the superconducting
magnet was known to an accuracy of 0.2S%, and it
was read with a precision of 1.4 Oe. The field of the
electromagnet was known to an accuracy of 0.5%,
and it was read with a precision of 1 Oe. The reada-
bility of the field was important because the data for
hl vs Hp were subsequently differentiated numerical-
ly with respect to Ho, to obtain Bl/BH0. The dif-
ferentiation was performed on a small computer, us-,
ing a linear-least-squares fit to data in a small field
interval centered at the differentiation point.

All measurements of the TE mere carried out in
the electromagnet, keeping Hp constant during each
measurement of l vs T. The data were differentiated
numerically with respect to T, to obtain Bl/BT.

Because the primary purpose of the MS and TE
measurements was to determine phase boundaries
from anomalies in Bl/BHO and BI/BT, no consistent
attempt was made to measure the absolute magnitude
of the change in length. Thus, most results for the
fractional change in length, At/I, or the derivatives
Bl/BHo and Bl/BT, will be expressed in arbitrary
units. In the few instances in which the magnitude
of hl/I was determined in the MS measurements, it
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was found to be in rough agreement with the earlier
data of Ishizaki et al.

D. Demagnetization corrections

In experiments with magnetic materials one must
distinguish between the applied (external) magnetic
field Hp, and the internal magnetic field H. The
internal magnetic field is of greater fundamental sig-
nificance, and is often the only magnetic field which
is discussed in theoretical papers. Also, intrinsic sus-
ceptibilities such as X;,=M~/Hand X~„'= BM~/BH
(i.e., average and differential parallel susceptibilities)
are of greater theoretical significance than their mea-
sured counterparts X =Mug/Ho and X = BM~/BHO.
In ferromagnetic materials, such as MnP, the differ-
ence between Hp and H, and the differences between
intrinsic and measured X's, can be important. To
convert the measured quantities to intrinsic quantities
one must apply demagnetization corrections. In the
present work, such corrections were relatively unim-
portant in some cases, but crucial in others. The
demagnetization corrections will be discussed in con-
junction with the data analysis. In the present section
we only quote some results which will be needed
later. 4'

Consider an ellipsoidal sample of uniform composi-
tion, and assume that the principal axes of the ellip-
soid form a coordinate system in which the intrinsic
susceptibility tensor is diagonal. If a uniform Hp is
applied along one of the principal axes then the mag-
netization M and the internal field H are uniform in-
side the sample, and are parallel to Hp. The internal
and applied fields are then related as

H =Hp —XM

where W is the demagnetizing factor, which depends
on the shape of the ellipsoid and on the direction of
Ho. The measured average susceptibility x =M/Ho
is then related to the intrinsic average susceptibility
X;„=M/H as

(3)
or

If X~„))1/N then x =—1/N. That is, 1/Nis the
upper limit for X . The measured parallel differential
susceptibility X~~ also is related to its intrinsic coun-
terpart X;„by Eqs. (2) and (3), with X replaced by y .
Let a small field hp be applied perpendicular to Hp,
but parallel to one of the principal axes of the ellip-
soid. Then X =BE,/B/t, is related to X;„=BE,/Bh
by the analogs of Eqs. (2) and (3), except that N is
the demagnetizing factor for the direction hp.

If a second-order magnetic phase transition occurs
at H =H(2), then the applied field at this transition
is HO=H(2) +NM, where Mis the magnetization at
the transition.

Consider next a first-order magnetic phase transi-
tion which occurs at H =H(1), with magnetizations
just below and just above the transition equal to M~
and M2, respectively. As a function of applied field,
the transition will commence at Hp =H(1) +NM~,
and will end at Ho =H(1) +NM2. The transition will
thus occur in a finite-field interval

AHO = N(Mg —M)) =—NAM

In this field interval the sample is in an intermediate
"phase, "which consists of a mixture of domains of
the phases below and above the transition.

%hen the sample is not ellipsoidal, the situation is
more complicated because H and M are not uniform
inside the sample. Suppose that the material has a
second-order phase transition which occurs when the
magnitude of H is equal to H(2), or when a particu-
lar component of H is equal to H(2). The transition
in different regions of the sample will then occur at
different values of Hp. If the transition is detected by
measuring a property which is an integral over all re-
gions of the sample (e.g. , total magnetic moment, or
the length of the sample) then the transition will ap-
pear rounded when measured as a function of Hp. In
the case of a first-order transition, the values of Hp
where the transition starts and ends will not be sharp-
ly defined. In addition, the relation between the in-
trinsic and measured susceptibilities is more compli-
cated than Eq. (3).

In spite of these difficulties for nonellipsoidal sam-
ples, it is still possible in many cases to obtain fairly
accurate values for the internal transition fields and
the intrinsic susceptibilities by making approximate
demagnetization corrections. The approximate
corrections are based on expressions for an ellipsoidal
sample and on an average demagnetizing factor which
is estimated from the shape of the sample.

IV. PHASE DIAGRAM FOR H PARALLEL
TO THE b AXIS

A. Global phase. diagram

The global phase diagram (for Ho il b) was deter-
mined from MS measurements on sample 3. The
results are shown in Fig. 2. The phase diagram near
the upper triple point (where the para, ferro, and fan
phases meet) was also measured in samples 1 and 2.
Although the focus of the present work is on the
upper triple point, the transition at T and the phase
boundary near Tc will also be discussed. The lower
triple point (where the ferro, fan, and screw phases
meet) was carefully investigated by Ishizaki er al. '2

Our own data near this point are consistent with
theirs, and will not be described here. However, we
note that all existing data for the lower triple point
indicate that it is an ordinary triple point (not a mul-
ticritical point).
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B. Screw-ferro transition at T

The screw-ferro transition at T was determined
from thermal expansion data on sample 3. The mea-
surements were performed at H =0, with l II b. A
uniaxial pressure of 49 +10 bars was present during
the measurements (see Sec. III C). The transition at
T was of first order, and exhibited a hysteresis. "
The width of the transition was approximately 0.5 K,
and the hysteresis was approximately 0.24 K. The
temperatures at the center of the transition, averaged
for increasing and decreasing T 's, was
T =45.5+0.1 K.

The transition at T is known to depend on uniaxi-
al pressure. ' Correcting for this dependence, we ob-
tain T =45.8 K at zero stress. This value is compar-
able to other published values, although most other
values are higher by 1—6 K. Recent work indicates
that T depends on sample purity, and that this
dependence can be as large as several degrees K.

The screw-to-ferro transition at T is accompanied
by a jump 5lb in the length of the sample along the b

direction. Our data indicate that Slq is negative. In
contrast, Refs. 19 and 20 show a positive Slb. We be-
lieve our sign to be correct, for the following reasons:
(i) The screw-to-ferro transition is accompanied by
an increase in entropy. The derivative of T with
respect to a uniaxial pressure along b is negative. '
Therefore, the analog of the Clapeyron-Clausius
equation gives a negative gib (ii) The .screw-to-ferro
transition occurs also in finite H, where it can be ob-
served in MS measurements. Both our data and
those in Ref. 22 show that this transition is accom-
panied by a decrease in the b dimension.

pars-ferro transition appeared as a X anomaly in
Bl/BT vs T, measured at a constant Ho. The tem-
perature at the anomaly was chosen as T~(HO). In
the MS data, the para-ferro transition appeared as a A.

anomaly in (Bl/r)Hp) r vs Hp. The magnetic field at
the anomaly (defined more precisely later) was
chosen as Hoq( T).

All TE data were taken with l II b. The results at
HO=0 were similar -to those obtained earlier. '

For nonzero Hs, the X anomaly in Bl/tlTdecreased
in magnitude as Ho increased. As a result, only data
at relatively low fields (Hs & 4 kOe) could be used to
determine T~(Hp). In contrast, the para-ferro transi-
tion was easily obtained from MS measurements.
These measurements gave Hp„(T) for all T's except
when (Tc —T) &0.5 K.

Figure 3 shows examples of MS data at 283.8 and
292.8 K. These data are for l II b. At the lower tem-
perature, which is below T~, there is a rounded peak
which is related to the ferro-para transition. (This
rounded peak of Al/I should not be confused with
the sharper X peak of t)l/t)Hs that is discussed later. )
The magnitude of the peak of Al/I in Fig. 3 is rough-
ly 5 &&10~. The MS data for 292.8 K, which is above
Tc, are monotonic in Ho, and show no distinct
feature which can be associated with a phase transi-
tion.

