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The position of a discommensuration (DC) in a charge-density-wave state is pinned by impur-

ities. This pinning gives rise to a barrier to the motion of a DC. If the pinning is weak the ra-

dius of curvature of the fluctuations in the position of the DC is large. Impurity pinning will

enhance the hysteresis of a phase transition which requires the motion of DC, e.g., the stripe-

hexagonal phase transition. As the temperature is raised, thermal fluctuations of the DC can
cause a depinning transition of an-isolated DC —a transition akin to the roughening transition of
an interface. Depinning can also. be achieved by external perturbations such as electric fields or

I

inhomogeneous stresses.

I. INTRODUCTION

As the study of charge-density waves has evolved,
the effect of the impurities has been a field of consid-
erable interest. Some years ago, Sham and Patton, '

and Imry and Ma showed that impurities, which

couple directly to the phase, or displacement, of the
charge-density wave (CDW) destroy the long-range
order of a CDW which is incommensurate with the
underlying lattice and lead to an exponentially decay-
ing correlation function. Experimentally, it is found
that the range of the short-range order is quite large,
indeed too large to be observed directly in conven-
tional x-ray and neutron scattering. Fukuyama and
Lee in their analysis of the effect of impurities have
given the criterion for the impurity pinning to be
weak and the correlation length of the short-range or-
der to be long. More detailed analyses of this prob-
lem have been made in one-dimensional systems. ~'
As the boundary between the incommensurate and
commensurate CDW is approached the nature of the
problem changes. McMillan has shown that as this
boundary is approached the incommensurate CDW
will corisist of regions which are essentially commens-
urate separated by discommensurations (DC). These
latter are narrow regions where the phase or displace-
ment changes rapidly. It is the interaction of the DC
with the impurities which is the subject of this work.
This has been explored for one-dimensional systems
by Fukuyama' and by Nakanishi. Our interest will

be in three-dimensional CDW where the DC are ex-
tended objects in two dimensions. In view of the ex-

perimental results in favor of weak pinning, we will
concentrate on this regime.

The mathematical description of a DC within the
phase-only approximation is that of a soliton. When
the amplitude modulation of the DC is included the
energy and interaction with neighboring DC is modi-
fied but we shall assume that the impurity coupling
is more important at low densities of DC. We will

therefore only include phase modulation and the cou-
pling of the impurity to the phase. For this coupling
we take a local coupling between an impurity and the
phase gradient of a CDW. The effective charge den-
sity in a DC varies as the phase gradient so that the
model can be viewed as an interaction between the
impurity and the charge density of the DC. We as-
sume a short range for this interaction due to the
screening by free carriers.

First in Sec. II we study the energy of a DC in one
dimension in the presence of an impurity. Baeriswyl
and Bishop' have shown that beyond a threshold
value of the interaction strength the ground state has
a DC at the impurity. Our interest here is in the in-
teraction of a DC, which is present due to the incom-
mensurability driving force and an impurity. We cal-
culate the energy as a function of the separation and
find the interaction energy has a range which is the
width of DC. In Sec. III we examine the interaction
with impurities in higher dimensions. For a three-
dimensional CDW state the DC are extended objects
in two dimensions. Individual DC are distorted by
the presence of the impurities. The local radius of
curvature of the DC is determined by balancing the
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elastic forces against the interactions with the impuri-
ties. In Sec. IV we discuss the pinning at higher tem-
perature where the entropy due to fluctuations in a
DC can overcome the pinning by impurities and a
transition, akin to the roughening transition of an in-
terface, "occurs. Finally we discuss the response of a
DC to perturbations and point out the possibility of
observing the difference between DC pinned by im-
purities and DC which are thermally unpinned.

II. INTERACTION OF A DISCOMMENSURATION
%ITH AN IMPURITY IN ONE DIMENSION

We begin by discussing the interaction of a single
discommensuration with an impurity in one dimen-
sion. We restrict our attention to the part of the
free-energy density which depends on the phase, $,
of the order parameter only. The problem we wish to
model is the interaction of a CDW with a charged im-
purity. Since the effective charge stored in a DC is
related to the phase derivative" we take an interac-
tion of the form'

negligible, and we obtain the result

@+,—g, = Vp/K (2.5)

y, (x,XG), x (0
g, (x, —X ), x &0,d (x) =' (2.7)

with @+,—= lim„~+$(x). The discontinuity in the
phase at the impurity site is determined by the
strength of the impurity potential Vo.