The MS data at 283.8 K were differentiated numer-
ically, to obtain t)l/tIHa. The results are shown in

C. Para-ferro phase boundary near T&

1. Magnetostriction and thermal expansion data

The para-ferro boundary in the TH plane (and for
A ll b) will be designated as either T„(H) or Hq(T).
In the THO plane, this phase boundary will be desig-
nated as T„(Hs) or Ha„(T). This phase boundary
was determined from TE (thermal expansion) and
MS (magnetostriction) measurements. The method
was based on the expectation that the order-disorder
transition would be accompanied by A, anomalies in
the second derivatives of the thermodynamic poten-
tial 4( T,H, P). This potential is the analog of the
Gibbs potential. Because the volume Vis equal to
Bred/BP, the derivatives t) V/t)T and t) V/iIH should
exhibit A, anomalies at the transition. One can also
consider a thermodynamic potential which involves a
uniaxial pressure instead of the hydrostatic pressure
P. Then one expects A. anomalies in the T and H
derivatives of the sample's length l. This was con-
firmed by our experiments. In the TE data, the

0
H, (koe)

FIG. 3. Longitudinal magnetostriction, with Ho II b, at
283.8 and 292.8 K. Here, Ho is the applied magnetic field,
and Al/I is the fractional change in the sample's length I.

The unit vector l specifies the crystallographic direction
along which the change in length is measured.
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The Curie temperature obtained from our 'TE data
was 290.9 +0.1 K. However, as in the case of T,
this value must be corrected for the effect of the
uniaxial pressure (p =49 bars). Using the data in
Ref. 36, we estimate that the uniaxial pressure in-
creased T~ by 0.05 K. Thus, T~=290.85 +0.1 K for
sample 3 at zero stress. This value agrees with pub-
lished values, which range from 290.5 to 291.5 K.

3. Thermal scaling axis

The main purpose of the following paragraphs is to
facilitate a later discussion of scaling axes near the
upper triple point.

The phase diagram of an anisotropic ferromagnet
was considered theoretically by Riedel and Wegner. '
Their discussion includes the case when: (I) there is
a unique easy axis, (2) the hard axes are perpendicu-
lar to the easy axis, and (3) A is in a plane which
contains the easy axis and a hard axis. The results
for this case were recently used to interpret experi-
mental data in NiZrF6 6H20." Here we use these
results to interpret the para-ferro phase boundary of
MnP.

The phase diagram expected from the theory of
Riedel and Wegner is shown in Fig. 7. To facilitate
the comparison with the data in MnP, we have iden-
tified the easy axis as the c axis, and the hard axis as
the b axis. When Hb =H, =0, the transition occurs
at the Curie temperature Tc = Tq(0). For a finite Hb
(and H, =0), the transition occurs at Tb(Hb). The
locus of the points T~(Hb) is a A. line of second-
order phase transitions. This line is in the THb

Hb

"c Tc

FIG. 7. Schematic of the expected phase diagram of MnP
at temperatures we11 above the upper triple point. This fig-
ure is based mainly on the theory in Ref. 4'7. The scaling
axes t and h, at several points on the A, line (para-ferro line)
are indicated.

plane. No phase transition is expected in the pres-
ence of a finite ordering field H, . For small Hb, the
difference ( Tc —Tq) should be proportional to Hb.
This last prediction agrees with the results in MnP
(see Fig. 6).

The critical behavior on the X line is expected to be
Ising-like because the order parameter M, has a sin-
gle component. When H =0, one has the familiar
case in which: (I) M, is proportional to ( T, —T)s
for T just below Tc, and (2) BM,/8H, is ProPortional
to (T —Tc) »for -Tjust above Tc. The available ex-
perimental data for the soritical exponents of MnP, at
H =0, are in fair agreement with these predictions. '

The small deviations from Ising exponents are
presumably attributable to residual crossover effects
from Heisenberg (or XY) to Ising behaviors. Such a
crossover is expected as T approaches T~.

The scaling assumption made by Riedel and
Wegner is that the singular part of the thermodynam-
ic potential, near the X. line, depends on two scaling
variables: (i) the ordering-field variable h„which is
proportional to H, (but with a proportionality con-
stant which may depend on Hb and T), and (ii) a
thermal variable t that measures the "distance, " in
the THb plane, from the ~ line. When Hb=0, the
variable t is the familiar thermal variable, which is
proportional to (T Tc) The—n, o.ne has relations
such as M, ~ I r ls and BM,/BH, ~ r for the critical
behavior on the Taxis.

For a finite Hb, the scaling axis t is no longer paral-
lel to the T axis. This is illustrated in Fig. 7. In par-
ticular, for T « Tc (where the A, line is nearly paral-
lel to the Taxis), the t axis which is expected from
Ref. 47 is nearly parallel to the Hb axis. Then, to a
good approximation, t is proportional to Hb —H&( T).
Thus, at T (& Tc, one expects that the critical
behavior in the THb plane will be governed by rela-
tions such as M, cc [H„(T) Hb js and BM,—/BH,
~ [Hb —H), (T)] '.

The preceding discussion, which was based on the
early work of Riedel and Wegner, must be modified
in light of more recent theoretical developments.
Within the scaling theory, the direction of the t axis
is not uniquely determined. At a given point on the
A. line, the direction of the t axis can be chosen to be
parallel to any direction in the THb plane, with the
exception of the direction of the tangent to the X

line. ' All such nontangent directions will lead to
the same asymptotic critical behavior (i.e., very close
to the h. line). However, the range of validity of the
scaling laws will depend on the choice of the t axis.
An optimal choice for t will maximize the range over
which the scaling laws are obeyed. Such an optimal
scaling axis is, in principle, obtainable from a
renormalization-group calculation by eliminating the
appropriate redundant eigenoperators. " In the ab-
sence of such a calculation, the optimal choice for t is
not known, except at the Curie point where the sym-
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metry with respect to reversal of Hq selects the Taxis
as the optimal direction. As far as we know, the op-
timal thermal axis for the present problem has not
been calculated. Nevertheless, we expect that for
T « T~, the choice of the t axis as parallel to the
Hb axis will lead to a comparatively wide range over
which the scaling laws will be obeyed. In any case,
such a choice for the thermal scaling axis will certain-
ly lead to the correct asymptotic critical behavior.

Finally, it should be remarked that all scaling axes
considered in the present paper are linear scaling
axes.

D. Phase boundaries near the upper triple point

Phase boundaries from parallel differential

susceptibility in sample 1

The parallel differential susceptibility was measured
in sample 1, with Ho II b. Figure 8 shows several
traces of X = BM'/8Hp vs Hp, taken at different
temperatures. Curve a, for T =123 K, is typical for
temperatures above 121 K. At these temperatures
the sample is in the ferro phase when Ho & Hog, and
in the para phase when Ho & Ho~. In the ferro
phase, X~ is positive and is nearly independent of Ho.
The positive X corresponds to an increase of M~
with increasing Hp (in the ferro phase). This'is attri-
buted to the rotation of the magnetization in a single

ferromagnetic domain toward the direction of Ho.
This rotation is completed when Ho reaches Ho~.
Thus, the ferro-to-para transition is marked by a ra-

pid decrease of X with increasing Ho, which leads to
a "shoulder" in the susceptibility curve. The transi-
tion field Ho~ was chosen as the intersection of a
tangent drawn at a field just below the shoulder with

the tangent at the inflection point just above the
shoulder.

The curves b—d in Fig. 8 are for temperatures
below 121 K. Each of these curves exhibits a sharp
peak at Ho= Ho~, and a "shoulder" at a higher field
Ho'~. The field Hoq is identified as the ferro-fan tran-
sition field. The field Hp'~ is identified as the fan-
para transition field. Our method for choosing Ho'~ is
illustrated in the inset of Fig. 8, and is similar to that
in the inset of Fig. 4.

Figure 9 shows the phase boundaries obtained
from the data for X, taken on sample 1. Also
shown in this figure are the phase boundaries ob-
tained from the MS data on sample 2, which are dis-
cussed in Sec. IVD2. Note that the ordinate is the
applied magnetic field. The demagnetization correc-
tions will be discussed later. Figure 10 shows an ex-
panded view of the results in sample 1 for tempera-
tures near the upper triple point.

Besides the transition fields, some other features of
the susceptibility data are noteworthy: (i) The value
of X~~ in the ferro phase is nearly independent of Hp
andof T, for 80& T&150K. (ii) For afixed T

MnP

~ IB-
O

O

CL
CL

I

l6
H, {koe)

FIG. 8. Dependence of the measured parallel differential
susceptibility BMs/BHp on applied magnetic field Hp. The
four curves are for a, T=123.0 K; b, T=113.8 K; c,
'1=107.6 K; and d, T =104.0 K. The inset shows our
choice for the transition field Hpg.

IO—
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80 I00 I 20
T(K)

IOO I 60

FIG. 9. Phase diagram near the upper triple point. The
experimental points are from parallel differential susceptibili-

ty data on sample 1. Some additional experimental points
were deleted, to avoid overcrowding. The solid curves are
the smoothed results for sample 2, which were obtained
from magnetostriction data, and which are shown here for
comparison.
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below 121 K, the susceptibility X" in the fan phase is
lower than that in the ferro phase, and it decreases
with increasing Hp (except for a slight increase just
below Hgq), (iii) For a given Hp, the susceptibility
X in the fan phase increases with increasing T.
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FIG. 10. Expanded view of the phase diagram of sample
1 near the upper triple point.