The binding energy of a DC is the difference
between the energy of the DC at the origin and a DC
placed well away from the impurity at the origin.
Away from the origin the last term in (2.4) is negligi-
ble and the behavior of the phase is described by a
soliton solution of the sine-Gordon equation (2.4).
This has the form

@,(x,X) = (4/p) tan '[exp(x —X)/g] . (2.6)

The full solution of (2.4) is obtained by combining
soliton solutions of the form (2.6) to satisfy the con-
dition (2.5).

The ground state in which the DC is located at the
origin is given by

F(d) = tdx —K d
2

'2

+ W(1 —cosp @)—V(x) d$
dx

where XG is determined by

qh, =e/p —Vo/2K =(4/p) tan '[exp( —XG/g)] (2.8)

(2.1)

V(x) = Vo exp( —x /2o )/77 ~ (7 (2.2)

The width, o., generally is much shorter than the
characteristic width of the DC, g[=(K/p~W)' ~], and
for most purposes we use the simpler form

V(x) = V08(x) (2.3)

We have chosen to take only the coupling of the im-
purity to the phase gradient rather than to the phase
itself' ' for convenience. However both forms lead
to a direct coupling between the impurity and the po-
sition of a DC, S' which is all that matters in what
follows. Taking the functional derivative of (2.1)
with respect to $(x) leads to

—K +pWsinpg+ =0d~@ . dV
dx dx

(2.4)

The first term represents the elastic energy associated
with a deformation of the CDW, the second term the
commensurate pinning potential of the background
lattice, and the third term the electrostatic coupling of
the effective charge stored in a DC or other phase
disturbance to the impurity. In the last term we take
a short-range potential, due to the screening by free
carriers with a Gaussian form

and we have restricted our attention to the regime in
which vr/p & Vo/2K. A sketch of the phase is shown
in Fig. 1(a). The energy of this solution, Es, , can be
broken into two parts

E =2)
'

-'K "@
dx

+ W[1 —cospQ(x)] dx+E(o)

(2.9)

The second term represents the energy right at the
origin and Eis singular as o- 0. However, it is
common to all the configurational energies and can-
cels out of the binding energy.

Away from the origin, the last term in (2.4) is
negligible so that we may multiply by (d@/dx) and
integrate to obtain

d$ 28'
(1 —cosp P)

dx K

and when substituted in (2.9) we obtain

(2.10)

lir'2

Es, =4 W JI (1 —c s o@p)'i' @dE+(a)

(2.11)
The last term is singular in the limit o- 0. Integrat-
ing (2.4) through a small interval about the origin,
(—e, +e), the contribution of the second term is

=8(KW) 'i'p '[1 —sin(p Vo/4K) ] +E(cr)

(2.12)
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at R, and @;(x). The latter is the functional form of
the phase near the origin, given by

P;(x) = —@,(x,X,), x & 0

2' —y, (x, —X;), x)0, (2.17)

x=o

(a)

and X; is determined by the relation

Vp/2K =(4/p) tan '[exp( —X;/()] (2.18)

P

x=-X x=o
1 (b)

x=R

FIG. 1. (a) A discommensuration (DC) bound at an im-

purity site with a coupling which is proportional to the phase
gradient of the charge-density wave. (b) The spatial depen-
dence of the phase (solid line) when the DC is well separat-
ed from the impurity. The dashed line indicates the extra-
polated DC, centered at x = —X;.

%hen the separation R of the DC from the impuri-

ty is large, the phase has the form illustrated in Fig.
1(b). The phase at the origin is $+, =+Vo/2K. The
energy of this configuration in the limit R ~, is

E =8(KW)' 'p '[1+[1—cos(pVo/4K)] I+E(o)
(2.13)

In the opposite limit, as R 0, the displacement of
the pinned soliton, changes the symmetric form (2.7)
to an asymmetric form, XG XG+R and —XG

—LG +R. The result is a change in phases at the
origin, @+„by an amount

5$ = —4(R /() [cosh(X /() ] '

The energy change that results in E„ is easily

(2.20)

It is convenient to consider first the attractive in-
teraction between the DC at R and the negative DC
at —X; which results from extrapolating the form of
@;(x) from x )0 to x & 0. This extrapolation is
shown as the dashed line in Fig. 1(b). This attractive
interaction between two DC's is well known. The
correction to this attractive interaction arises from the
region x & 0. In this region @,(x,R ) « 1 and we
can expand the total energy in powers of $, (x,R). It
is straightforward to show that the correction from
the region, x & 0 is -exp( —2R /g) and therefore
smaller than the leading attractive interaction. As a
result we obtain

E~(R) =—32(KW) ' 2p ' exp( —R /g)

x tan(pVO/8K) +O(exp( —2R/()) . (2.19)

where the first term is energy of an isolated DC. The
last term is the energy associated with the phase vari-

ation near the origin.
The binding energy IEqI is the ener—gy difference

between the two configurations;

-IE
I =E„E„, -
= —8(KW) '~2p '[1+sin(p Vo/4K)

(2.14)

E(R) =E +Et(R) (2.16)

The correction Et (R) is obtained by using

Q(x) =$,(x,R ) +@;(x) in (2.1), i.e., we superpose
the two functions, $,(x,R ), which describe the DC

—cos(pVO/4K)] . (2.15)

The form of the interaction between the impurity
and the DC as function of the separation, R, can be
obtained by examining the corrections to the two lim-

its R ~ and R 0. In the large-R limit the total
energy E(R) can be written as

0.25
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FIG. 2. The potential energy of a DC interacting with an
impurity which has a local coupling to the phase gradient.
The energy is measured in units of the DC energy
[8p '(K8') ] and the distance in the units of the DC
width ((=K' /pW' ). The solid lines are the large-R ex-
pansion (2.19) and small R (2.20). The dashed line is the
interpolated form (2.21).
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evaluated from (2.11) as 4(EW)'~'p '

x sin(p Vo/4E) (5$)z,
Putting the two corrections together we obtain the

interaction between an impurity and a DC as a func-
tion of the separation R for R /g « 1 and R /g ))1.
As an example we show in Fig. 2 the behavior for a
particular choice of the parameters. The attractive in-
teraction is short range of width g and is ex-
ponentially damped at large distances. A useful
parametrization is to take the form

E~ (R) = Eo/cosh~ ( nR ) (2.21)

This form gives a good interpolation between the
large and small R limits as illustrated in Fig. 2. The
bound states of this potential are known analytically.

III. INTERACTION OF A DISCOMMENSURATION
WITH AN IMPURITY IN THREE DIMENSIONS

E,~= —
Jl d r dzEq

uy, (z —zo( r ))

1

ey, (z -zo( r ))
dy

(3.1)

't

+ "'
2" dz " dx dy

(3.2)

In the previous section we showed that an impurity
can have a short-range attractive interaction with a
DC. In higher dimensions the DC is a plane or a line
which has a rigidity, and distortions in the position of
the DC to maximize the energy gain from impurities
will be opposed by the transverse rigidity of the DC.
If we denote the position of the DC by zo( r ), where
r [—=(x,y)] is a vector perpendicular to the Q vector
of the CDW, the elastic energy associated with such
distortions can be written' as

phase or displacement of the CDW. This problem
has been considered by several authors. ' "4 An im-
portant distinction is whether the impurity energy is
much larger or smaller than the elastic energy associ-
ated with the distortions. The former case is the
strong pinning limit in which the DC will distort to
maximize its overlap with individua1 impurity poten-
tials. The latter case is the peak pinning limit in
which the radius of curvature of the DC remains
large compared to (. We shall concentrate on this
weak-pinning limit and make only a few remarks con-
cerning the former limit.

In the weak-pinning limit (which can be either a
stiff DC or a high impurity concentration), the
distortions of the DC will possess a length scale L, a
typical domain size over which the DC position
zo( r ) is nearly constant. Within a given domain,
the average number of impurities interacting with the
DC will be

W =2cL'g, (3.5)

where e is the impurity concentration. We shall see
that the weak pinning limit corresponds to N )& 1,
and in consequence the only contribution to the im-
purity pinning energy of a DC can corke from statisti-
cal fluctuations in this number, which will be of order
N

The amplitude of the DC distortion in the direction
parallel to the Q vector of the CDW is characterized
by a second length scale I. The larger the value of 1,

the more the DC can take advantage of the fluctua-
tions in impurity density, but of course the greater is
the penalty from the elastic energy (3.3). The values
of the two length scales can now be estimated by
minimizing the total energy with respect to the choice
of I and L.