2. Phase boundaries from MS data for sample 2

Magnetostriction measurements on sample 2 were
performed between 77 and 152 K. Data were taken
for two experimental configurations: (1) the longitu-
dinal configuration, Hp II l II b, and (2) the transverse
configuration, Hp ll b and l II c. The data for the longi-
tudinal configuration were taken in a superconducting
magnet (maximum field =90 kOe). In the transverse
configuration, the magnetic field was produced by an
electromagnet (maximum field is equal to 20 kOe).

Examples of MS data for T ( 121 K are shown in
Figs. 11(a) and 12(a). Part (b) of each of these fig-
ures shows the corresponding derivative Bl/BHp
The ferro-fan transition at Hp~ is clearly identified by
the sharp spike in Bl/BHp. This spike is positive for

(a) (a)

tll

O

(b)

O

O

O

I

IO
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I

20 l4
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(6
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FIG. 11. (a) Longitudinal magnetostriction Al of sample

2, measured at 77.5 K with Hp parallel to the b axis. (b)
The derivative Bl/BHp obtained from part (a).

FIG. 12. (a) Transverse rnagnetostriction b l of sample 2,
measured at 107.4 K with Hp II b and l II c. (b) The deriva-

tive 81/BHp obtained from part (a).
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the longitudinal configuration, and negative for the
transverse configuration. The fan-para transition, at
Hp&, is marked by a h. anomaly in Bl/BHp vs Hp.
Our choice of Hp'~ was similar to that in the inset of
Fig. 4.

At temperatures well below 121 K, the transition
fields Hp~ and Hp' ), were well separated from each
other. The two transitions were then easily resolved,
even though the magnitude of the A. anomaly at Hp'~

was small in comparison with the spike at Hp~. How-
ever, for T not far below 121 K, the two transitions
were close to each other, and the A. anomaly was less
readily resolved. One advantage of the transverse
configuration (l ii c) was that the )t anomaly was
resolved even at T's which were close to 121 K,
This was not the case for the longitudinal configura-
tion.

An example of MS data above 121 K is shown in
Fig. 13(a). Figure 13(b) shows the corresponding
derivative Bl/t)Hp. This derivative exhibits a it ano-
maly at the ferro-para transition. The transition field
Hpg was chosen as in the inset of Fig. 4.
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FIG. 14. Phase diagram of sample 2 near the upper triple
point. These results were obtained from MS measurements
with Hp II b, and with I parallel to either b or c.

The phase diagram obtained from the MS data in
sample 2 is shown in Fig. 14. An expanded view of
the results near the upper triple point is shown in
Fig. 15. A still more expanded version of the phase
diagram (not shown) indicates that the temperature
at this triple point is T, = 121 + 1 K.
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FIG. 13. (a) Longitudinal magnetostriction Al of sample
2, measured at 140.4 K with Hp parallel to the b axis. (b)
The derivative Bl/BHp obtained from part (a).

FIG. 15, Expanded view of Fig. 14 near the upper triple
point.
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3. Phase boundaries from MS data for sample 9

The global phase diagram for sample 3, as obtained
from MS data, is shown in Fig. 2. Figure 16 shows
an expanded view of these results near the upper tri-

ple point. For comparison, the results for samples 1

and 2 are also indicated in this figure. Note, howev-

er, that none of the results in Fig. 16 were corrected
for demagnetization effects, and that these correc-
tions are slightly different for different samples. The
demagnetization corrections are discussed in Sec.
IVD4.

4. Demagnetization corrections
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FIG. 16. Phase diagram of sample 3 near the upper triple

point, as obtained from MS measurements with l II b or l II c.
Also shown are the smoothed results for sample 1 (obtained
from susceptibility data), and for sample 2 (obtained from
the MS data with l II c).

The demagnetization correction depends on the in-
trinsic susceptibility and the demagnetizing factor.
Consider the ferro phase and assume that Ho is paral-
lel to b. For 50 & T & 108 K, the intrinsic suscepti-
bility xs = MslHs is nearly a constant, and is approxi-
mately 2.2 x 10 ' emu (Refs. 14 and 15). Our own
data for the ferro phase show that Xb is also nearly
constant between 108 and 150 K. In the fan phase,
Xb is not a constant. Nevertheless, between 77 and
150 K this susceptibility varies only between 2,2
x 10 ' and 2.6 x 10 ' emu approximately. " Thus,
the values of Xq do not vary greatly on the phase
boundaries in Figs. 8, 9, and 14—16.

Using the physical dimensions of our samples, we
obtained the following rough estimates for the
demagnetizing factor: N&

——1 for sample 1, Nq =—1.3
for sample 2, and Nq =—2.3 for sample-3. As a check,
we also estimated Nq from the width AHO of the

screw-fan transition at 4.2 K. Here, we assumed that
WHO was caused by demagnetization effects. Using
Eq. (5) and the known magnetization discontinuity
~M, we obtained Nq =—1.2 for sample 2 and N& =—2.1

for sample 3.
Using these numbers and Eq. (2) we estimated that

for 77 & T & 150 K, the internal magnetic fields H~,
H~, and H~ were lower than the corresponding ap-
plied fields by 2—3'lo for samples 1 and 2 and 5—6'/o

for sample 3. These demagnetization corrections are
relatively small. Also, although the demagnetization
correction (expressed as a percentage of the applied
field) is not a constant for a given sample, its varia-
tion is small in the TH region of interest.

The demagnetization corrections account for most
of the difference between the applied transition fields
In samples 2 and 3 (see Fig. 16). These samples
were measured in the same laboratory using the same
technique (magnetostriction). However, the applied
transition fields for sample 1 are 2—3% higher than
expected from the results in the other two samples
and the different demagnetizing factors. This
discrepancy, might have been caused by different field
calibrations in the two laboratories, and by the dif-
ferent experimental techniques which were used.

5. Field misalignment

Near the upper triple point, the results for Hp'& and
Hp& are sensitive to small deviations of the direction
of Ho from the b axis (see Sec. VI). More specifical-
ly, the results are sensitive to the presence of a small
c component of Ho, but are insensitive to the pres-
ence of a small a component. A misalignment of,
say, 2' in the bc plane can be important, whereas a
similar misalignment in the ab plane is not. The
strong dependence of some of the phase boundaries
on Ho, (c component of Ho) was not discovered until
after the data in samples 1 and 2 had already been
taken. The direction of Ho in the experiments with
these two samples was known only to within 2'. The
field alignment in the experiments with sample 3 was
much more careful. In the present section we discuss
the field alignment for sample 3, and also the possi-
ble errors which a field misalignment might have
caused in the data for samples 1 and 2.

In those measurements with sample 3 that were
made below 20 kOe, the field misalignment in the bc
plane was less than 0.2'. As shown in Sec. VI, such
a small misalignment had a negligible effect on the
results. Therefore, the data for sample 3 that are
shown in Fig. 16 are free from misalignment errors.

Those data for sample 3 that were obtained above
20 kOe, were taken in a superconducting magnet. In-
itially, the alignment was known only to within 2'.
However, by repeating some of the measurements
below 20 kOe, and comparing the results with the
measured dependence on misalignment (Sec. VI), it
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was concluded that the actual misalignment in the bc
plane was less than 0.5'. On. the basis of the trends
observed below 20 kOe, we expect that such a small
misalignment did not have any noticeable effect on
the results above 20 kOe. Thus, all the data in Fig.
2, for the global phase diagram, are practically free
from misalignment errors.

As discussed later, a field misalignment (in the bc
plane) lowers the measured value of Hoq, but does
not affect Ho~. Thus, the misalignment decreases the
difference (Hpg —Hp]), measured at the same T. In
addition to changing some of the transition fields, the
misalignment also broadens the second-order phase
transitions at Hp& and Ho'~, and makes the transition
at Ho~ less pronounced. When the misalignment in
the bc plane is large enough, these transitions disap-
pear altogether.

Consider Fig. 16. A comparison between the
results for sample 1 with those for sample 3 shows
no systematic differences. In particular, values of
[Hp'q ( T) —Ho~( T) l for these two samples are very
nearly the same. We, therefore, conclude that the
effects of field misalignment on the results for sam-
ple 1 were negligible.

For sample 2, one has to distinguish between the
data with l li c and those with l II b, because they cor-
respond to different settings of Ho. In Fig. 16, the
data for l II c are compared with those for sample 3.
For T above 110 K, the boundaries Hg„( T) and
Ho~( T) for sample 2 have slightly different shapes
than those for sample 3. However, the difference
[Hpg ( T) Ho~( T) ] is nearly the same for both sam-
ples (it is actually slightly larger for sample 2). Based
on the fact that (Hgq —Ho~) decreases when Ho is
misaligned in the bc plane, we believe that the data
for sample 2 (with I II c) were not affected signifi-
cantly by misalignment.