Bearing in mind the DC thickness 2g, we can make
roughly (I/2g) independent choices of the position of
zo for the DC in each domain. The largest fluctua-
tion in the number of impurities is expected to be ap-
proximately

dz dz+
2 dx, dy

(3.3) b W,„=[N In(l/2g) ]'~' (3.6)

where E =4EO( '.
The short-range impurity interaction obtained in

Sec. II can be conveniently approximated by a
square-well attractive potential. The model form of
the total energy that results

Er[zo] =Eei V XO(zo( r, ) —z;) (3.4)

where I'= ~Es~ and 0=1 if ~z) & g and 0 otherwise.
The impurity positions ( r;,z;) are assumed to be
random.

The total energy Er [zo] is similar to the problem
of an incommensurate CDW in a single Q state in-
teracting with impurities which couple directly to the

assuming a Gaussian distribution for hW. [Equation
(3.6) is only is only strictly true if (I/g) is large
which is not in fact the case [see Eq. (3.9)] but this
will suffice to give us a rough estimate of l. ] Hence
the impurity pinning energy per unit area will be

E; p
= —VAN, „/Lz (3.7)

Connecting the nearby domains together smoothly
gives rise to an elastic energy

E„= E( I/L )z— (3.g)

(I/() = U=2e'~~ (3.9)

Minimizing (3.7) and (3.8) with respect to I and L we
find
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L = —(U'K/V)(g'/2c)'i (3.10)

be replaced by

V(T) = V exp[ —(zz( T) )/2( ] (4.3)

%e see that the amplitude of the distortion is of the
same order as the thickness of the DC, and that the
average number of impurities in a domain is (z'(T)) = $[n(coq) + —,

'
](ma)q) ' (4.4)

where (z'(T) ) is the mean-square amplitude of vi-

bration. Using the well-known relation

N = 2cLzg = ( UzK ('/2 V) z (3.11)

so that in the weak pinning limit (K/2 » V) we

have N && 1 as we suggested above.
Substituting (3.10) and (3.11) in (3.7) gives the

impurity pinning energy per unit area

bc V2
~imp =

K
(3.12)

where the numerical constant b =8 in' '( U/2) U z.

IV. ROUGHENING TRANSITION OF A

DISCOMMENSURATION AT
A FINITE TEMPERATURE

2(q) ~2+ ~2q2 (4.1)

where q is a wave vector ip the reciprocal space
(q„,q~). The velocity u=(K/m)' where m is the
mass density of DC for motion in the z direction.
The long-wavelength pinning frequency, yo, is deter-
mined by the average pinmng potential energy (3.12)
and the mass density, m;

bc V

m /3K
(4.2)

The key assumption in the self-consistent phonon ap-
proximation" is that V at finite temperature should

At finite temperature the thermal vibrations of the
DC cause the pinning potential to be reduced. Even-
tually if the amplitudes of the thermal vibration are
large enough the barrier against the motion of the
discommensuration is reduced to effectively zero. At
this point an isolated DC will have very large values
of mean-square vibration amplitude or in other words
the DC will be rough. At low temperatures however
the DC is pinned in a definite position by the impuri-
ties. It is the transition between these two re-
gimes —the roughening transition of an isolated DC
which is the subject of this section. It is similar to
the roughening transition of a discrete interface. "

The self-consistent harmonic phonon approxima-
tion was used by Okabe and Fukuyama" to describe
the temperature dependence of the pinning in one
dimension and it can be generalized to apply to the
two-dimensional problem at hand. The DC at low

temperature is pinned and energy spectrum of the
small amplitude oscillations around the pinning posi-
tion is given by

where n(co~) is the Bose function. Substituting (4.3)
in (4.2) we obtain a self-consistent equation for the
energy gap, y(T)

(4.5)

At high temperatures, T &) y, the high-temperature
limit can be taken for the Bose function (4.4) and we

obtain
r Q

z2( T) = qdq (f2+ v2q2)
2am "0 (4.6)

2T
1 ~ +1 yo

41rmv y y +v Q
(4.7)

where the upper cutoff Q is of order the dimensions
of the Brillouin zone. The self-consistent equation
(4.5) is then reduced to the form

y'(T) ~ y'(T)
2 2

yo yo

T„=4mK g~ (4.10)

This is the temperature at which limr r z'(T)
This form of the roughening temperature is in-

dependent of the strength of the impurity potential,
V, and depends only on the elastic coefficient. This
form can be compared to the results of a diagram-
matic analysis by Chui' and of renormalization-
group calculations. " These results give the same cri-
terion, (4.10), for the temperature at which a

random-symmetry breaking field becomes irrelevant
in a planar model. In the self-consistent harmonic
phonon approximation the two problems —the posi-
tional pinning of a DC by impurities and the planar
model in the presence of a random-symmetry break-

ing field —are identical and the above analysis carries
through for the latter problem and gives the same
answer as the renormalization-group analysis. The

with A = [yo/( y2 + v'Q') ] (& 1 and

0!= T T (4.9)
4mmv g 4~K(2

A self-consistent solution of Eq. (4.8) with y ( yo

only exists if the exponent n™1.The boundary
a =1 determines a roughening temperature, T„given
by
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T„' = T,/[1 +2 In(uo/yo) ] (4.11)

The reduction factor of r, '/'r„varies only logarithmi-
cally in the impurity strength and concentration so
that even for low concentrations and weak impurity
the temperature T,' will still be quite high.

The above considerations apply to an isolated DC.
In an incommensurate state, just above the com-

transition temperature for the random problem is a
factor of 2 lower than for an ordered symmetry
breaking field. In the self-consistent harmonic pho-
non approximation this arises because the pinning
frequency, yo ~ V' ' where V is the strength of or-
dered symmetry breaking field, rather than the form

yo ~ V in (4.2). As a result a factor of 2 carries
through to give a transition temperature a factor of 2

higher than (4.10) in agreement with the results of
the renormalization-group analysis. "

If V —=0, the integral in (4.6) diverges at all tem-
peratures and the DC is rough at all temperatures. If
instead of the criterion for the roughening transition
which occurs as z ~, we take a criterion that
(z(T))~) = g~ then T,' depends on the strength and
number of impurities. At this value of (z') the ef-
fective activation barrier to move the DC will be
small. From (4.7) we obtain

mensurate-incommensurate transition there is a finite
density of DC which are separated by an average
length, A. In the limit that the commensurate transi-
tion is approached, A ~, and the interaction
between the DC falls off exponentially. Therefore in
the limit of large A the pinning by impurities will al-

ways be more important than the interaction between
DC. A simple criterion which will determine the re-
gion in which the impurities dominate is when the
force on a DC from neighboring DC is not large
enough to dislodge it from a pinned position. The in-
teraction energy density of a DC with its neighbor at
a distance A is similar to (2.19) and is given by

E;„,( A) = 32 (KW) ' 'p ' exp( —A/g) (4.12)

Therefore, equating the change in the energy E;„,(A)
on going from A A —1, with the pinning energy
density gives a criterion

32(KW)' ~p ' exp( —A/0) [exp(l/g) —I]( bc V /Kg
(4.13)

for the region where the impurity pinning will dom-
inate. The impurity-induced fluctuations in the cur-
vature of the DC will affect the interaction between
them. The average interaction energy of a roughened
DC will be approximately

Eoc oc =32(KW)'~~@ 'exp( —A/$)[1+ —, ((z —A)~)/g~] =32(KW)'zp 'exp( —A/()(I+ —I /g ) (4.14)

The effect of including this extra term in the total en-
ergy is easily seen to be a small reduction in the de-
formation amplitude I, as might have been anticipat-
ed.

Yet another source of pinning is due to the discrete
nature of the underlying lattice. This pinning of a
DC is analogous to the Peierls force which pins the
position of a real dislocation in a lattice. ' Thc
strength of this pinning should be similar to the
Peierls pinning and ~exp( —g/ao) where g is the
thickness of a DC and ao is the lattice constant.
Therefore such pinning will be much smaller than
impurity pinning in most cases.

\

I

field, Ez, of the form

~y= —2~a 'e'Ezz, (5.1)

where the effective charge e' is temperature and
band-structure dependent.