Those data for sample 2 that were taken with l II b

gave slightly lower values for (Hpg —Hp&) than those
taken with l il c. The clearest example of this differ-
ence is shown in Fig. 15. In this figure, Ho~ is practi-
cally the same for l li b and l II c, but Ho'q is approxi-
mately 0.15 kOe lower for l Ii b. It is likely that the
lower Hp& was caused by a small misalignment in the
bc plane. However, other explanations of a differ-
ence as small as 0.15 kOe. are also possible.

The preceding comparisons suggest that the errors
caused by field misalignment were negligible in all
cases, except for the results for sample 2 with l Il b.
In the latter case, the misalignment errors (if any)
were still quite small. An explanation as to why the
misalignment errors in samples 1 and 2 were so small
can be given in terms of the demagnetizing factors,
as follows.

The error in Hp~ that is caused by a fixed angular
misalignment of Ho (in the bc plane) depends on the
demagnetizing factor N, (see Sec. VI A 2). The larger
is N„ the smaller is the error. In our experiments,

the physical dimensions of samples 1 and 2 were such
that N, was comparatively large, for either sample.
The estimated values are N, =—10 for sample 1, and
N, =—6 for sample 2, which should be compared with
N, =2 for sample 3. The large demagnetizing factors
for samples 1 and 2 should have reduced the sensi-
tivity to misalignment, as compared with the sensi-
tivity of sample 3 that is discussed in Sec. VI.

V. DISCUSSION OF THE PHASE DIAGRAM NEAR
THE UPPER TRIPLE POINT

The main question which we address in this paper
is whether the upper triple point of MnP is a LP. In
the present section we show that the phase diagram
provides evidence that the triple point is indeed a LP.
We shall first focus on the qualitative features of the
phase diagram. A quantitative analysis, in terms of a
crossover exponent, will be given later.

A. Qualitative features

The upper triple point is clearly a point where
paramagnetic, ferromagnetic, and helicoidal (fan)
phases meet. This is one of the basic features of a
LP. The susceptibility and MS results indicate that
the para-ferro and para-fan transitions are of second
order, which is another basic feature of a LP.

As shown by Hornreich, a ferromagnetic LP in an
orthorhombic crystal, such as MnP, should be charac-
terized by d = 3, n = m = 1. The known properties of
MnP are consistent with this prediction. The material
has a unique easy axis (n = I), which is the c axis.
The wave vector q in the fan phase has only a single
component (m =1), which is parallel to'the a axis.

The phase boundaries near a LP with d =3,
n = m = 1, were calculated using a Landau-type
theory, "and also from high-temperature series ex-
pansions. The Landau-type calculation is for all
phase boundaries, including the ferro-helicoidal
boundary. The series calculation is only for the two
segments of the A. line, namely, the para-ferro and
para-helicoidal segments. Both calculations show that
the two segments of the A. line are tangent to each
other at the LP. The Landau-type calculation shows
that the ferro-helicoidal transition' is of first order,
and that the line of these transitions is tangent to the
A. line at the LP. The series calculation indicates that
the X line has an inflection point at the LP. Our ex-
perimental results for the shapes of the phase boun-
daries near the upper triple point show all these ex-
pected qualitative features. We also find that the
ferro-fan transition is of first order, as predicted.
Thus, the qualitative features of the data are con-
sistent with a LP.
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B. Crossover exponent

To analyze the data quantitatively, we assume that
the upper triple point is a multicritical point, which
obeys generalized scaling. Under this assumption,
the shape of each of the two segments of the X line
(in the THb plane, and near the triple point) is
described by a crossover exponent P. The assump-
tion of generalized scaling (near the triple point) is
expected to remain valid at the ferro-fan boundary.
Then the shape of the boundary Hi( T) is also
governed by the same crossover exponent. Our pur-
pose is to obtain P from the data, and to compare it
with the predicted value for a LP.

PARA.

(a)

1. Sculing axes

and

H,' H, =W(T, T—) +8,(T, T—)'», —

H), H, = —A ( T —T,) +8—2( T T,)'i4', —

(7)

where ( T,,H, ) is the upper triple point, A is the nega-
tive slope, dHI, /dT, of the tange—nt at the triple
point, and 8I are constants.

In principle, one can fit the phase boundaries to
Eqs. (7)—(9), and thereby obtain 2, 8i, Q, T„and
H, . In practice, we could not obtain reliable values
when all these parameters were allowed to vary in the
least-squares fits. Because our main objective was to
obtain Q, we used Eqs. (7) and (9) to obtain a
simpler equation for a given T below T„namely,

H,'-H, =8'(T, -T)» .

We confine our attention to the THb plane, and in-
troduce two linear scaling axes using the usual pro-
cedure near a multicritical point, ' ' ' We choose
one scaling axis, p, tangent to the phase boundaries
at the triple point. The second scaling axis, t, can be
taken along any direction which is not tangent to the
phase boundaries. That is, any nontangent direction
will lead to the same asymptotic critical behavior. An
optimal choice for the t axis.does exist, as discussed
by Fisher for the case of a bicritical point. '4 Howev-
er, this optimal choice is not known for the present
case. For convenience, we choose the t axis parallel
to the Hb axis. The scaling axes are shown in Fig.
17(a). Under the assumptions made, the shape of
each of the phase boundaries Hi ( T), Hi( T), and
Hl( T) near the triple point is given by

r =constipI'»

Expressing t and p in terms of Hb and T, the follow-
ing asymptotic forms for the phase boundaries near
the triple point are obtained:

= P

FIG. 17. (a) Scaling axes p and t at the upper triple point
of MnF. (b) Scaling axes p~ and p, , at a LP.

Here, 8'= 8i —83 is a constant. Equation (9) con-
tains fewer parameters than any of the Eqs. (7)—(9),
and is more suitable for obtaining $.

Anticipating our later conclusion that the upper tri-
ple point is a LP, we now relate the scaling axes
which are used here to those in the standard discus-
sions of a LP. In these standard discussions, the
phase diagram is in the PT plane, and not in the THb
plane. The scaling hypothesis near a LP is discussed
in Ref. 1, and the phase diagram in the PT plane is
discussed in Ref. 55, among others. As pointed out
by Hornreich, ' the scaling fields p, , and p,~ near the
LP are linear combinations of the physical variables
( T Tz) and (P —Pz—). In Fig. 17(b) we show these
scaling axes schematically. The axis p~ in Fig. 17(b)
corresponds to the axis Pin Fig. 17(a). Also, the op-
timal choice for p, , will correspond to the optimal
choice for t. Our choice for the t axis (parallel to the
Hi, axis) will correspond to some nonoptimal choice
of p, &, but will still lead to the correct asymptotic
behavior.

The formal correspondence between the standard
phase diagram for a LP and the phase diagram in
MnP is given in Fig. 17. We now discuss the physical
origin of this correspondence. In those theoretical
models of the LP that involve competing exchange
interactions, P is a parameter which governs the rela-
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tive strengths of these interactions. In MnP, the ex-
perimental evidence is that a temperature change (at
constant H) leads to a change in the relative

,strengths of the competing exchange interactions. '

Thus, in a sense, the temperature in the case of MnP
plays a similar role to that played by I' in the theoret-
ical discussions. This should not be taken to mean
that a temperature change in MnP is identical in its
effects to a pressure change in the theoretical models.
However, there is a rough correspondence between
the T axis near the upper triple point in MnP and the
P axis in theoretical discussions of a LP.

The thermal axis t for critical point. "-, on the line
Hq(T) was discussed in Sec. IVC3. It was pointed
out that for T (( Tc, the thermal axis can be chosen
to be parallel to the Hb axis. The direction of the
thermal axis t at the upper triple point is the limiting
direction of tas T T,.' " Thus, tis taken to be
parallel to the Hb axis. In theoretical discussions of
the LP, the thermal axis p, , essentially corresponds to
the Taxis. Thus, the Taxis in the theoretical discus-
sions roughly corresponds to the Hb axis in MnP.
Physically, a large Hb opposes the ordering of mag-
netic moments along the c axis of MnP, just as a
high temperature in the usual case opposes magnetic
order.

It should be noted that Eqs. (7)—(10) are based on
the assumption of generalized scaling only. They are
not based on the formal correspondence between
Figs. 17(a) and 17(b), or on the physical explanation
of this correspondence.

+0.006 and -8'=0.031 +0.002. The units for 8'
are such that the difference Hp'& —Hp~ is in units of
kOe when T is in units of degrees K. The quoted
uncertainties are standard deviations. The fit for
sample 1 is shown in Fig. 18. For sample 2 we made
separate fits for data taken in three different experi-
mental runs. For the run in which the MS was mea-
sured with l II c we obtained T, =120.7 +0.2 K,
P =0.633 +0.009 and B"=0.035 +0.003. For the
two runs in which the MS was measured with I II b we
obtained / =0.74 and 0.76, and T, =117 K (for both
runs). We regard the values for the last two runs as
unreliable for the following reasons: (a) The value
T, =117 K is clearly lower than the true value. (b)
Matched pairs (Ho~, Hqq ) were obtained only below
108 K in one of these runs, and below 109 K in the
other. (In the run with l II c, matched pairs were ob-
tained up to 119 K.) (c) There is some evidence that
a small-'field misalignment affected the results with
I II b (see Sec. IV D 5). Turning to sample 3, we
made a fit to all matched pairs obtained below 20
kOe. The fit gave T, =120.0+1.3 K, and
$ =0.66 +0.06.

The fits with T& held fixed at 121 K led to the fol-
lowing results: P =0.61 +0.03 for sample 1;
@=0.62 +0.05 for sample 2 with I II c; @=0.64 +0.03
and 0.65 +0.03 for the two runs with I II b in sample
2; and Q =0.62 +0.04 for sample 3. Here the quoted
uncertainties include the uncertairity in P which

2. Least-squares fits IO—

Least-squares fits were performed in order to ob-
tain $. The fits were to Eq. (10), except that we
used the measured fields Hp~ and Hp~ instead of the
internal fields H~ and H&. The demagnetization
corrections are discussed later. In all the fits we used
only matched pairs (Hot, HO& ) which were measured
at the same T Isolated data po. ints (for either Ho~ or
Ho'q) that did not have matching partners were not
included. Because the data for samples 1 and 2 were
usually taken in pairs, the fits included most of the
experimental points for these samples. However, for
sample 3 there were quite a few data points that had
no matching partners.

Two types of fits to Eq. (10) were made. In the
first, the parameters B', $, and T, were all allowed to
vary. In the second, T, was held fixed, and only 8'
and qh were allowed to vary. Here, we chose T, =121
K, which was the value obtained from the data for
sample 2, The effect on $ of the +I-K uncertainty
in T, was evaluated by repeating the fits with T& held
fixed at 120 and 122 K.

The fits of the first type gave the following results.
For sample 1 (with Ho~ and Hg~ obtained from sus-
ceptibility data), T, = 120.4 + 0.2 K, P =0.625

5
I

+ox

0 gf I

80 90 I 00
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FIG. 18. Least-squares fit of the data for sample 1 to Eq,
(10), with B, T„and @ treated as adjustable parameters.
The ordinate is the difference between the applied magnetic
fields at the para-fan and ferro-fan transitions. The parame-
ters of the fit are given in the text.
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resulted from the +1-K uncertainty in T,.
The results which were quoted above were not

corrected for demagnetization effects. However, our
estimates showed that the error in @ which was
caused by using applied fields instead of internal
fields was smaller than 0.01, in all cases.

%e have also considered the question of whether
Eq. (10), which describes the asymptotic behavior
near the triple point, is suitable for T's as low as 80
K. Suppose that Eq. (10) fails at the lower end of
the range 80—121 K. One then expects that the ex-
ponent @ obtained from a fit over the entire range
will differ from that obtained from a fit over a more
restricted range near the triple point. For this reason,
some checks were made for the dependence of Q on
the minimum temperature T;„which was still in-
cluded in the fit. The two sets of data which were
examined were the set for sample 1, and the set fo'r
sample 2 with 1 II c. It was found that for all 1;„'s
which were below 110 K, the exponent Q was the
same to within several percents. Also, there was no
obvious systematic dependence of @ on T;„. Reli-
able values for $ could not be obtained for T;„
& 110 K because the uncertainty in $ became large
when only a few data points were included in the fit.

Based on the results of the least-squares fits, we
estimate that the crossover exponent is /=0, 63
+0.04.

H, ~0 was obtained experimentally, because large
demagnetization effects complicated the interpreta-
tion of the data.

A. Expected phase diagram near the LP

1. Intrinsic phase diagram

(o) Hb

A qualitative picture for the expected phase dia-
gram in the THbH, space is obtained from Refs. 56
and 57. To translate the theoretical results in these
references to the case of MnP we use the correspon-
dence shown in Fig. 17. We also replace H (the
theoretical ordering field for the ferro phase) by H, .
Finally, we modify Fig. 1 in Ref. 56 in that we draw
the line H~(T) tangent to the two segments of the lt

line in the Hb T plane. This is in accordance with
Refs. 52 and 57 and the experimental data. The
phase diagram is sketched in Fig. 19(a). A sketch of

Discussion

The crossover exponent @ was calculated using an
e expansion, where a =4+(m/2) —d for a LP. The
result, to first order in ~, is"

$= —,
' +[(n+2) 4/(n +)8]~

For d =3 and n = m =1, this gives @=0625 O.ur.
experimental value, @=0.63 +0.04, is in good agree-
ment with this prediction. Thus, the experimental
value for @ is consistent with the interpretation that
the upper triple point is a LP.

VI. PHASE DIAGRAM WITH NONZERO Hc

In this section we discuss the phase diagram near
the upper triple point in the presence of a c com-
ponent of H. This component is the thermodynamic
field which is conjugate to the order parameter of the
ferro phase, i.e., the ordering field for the ferro
phase. The experimental results are interpreted on
the assumption that the triple point is a LP. The dis-
cussion will be qualitative for two reasons: (i) The
existing theory is at an early stage. It consists of cal-
culations based on a Landau-type theory, ' and of
mean-field calculations for the Ising model. 5 (ii)
Only a rough picture of the phase diagram with

FIG. 19. Sketch of the phase diagram near a LP, in the
presence of an ordering field for the ferro phase. (a} Ex-
pected phase diagram for MnP. Here, the ordering field is

H, . The helicoidal phase is inside the "funnel. "
TP~ and

TP2 are lines of tricritical points, which separate the surface
of critical points (upper Part of the funnel) from the surface
of first-order points (lower part of the funnel). (b) Phase
diagram in the standard theoretical coordinate system. All
magnetic fields in this figure are internal fields.
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the phase diagram in the usual theoretical coordinate
system TPHis shown in Fig. 19(b). All the magnetic
fields in Fig. 19 are internal magnetic fields. For this
reason we call the phase diagram in Figs. 19(a) or
19(b) the intrinsic phase diagram. The measured
phase diagram is different because it is influenced by
demagnetization effects.

Figure 19 shows that the helicoidal (fan) phase is
bounded by a surface which has the shape of a non-
circular funnel whose apex is at the LP. The top part
of this funnel, above the lines TP~ and TP2, is a sur-
face of critical points. That part of the funnel which
is below the lines TP~ and TP2 is a surface of first-
order transition points. The lines TP~ and TP2 are
lines of tricritical points.

In Fig. 19(a), that portion of the THb plane which
is bounded from above by the lines H~( T) and
Hq( T) is a surface of coexistence for two ferromag-
netic phases, I'+ and I', with opposite directions for
the magnetization componen:s M, . The phase F+ ex-
ists when H, ~0, awhile I' exists when H, ~0.
These two ferromagnetic phases become indistin-
guishable on the critical line H&, ( T) in the THb plane.
There is no corresponding transition out of the THt,
plane, i.e., the line Hq(T) does not evolve into a sur-
face of phase transitions when H, is added to the
problem. Also, if H, is positive, say, then there is no
distinction between the F+ phase and the para phase,
because the para phase has a field-induced positive
M, . Only when H, =0 can one distinguish between
the para phase (with M, =0) and a ferro phase (with
M, ~0).

Phase diagrams with some similarity to that in Fig.
19 were discussed earlier in the literature in connec-
tion with other multicritical points. Examples are (1)
the phase diagram near the fourth-order point Ao in
Fig. 2 of Ref. 53, and (2) the phase diagram near the
bicritical point of an antiferromagnet in the presence
of a staggered field, which is shown in Fig. 8 of Ref.
58 and in Fig. 22 of Ref. 59. In these examples,
phases with different order parameters meet at a
multicritical point, and one of the thermodynamic
fields is the ordering field for one of the phases.

Consider Fig. 19(b); By taking a cut at a constant
P, below PL, we obtain the sketch shown in Fig.
20(a). In this figure, TP2 and TPq are tricritical
points, which separate the upper portion of the
ferro-helicoidal boundary (line of critical points) from
the lower portion (line of first-order points). Near
T)„ the ferro-helicoidal line, for either H & 0 or
H & 0, has a finite slope. This slope is related by the
Clapeyron-Clausius relation to the jumps in the en-
tropy Sand magnetization M, i.e., (BT/BH) p
=—b, M/hS. A figure which is similar to Fig. 20(a) is
also obtained from Fig. 19(a) by taking a cut at a
constant T, below TI, In this case, the variables T
and H of Fig. 20(a) are replaced by Hb and H„
respectively. The slope (r)Hb/dH, ) q of the ferro-
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helicoidal boundary, at a point on the first-order por-
tion of this boundary, is then related to the jumps
AM, and 4Mb of the c and b magnetization com-
ponents.