A second perturbation is one which couples to the
value of the Q vector. An example is an external
stress. First we consider a single-Q state. The free-

. energy functional that describes the coupling to the
strain field q(x) following Bak and Timonen" can be
written

1

Fs (@ P ] = J~dx K — —~0 ——gzo+ W(1 —cosp@)
dP

V. PERTURBATIONS WHICH COUPLE DIRECTLY
TO THE POSITION OF THE DISCOMMENSURATIONS + Gg(x) (x) +—Cq'(x)d@

dx

Finally we consider various perturbations which
couple directly to the position of the DC. The obser-
vation of a threshold value for the motion of a DC in
response to an applied perturbation would confirm
the pinning by impurities.

The first example is an electric field. The charge
density per unit area associated with a DC varies with
the magnitude of the phase change' across the DC
(2mp '). This leads to a coupling to an external

r 'I

+ D dq(x) p—Pg
2 1x

(5.2)

In this expression the fourth term is the local cou-
pling between the strain and phase gradient. The
fifth and sixth terms are the elastic and higher-order
energies and the last term is the external pressure.
This free energy functional has been studied by
several groups, most recently, comprehensively by
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Brocksch, Everts, and Muller-Krumbhaar, Of in-
terest to us here, is the question of the role of an
external pressure P. If we write

q(x) = gp+ g(x) (5.3)

where q(x) is iocalized at the DC and rip is a con-
stant strain caused by the external pressure, minimiz-
ing with respect to qo leads to

qp =P/C

and when substituted back in (5.2) this gives

(5.4)

F

d@ p2
Fs(Q, P) = ' dx —K —8, ——'8p2 ——

dx 2 2C

+ W(1 —cospQ) + G7I(x)
d (x)

dx

+-Cq'(x) +-a dg
2 dx

(5.5)

The effect of the pressure is to shift the driving term
due to the q-vector mismatch from 50 to

8t =8p —GK 'qp =8p —GP/CK (5.6)

This acts to shift the chemical potential, or energy
per unit area to add a DC

(5.7).= ""+2~GP/C

where e ' is the value at P =0. If a uniform pres-
sure or uniaxial stress is applied, the shift in the Q
vector will shift the equilibrium sparing between the
DC. The force on an individual DC will come from
the interaction with the neighboring DC in the way
discussed above. The energy change arises only
through the change in 5 and is no different from oth-
er perturbations, such as temperature which also acts
to change 8.

A nonuniform strain, however, acts directly on the
DC. The energy of an isolated DC now depends
directly on its location through the dependence of 5
on position. This leads to a term, ~2mp Gyp(x), in
the energy of an isolated DC. The energy ~ is posi-
tion dependent and there will be a direct force on an
isolated DC to move equal to the gradient of this en-
ergy. Thus a strain gradient acts in a similar fashion
to an electric field to move an isolated DC.

In 2K-TaSe2, the CDW state has three coexisting
CDW with the Q vectors lying along the directions of
the three shortest basal-plane reciprocal-lattice vec-
tors close to (

—6 ). As the temperature is lowered

the Q vectors approach and finally lock in to a com-
mensurate phase with Q = —,6.23 There are three

orientations of the DC and experiment shows that
they lie parallel to the three Q vectors. As the com-
mensurate phase is approached, a two-dimensional

pattern of DC develops. Bak et al. have shown that
there are two possible patterns. One is a honeycomb
array of DC which preserves the hexagonal symmetry
and the second is a stripe array of parallel DC. The
repulsive interaction energy between the DC is lower
in the hexagonal phase but in this phase there are
lines of intersection of the DC which require either a
positive or negative energy. Bak et al. "have shown
that it is the sign of this intersection energy which is
crucial since the number of intersections scales alge-
braically with the separation of DC. If the energy is

repulsive then the stripe phase is the lowest-energy
phase at the onset of incommensurability and the se-
quence of phases is commensurate, stripe, - and hex-
agonal incommensurate. This sequence has been ob-
served recently in 2K-TaSe2 at ambient pressure by
Fleming et al. " When the temperature was lowered,
the stripe phase was not observed. The region of
hysteresis extends over a temperature interval =20
K. This hysteresis region however is greatly nar-

rowed in the presence of small nonhydrostatic
stresses. "

It is therefore of interest to examine the effect of a
uniaxial stress on the DC in 2H-TaSe2. There are
three Q vectors and three orientations of the DC in

this compound. These are illustrated in Fig. 3, The
relevant term in the energy as shown above is the
elastic energy —the first term in (5.2). This elastic
energy can be written as a sum of phase gradients for
each of the three Q vectors; integrated over the basal
plane