2. Demagnetization effects

%e start the discussion of the demagnetization ef-
fects by considering the theoretical phase diagram in
Fig. 19(b), rather than its analog for MnP which is
shown in Fig. 19(a). The reason for this is that only
one of the axes in Fig. 19(b) is a magnetic field,
whereas two of the axes in Fig. 19(a) are magnetic
fields. The more complicated case of MnP will be
discussed later.

FIG. 20 (a) Phase diagram obtained from Fig. 19(b) by
taking a cut at a constant P, below PI. The points TP~ and

TP2 are tricritical points. Transitions above these points are
of second order. Transitions below the points TP~ and TP2
are of first order. That portion of the T axis which is below
T& is a line of coexistence for the two ferro phases: F+ and
F . The magnetic field 0 is the internal field. (b) The
phase diagram obtained from part (a) by taking demagneti-
zation effects into account. Here, Ho is the applied magnet-
ic field. The region (H, F+) is a region of coexistence for
helicoidal and F+ domains, The region (F,F+) is a coex-
istence region for F and F+ domains. For comparison, the
boundary of the helicoidal phase in part (a) is also shown in
part (b) as a dashed curve.
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Near the LP, the intrinsic susceptibility X;,=M/H
is large (see Sec. VII). Moreover, in the ferro phase
there is a spontaneous magnetization. Under these
circumstances, and for a typical demagnetizing factor
(N of order unity), demagnetization effects are im-

portant. To discuss these effects we first assume that
the sample is ellipsoidal. This assumption is relaxed
later.

Consider Fig. 20(a), and focus attention on the
line of second-order transitions, i.e., the portion of
the phase boundary above TP~ and TP~. For a given
T, the applied field Hp(2) at the transition is higher
than the internal transition field H(2). The two
fields are related by Eq. (2).

Consider next a first-order transition from the hel-
icoidal phase to a ferro phase (F+ or F ), i.e., below
the points TP~ and TPq in Fig. 20(a). Let the inter-
nal transition field, for a fixed T, be H(l). As a
function of Hp, the transition will commence at
HO=H(1) +NM~, and will end at Ho=H(1)
+NM~, where M~ and M~ are the magnetizations on
the helicoidal and ferro sides of the transition.
Between these two values of Hp, the sample will be
in a mixed "phase" in which domains of helicoidal
and ferro phases coexist. The ferromagnetic domains
are of the type F+ for Hp )0 and F for Hp & 0.
The coexistence regions for helicoidal and ferromag-
netic domains will be labeled as (H, F+) and (H,F )
The width of each of these regions is

AHp=N(MF —M~) =NUM (12)

This width approaches zero as the tricritical points
TP~ and TP~ are approached. At T = Tl„we have
H(1) =0 and M~=0. Then the region (HF+) ex-
tends from Ho =0 to HO= NM, (T~), where M, (T~)
is the spontaneous magnetization of an F+ domain at
T~. A similar result holds for the (H, F ) region.

In Fig. 20(a), that portion of the Taxis which is
below T~ is a line of coexistence for the F+ and F
phases. When a positive Hp is applied at T & T~, the
F+ domains grow at the expense of the F domains
until, at Ho = NM, ( T), the entire sample is occupied
by the F+ phase. For a negative Hp, the roles of F+
and F are interchanged. Thus, in the THp plane,
the region (F ,F+), where the t.wo ferro phases coex-
ist, is an area instead of a line.

These considerations lead to the phase diagram in
Fig. 20(b). There are five types of boundaries in this
figure: (1) the helicoidal-ferro boundary of second-
order phase transitions, on the upper arch between
TP~ and TPq , (2) the helicoida'l-to-(H, F+) and
helicoidal-to-(H, F ) boundaries, along the line from
TP~ to T~ to TPq, (3) the (H, F+) —F+ and (H, F )
—F boundaries, along the lines TP~ —A and
TPq —A'; (4) the (F,F+) —(HF+) and (F,F+)
—(H, F ) boundaries, along the horizontal line AA';

(5) the (F,F+) —F+ and (F,F+) —F boundaries,
along the lines AB and A'B'. A sharp first-order

transition from (F,F+) to a pure helicoidal phase
occurs only at the point T~.

A comment concerning terminology should be
made. When His zero, the transition at T~ is called
the ferro-helicoidal transition, while the transition at
T& is called the para-helicoidal transition. When H is
nonzero, there is no distinction between the para
phase and a ferro phase. We then refer to the transi-
tions on the arch from TP& to TP~, in Fig. 20(a) or
20(b), as second-order ferro-helicoidal transitions.
The transition at Tj is the first-order ferro-helicoidal
transition.

Figure 20(b) was constructed on the assumption
that the sample was ellipsoidal. If the sample is not
ellipsoidal, H is not uniform inside the sample.
Then, the bouridaries separating the various regions
in Fig. 20(b) are broadened along the direction of the
Hp axis. The horizontal boundary AA' is unique in
that it remains sharp, although its termination points
A and A' will be poorly defined experimentally. The
zero-field transitions, at T~ and T& are, of course,
unaffected by the sample's shape, and they remain
sharp.

Turning to MnP, two of the thermodynamic fields
are the b and c components of H. One then has to
consider demagnetization effects associated with the b
and c directions separately. For the sample which we
used (No. 3, with Nb =N, ), demagnetization effects
for the c direction had a much greater influence on
the measured phase diagram than those for the b
direction. The reason for this was that near the LP
the susceptibility associated with the c direction was
much larger than that for' the b direction.

As a first approximation, we ignore the demagneti-
zation effects for the b direction, and set Hb equal to
the b component of the applied field, Hpb. The ana-
log of Fig. 20(b) is then constructed by replacing
P =const by T =const, T by Hb (which is set equal
to Hpb), and Ho by Ho, . The result is shown in Fig. 21.

If the small demagnetization effects for the b direc-
tion are included, the Phase diagram in the Hpb —Hp,
plane will still be quite similar to that in Fig. 21. The
main changes are (1) slight shifts in the values of
Hpb at Points such as Hp~, Hp'~, TP~, TP~, A, and A',
and (2) a slight broadening of the measured "transi-
tions" on the horizontal line from A to A'.

In Sec. IV D 5 the error in Hp'& which was caused
by a misalignment of Hp was discussed. We return to
this problem briefly. Figure 21 indicates that the area
occuPied by the helicoidal Phase in the HpbHp, Plane
of applied magnetic fields is larger than that in the
HbH, plane of internal fields. This "expansion" of
the helicoidal phase increases with increasing N, .
Also, in the HpbHp, plane the curvature of the phase
boundary at Hp~ decreases with increasing N, . This
means that for a given angular misalignment of Hp,
in the bc crystallographic plane, the misalignment er-
ror in Hp'& will decrease with increasing N, .
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Hob T= CONST.
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FIG. 21. Analog of Fig. 20(b) for the case of MnP.
Here, Hpb and Hp, are the b and c components of the ap-

plied field Hp, respectively. Demagnetization effects associ-
ated with the b direction are not included in this figure.
Each of the lines L~, . . . , L4 indicates a path which is fol-

lowed in a measurement at a constant angular setting of Hp.

I

I5 I8

B. Experimental results

Magnetostriction measurements were made on
sample 3. The data were taken in an electromagnet
which could be rotated. The field Hp was always in
the bc plane, but its direction in that plane was ad-
justable. From the patterns of the MS as a function
of field direction, the angular setting of the elec-
tromagnet which corresponded to Hp II b was deter-
mined to within 0.1'. The angle 8 between Hp and
the b axis was then known to within 0.2'. MS data
were taken in the configurations I II b and l II c.
Traces of the MS were obtained at fixed temperatures
and at fixed angular settings for Hp.

The anomalies of the MS at the transition fields
Hp]( T), Ho&( T), and Hp'„( T), for Ho II b, were
described in Sec. IV. The dependence of the MS
near each of these transition fields on the angle 8 will

now be described.

V)
I—

z.'

2
APPLIED FIELD (kOe)

FIG. 22. (a) Dependence of the magnetostriction hl at
128 K on the angle 8 between Hp and the b axis. The ap-

plied field Hp is in the bc plane. (b) Dependence of the MS
at 284.8 K on the angle 8. These data are for sample 3. In
both (a) and (b) the zero for the ordinate scale is different
for different curves.

Behavior near Hpq

With Hp parallel to the b axis, and for T, & T
& Tc, the MS curve had an inflection point at the
para-ferro transition field Hp~. As 8 increased from
zero, the transition became progressively less pro-
nounced, and it disappeared entirely above a certain
value of 8. For temperatures that were only a few
degrees K above T, = 121 K, the transition was ob-
served only when 8 was smaller than -1'. This is il-

lustrated by the results in Fig. 22(a). In another set
of runs near 285 K, the same general pattern was ob-

served, but a very broad inflection in the MS curve
was still observed at 8 =10'. This is shown in Fig.
22(b). Note that the apparent transition field in Fig.
22(b) decreases as 8 increases.

2. Behavior near Hp]

For 8=0, and when T & T & T„ the ferro-fan
transition at Hp~ was accompanied by a fairly abrupt
change in l. For nonzero 8, the magnitude of the
change in I decreased with increasing ~8~. The value
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of the change in l was larger for / II b. For a given in-
strumental resolution, 8 decreased with increasing
T. Typical values of 8 were 10' at 77 K, and 1 at
115 K.

(h

Q3

a

l2

3. Behavior near Hp~

When Hp II b, and for T & T„ the MS curve had an
inflection point at the para-fan transition field Hp'&.

As 8 increased from zero, the transition became
broader and less pronounced. The apparent transi-
tion field, at the inflection point, decreased with in-
creasing 8. This is illustrated by the higher-field por-
tion of Fig. 23(b). For a given T, an inflection point
in the MS curve was observed only for 8 & O'. The
value of 8' decreased with increasing T. Approxi-
mate values of 8' at typical temperatures were 2.5' at
95.5 K, 1' at 111 K, and 0.5' at 116 K.

4. Boundaries in the HpyHp, plane

Figure 24 shows the locations of the apparent
phase transitions for three representative tempera-
tures. The axes in this figure are components of the
applied (external) magnetic field. Note that the
scales for the two axes are different, and that all the
data points are in a region ~here Hp, && Hpb.

For each temperature, the data points in Fig. 24 lie
on two disconnected branches: (1) the lower hor-
izontal branch, which is the locus of the abrupt jumps
in the MS curves, for various 8's, and (2) the
"arch, "which is the locus of the inflection points of
the MS curves for various 8's.

I

l2
I

l6
Hp {kOe)

20 MnP

SAMPLE

Hob (kOe)

0&& 955 K
9 Oi l025 K

0 III.O K

FIG. 23. Dependence of the MS at 95.5 K on the angle 8.
(a) Results for the configuration l II c. (b) Results for the
configuration l II b. In both (a) and (b) the zero of the ordi-
nate scale is different for different curves.

of Hp where the change in / occurred was nearly in-
dependent of 8. This is illustrated by the data in Fig.
23(a), and also by the behavior near the lower transi-
tion in Fig. 23(b).

For a fixed T, there was a maximum angle 8 at
which an abrupt change in l was still detectable. At
0, the change in /was often 2—3 orders of magni-
tude smaller than the change at 8=0. The value of
8, for a given T, depended some~hat on the resolu-
tion of the dilatometer during the particular experi-
mental run, and it was also somewhat larger for the
configuration / II b than for l II c. The latter observa-
tion might be related to the fact that the magnitude

-1.50
I

-0.75
I

0.75

H„(kOe)
I

1.50

FIG. 24. Observed phase diagrams in the Hp, Hpb plane,
at three temperatures. The coordinate axes are the b and c
components of the applied field Hp. For each temperature,
data points on the horizontal line correspond to discontinui-
ties in the MS curves for different 8's, while data points on
the "arch" correspond to inflection points in the MS curves.
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C. Discussion

1. Results above T,

The theory for the phase diagram near the line
Hpq( T) indicates that the second-order transition on
this line disappears for 8 WO. In spite of this, MS
data taken at a small 8 should still show an anomaly
(but not a singularity) in the derivative Bl/BHp. The
anomaly should become smaller with increasing 8,
The experimental results are in general agreement
with the expected behavior.

2. Magnetostriction below T~

The interpretation of the data for T ( T, is based
on the phase diagram in Fig. 21, in which demagneti-
zation effects are included.

Consider the "transition" from (F,F+) to
(H, F+), at a point between Hp~ and A in Fig. 21. At
this transition: (1) some regions of the sample
change from ferro to helicoidal, and (2) some other
regions change from F to F+. Because the helicoidal
and ferro phases have different properties, a discon-
tinuity in the sample's length l is expected. The
change of some regions of the sample from F to F+
should not affect l because the MS of a ferro region
(measured with I parallel to a symmetry axis) is an
even function of the direction cosines of the magneti-
zation. Thus, the magnitude of the change in l is a
measure of the fraction of the sample's volume
which undergoes a ferro-helicoidal transition. Near
the Hp& axis, the (H, F+) "phase" consists mainly of
helicoidal domains, whereas near the point A it con-
sists mainly of F+ domains. Therefore, the discon-
tinuity in l is expected to decrease with increasing 8.
Similar considerations apply to the "transition" on
the line between Hp~ and A'. Also, from Fig. 21 the
b component of Hp is expected to be constant on the
boundary AA'. The experimental data in Figs. 23
and. 24 are in agreement with these predictions.

For an ellipsoidal sample, the magnitude of Hp, at
the point A (or A') is Hp, (A) =X,M, (F), where

M, (F) is the c component of the magnetization of a
ferro domain at Hp~. For our sample (No. 3), we es-
timate that the average value of X, was approximate-
ly 2.3. To estimate M, (F) we assumed that the mag-
nitude of the magnetization M of a ferro domain was
nearly constant for 77 ( T ( 121 K (which is well
below Tc). The magnitude of M was taken to be
equal to the saturation magnetization at 77 K. Then,
using the data for Mb as a function of H~, ' the mag-
nitude of M, (F) was estimated. This led to an esti-
mate for Hp, (A). Because the point A depends on
temperature (Fig. 21 is for a particular temperature),
the estimate for Hp, (A) was temperature dependent.

Transitions which correspond to points on the line
AA' were observed only for 9 ( 8 . If the sample

were ellipsoidal, the c component of the applied tran-
sition field at 8 should have been equal to Hp, (A).
However, our data show that Hp, for the transition at
8 was larger than the estimated average for Hp, (A),
by a factor of 1.6, typically. We attribute this differ-
ence to the nonellipsoidal shape of the sample, which
caused the internal field H, in some regions to be
smaller than the average over the entire sample. For
these regions, the value of Hp (A) should have been
higher than the average. The high sensitivity of the
dilatometers allowed the transition in these regions to
be detected, even when these regions occupied only a
small fraction of the sample's volume.

Consider Fig. 21. Measurements for fixed 8's cor-
respond to measurements along lines such as
L~, . . . , L4, Moving along L~, a second-order tran-
sition should be observed when the helicoidal-ferro
boundary (between the points Hgq and TP~) is
crossed. This transition should appear as an inflec-
tion point in the MS curve, corresponding to a X ano-
maly in Bl/BHp. The value of Hpp at this transition
should decrease with increasing ~8~. The experimen-
tal data for small 8 agree with these predictions. The
upper portion of each of the "arches" in Fig. 24 is
interpreted as a line of second-order helicoidal-ferro
transitions.

The location of the tricritical points TP~ and TP2
was calculated in Refs. 56 and 57. The theoretical
results suggest that the Iowest portions of each of the
arches in Fig. 24 are below the tricritical points. That
is, the lowest data points on each arch probably cor-
respond to transitions ori lines such as L2 or L3 in
Fig. 21 rather than to helicoidal-ferro second-order
transitions on lines such as L~.

We, therefore, consider the line L2 which passes
through the upper corner of the (H, F+) region. On
each of the two boundaries of this region one expects
a change in the slope of the MS curve. However, the
observation of two distinct changes in slope might be
difficult because: (1) the points where the line L2
enters and leaves the (H, F+) region are close to each
other, and (2) in a nonellipsoidal sample the change
in slope is not sharp. Thus; what might be observed
in practice is a single broad transition. In other
words, when the region (H, F+) which separates the
helicoidal phase from the F+ phase is narrow, one
may observe a single broad transition from the hel-
icoidal phase to the F+ phase. We believe that the
low portions of each of the arches in Fig. 24 corre-
spond to just such broad transitions. However, we
cannot rule out the possibility that mean-field theory
gives a poor estimate for the location of the tricritical
points, and that the low portions of the arches are
still on the second-order boundary from a TP~ to
TP2. Nor can we rule out the possibility that some of
the observed broad transitions correspond to
(H, F+) —F+ transitions on lines such as L3

Consider the line L~, again. In principle, a change
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in the slope of the MS curve is expected when the
boundary between the (H, F+) region and the hel-
icoidal phase is crossed. Experimentally, this "transi-
tion" was not observed. The presumed reasons for
this are: (1) the transition in the nonellipsoidal sam-
ple was broad, and (2) the change in slope was
masked by the relatively large abrupt change in l at
the nearby transition from (F,F+) to (H, F+)

Finally, consider the line L4. In principle, the
"transition" from (F,F+) to F+, on the line AB,
should be associated with a change in the slope of the
MS curve. Experimentally, such a change in slope
was observed in only one experimental run. For this
run, 8 was 90' (i.e., Ao llc), and Twas 77 K. The
observed transition (at the point 8) was broad,
presumably because the sample was not an ellipsoid.

nary ferromagnet. For' such a ferromagnet, the dif-
ferential susceptibility X (measured in the ferro
phase at Hp=0) depends on the response of the fer-
romagnetic domains to an aligning field. ' When the
domains are readily aligned, X is equal to I/N. This
is the usual observed behavior when the modulation
field ho is not too small and when the modulation
frequency is not too high. We expect a similar
behavior in MnP. In this case, X~ plays the role of
X . Thus, we expect that in the ferro phase of MnP,
x' =1/N, .

Therefore, the following behavior of X~ as a func-
tion of Ho is expected, for T, & T ( T~. As Hode-
creases from a high value, X~ increases, until it
reaches the value 1/N, at Hp = Hog( T). For Ho(Hoq, the susceptibility X~ remains equal to 1/N,

3. Phase boundaries belo~ T& 2. Para-fan transition

To summarize, the phase boundaries in Fig. 24 are
interpreted as follows. For a given T, the horizontal
line of data points corresponds to the line AA' in Fig.
21. The upper part of any arch in Fig. 24 corre-
sponds to the line of second-order helicoidal-ferro
transitions, between the points TP~ and TP2 in Fig.
21. The lower part of any arch probably (but not de-
finitely) corresponds to broad transitions on lines
such as L2 in Fig. 21. The locations of the tricritical
points on each of the arches cannot be determined
from the data.

VII. TRANSVERSE DIFFERENTIAL SUSCEPTIBILITY

A. Expected behavior near a LP

In this section it is assumed that the dc field Ho is
parallel to the b axis. The disorder-to-order transi-
tions on the boundaries Ho~( T) and Ho"„( T) are as-
sociated with the development of a long-range order
of the c component of the local magnetization. This
long-range order is uniform (q =0) for the ferro
phase, and oscillatory (q &0) for the fan phase. We
consider the expected behavior for the measured
transverse differential susceptibility X~ = BM,/8ho,
where the applied modulation field ho is parallel to
the c axis, and is, therefore, perpendicular to Ho.

1. Para-ferro transition

The transition on the para-ferro boundary is associ-
ated with a divergence in the intrinsic susceptibility
X~„= 'dM, /dH, . Because of the demagnetization ef-
fects, the measured susceptibility on this boundary is
x~ =1/N,

To describe the behavior of X~ in the ferro phase,
it is useful to draw an analogy to the case of an ordi-

The fan phase is a phase with a finite q. There-
fore, the uniform intrinsic susceptibility X;„does not
diverge at the para-fan boundary Hq (T). The sus-
ceptibility which diverges at H~ is the q-dependent
susceptibility X~„(q) for q = q f( T), where q~(T) is
the wave vector of the fan phase at Hq ( T). Assum-
ing that the triple point is a LP, q& 0 as the triple
point is approached. Then, X~„(q &) X~„(0)—= Xt„
when T~ T,. Therefore, moving along the boundary
Hz ( T), the susceptibility X~„should diverge when
T T,. To zeroth order in e, this divergence is
characterized by the power law X~„a: ( T, —T) ' (Refs.
52, 55, and 62). For a fixed T, the susceptibility X~„

as a function of H should have a peak at H = H&. ' ~ '
The measured susceptibility X~ is related to X;„by

the analogs of Eqs. (3) and (4). For a fixed T we ex-
pect that X vs Ho will exhibit a finite peak at
Hgq ( T). Let the value of X~ at Hgq ( T) be Xg( T)
Then, X), should increase with increasing T, and
should become equal to 1/N, when T reaches T,.

3. Ferro-fan transition

In the fan phase, X~„ is finite, so that X~ is smaller
than 1/N, . In the ferro phase, X~ is expected to be
equal to 1/N, . Thus, the transition from the fan
phase to the ferro phase (which occurs when Ho de-
creases) should be accompanied by an increase in X~.

4. Additional remarks

In the foregoing discussion, the expected features
of X~„and X~ were obtained by assuming that the tri-
ple point was a LP. However, it turns out that quali-
tatively similar behaviors of X;„and X may also be
observed near a triple point which is not a LP.

Selke considered a para-ferro-helicoidal triple point
at which q~ exhibits a jump from a finite value to
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zero. The q-dependent susceptibility near such a
triple point (which is not a LP) is sketched in Fig. 1

of Ref. 63. The qualitative behavior of the uniform

(q =0) susceptibility is similar to that near a LP.
However, we expect that the quantitative behavior
(critical exponents) will be different.

It follows that the qualitative features of X~ provide
only a consistency check that must be satisfied if the
triple point is a LP; they do not prove that it is a LP.
Other data are necessary to rule out the possibility
that q& has a jump at the triple point. For MnP, re-
cent neutron Bragg scattering experiments provide
strong evidence that q~ goes continuously to zero as

12

B. Experimental results and discussion

l25 K MnP

l2

EQ

O

lo

Measurements of X~ were performed on sample 3,
with Ho II b. Data were taken at several fixed tem-
peratures between 88 and 146 K. Some of the results
for X vs Ho are shown in Fig. 25. The data for 125

K are typical for T ) T&. They show that the suscep-
tibility increases as Ho, decreases toward Ho&=16
kOe. For Ho & Hog, the susceptibility X is nearly
constant. These qualitative features are similar to
those expected for T ) T,. The only deviation is the
small variation of X~ in fields below Ho~. Measure-
ments with Ho purposely misaligned relative to the b

axis showed that the variation of X~ below Ho~ in-
creased rapidly with increasing misalignment. The
departure from ideal of the data for 125 K is, there-
fore, attributed to a small unintentional misalignment
of Ho.

The behavior of X~ for T well below T, is exempli-
fied by the data for 88 K. At this temperature, X~

has a peak at Ho'~ =—20 kOe. At this peak, X is
much lower than in the ferro phase (i.e., lower than
1/W, ). The fan-to-ferro transition, at Hei =11.6
kOe, is accompanied by an increase in X . These
qualitative features are in agreement with the expect-
ed behavior.

Comparison of the trace at 103 K w'ith that at 88 K
indicates that the susceptibility peak at Ho~ is higher
for the higher temperature. This is expected because
X~ should increase with T. At 110 and 114 K, the
susceptibility exhibits a "shoulder" at Hp'&. That is,
the peak at Ho'~ is not fully resolved. This is ex-
plained by the small separation between Ho'~ and Ho~

at these temperatures. Above 116 K, no distinct
feature is observed at Ho'&. This is attributed to the
still smaller separation between Ho~ and Hpg.

Data for X& were obtained only below 116 K. In
this temperature range, X~ increased with increasing
T. It is useful to compare X~ with the value of X~

just below Ho~. The latter value, which we call X~,

represents the susceptibility of the ferro phase at Ho~.
Below 116 K, the difference X~ —

X~ decreased with
increasing T. Extrapolation to temperatures above
116 K strongly suggests that X~ is equal to X~ at T,.
Because X~ is limited by demagnetization effects, a
value of X~ which is as high as X~ corresponds to a
very high X;„. Thus, the data strongly suggest that on
the para-fan boundary, X~„becomes very large when

~t
In conclusion, all the qualitative features of the

data for X~ agree with those expected near a LP.

0 l0
I

20
Hp (kOe)

I

50 VIII. EVIDENCE FOR A LIFSHITZ POINT

FIG. 25. Transverse differential susceptibility, Xm, mea-

sured with a steady magnetic field Ho along b and a modula- .

tion field ha parallel to c. Each curves shows Xtm = BM,/Bh,
(where M, is the net magnetization along c) as a function of
Ho, at a fixed T. The cur~es were displaced in the vertical

direction relative to each other. The zeros for successive
curves are indicated by short horizontal lines on the right.
Apart from this zero shift, the vertical scale is the same for
all curves. The values of X~ at Ho=0 are very nearly equal,

In this section we summarize the evidence that the
upper triple point of MnP is a LP.

(i) The upper triple point is a point where

paramagnetic, ferromagnetic, and helicoidal (fan)
phases meet.

(ii) All available data indicate that the para-ferro
and para-fan transitions are of second order.

(iii) The phase boundaries in the THb plane have
the qualitative features expected near a LP.. That is,
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at the triple point, the phase boundaries are tangent
to each other and the A, line has an inflection point.

(iv) A quantitative analysis of (H& —Ht) as a
function of T leads to a crossover exponent @ which
is in agreement with the predicted value for a LP.

(v) The data for the transverse differential suscep-
tibility X are consistent with a LP.

(vi) The wave vector q in the fan phase, deter-
mined from Bragg scattering of neutrons, appears to
go continuously to zero as the triple point is ap-
proached. " The smallest measured q corresponds to
a period of 32 lattice spacings. (Smaller q's could not
be observed because of experimental limitations. )
The exponent Pq obtained from the T dependence of
q~ is in rough agreement with theory.

(vii) Dispersion curves for spin waves in the ferro
and screw phases (measured at H =0) strongly sug-
gest a competition between ferromagnetic and anti-
ferromagnetic interactions. '3 The quoted ratio J2/Jt

for the competing exchange constants is close to that
calculated for a LP. Moreover, J2/Jt is slightly T
dependent. Thus, at some temperature the ratio
J2/J~ is expected to coincide with that for a LP.

Based on this evidence we believe that the upper
triple point of MnP is a LP.
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