F„(@,S ) = X ' dx'
~

K t [tn, ( 9' @ —q
' ) ]'

l

+ —,'K, [m, (Oy, -q'")]' . (5.8)

The phases P;(i =1,3) are associated with the three
CDW and the elastic energy is minimized by the
choice of Q vectors which are qtp away from the
commensurate positions, 6;/3. The two-dimensional
vectors m& are the principal directions for the ex-
pansion around the minima. In the absence of an
external stress the system is hexagonal and vectors
q" lie along the directions determined by the

(i)
reciprocal-lattice vectors (6 ). If we denote by ni

(i)
unit vectors along these directions and n2 unit vec-
tors perpendicular (see Fig. 3) then the vectors

mi =ni all (i,j) in the absence of stress. In the
presence of a uniaxial stress S applied along a direc-
tion 116, the vectors qtp and m&~p change. If S II ni
then

q"'(S) =(qp+8, )ni +8,n,

q"'(S) =(qp+82) n&" —83n2 (5.10)

q
' (S) =(qp+8i)ni, '

nl~ = n& j=l, 2, (5.9)

with 5& ~ S. The other vectors however may rotate
under the stress and
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3, 3,

2' 27r(o ———)t 3 t

~(~)
gg fl~

Similarly we find after some algebra

a2 = &3 [3K) +K2 ~3s(K( K2) l4

27TEi Sgp
q, —— + —,(s, +s,)

3 2 3

1 E2+ —( 53 + sqp)2 AK,
(s.1s)

(o, o, o)

FlG. 3. The three orientations of the three lines of DC in
20-TaSe2. The vectors n~', n2' are shown. Also the

phase change across each DC is obtained by subtracting the
phases (@~, $2, $3) of each of the CDW.

where q' and q(3 are related under reflection about
the x axis. The principal directions are given by

(2) (2) (2) (2) (2) (2)
m$ = ni sn2 ', m2 = n2 +sn]

(3) (3) (3) (3) (3) (3)
m& = n~ +sn2 ', m2 = ni —sn2

(5.11)

2( (i) (i))( (i) g~ ) (5.12)

These terms can be evaluated to lowest order in 5

J3
a) = —J d„' —K)+—Kt+ s(K( —K2)x 4 4

( i

where s ~ S. Again we have made use of reflection
(2) (3)

symmetry about the x axis to relate m; and rn;
Consider a type-I DC whose elastic energy e& is given
by

e, = —X q~ d„' X E)(mj" '7y;)'
i~2, 3 J~1,2

The result is a splitting, linear in the strain, of the
energy of type-I DC, which is parallel to a uniaxial
strain direction, from the other two types. This split-
ting was derived within the generalization of the
strain-dependent free energy of Bak and Timonen"
in which the coupling occurs through the elastic ener-
gy terms. In principal the commensurability terms
can also be different between the type-I DC and the
types II and III modifying the energy splitting.

The consequence of the linear splitting is to favor
the stripe phase over the hexagonal phase. By suit-
ably orienting the DC or stripes in the stripe phase,
the energy is lowered relative to the hexagonal phase
which has equal densities of all three DC. The ener-

gy difference is linear in the uniaxial strain 5 and
proportional to the DC density. As such it can dom-
inate close to the commensurate-incommensurate.
transition and cause the I phase to be a stripe phase
at its onset irrespective of the sign of the intersection
energy.

A nonuniform uniaxial strain can have a large ef-
fect on the hysteresis associated with stripe-hexagonal
phase transition. Individual DC experience a force
proportional to the strain gradient. If the force is
large enough at T & T„ the DC will move. For gen-
eral strain patterns, the different DC can be driven in
different directions, towards or away from the regions
of largest strain. As a result such inhomogeneous
strains can act to greatly reduce the hysteresis at the
stripe-hexagonal transition.

d42 d43

dy dy

i

J3 s d42 d@3
( )

2 2 dy dy

1 )

K2( (83 +sqp)
2 dy dy

(s.13)

(5.14)

and this reduces to an elastic energy per unit area for
the DC

e) = [3E(+E2+2J3s(K) —K2) ]((: '

1

2m sq() E2
K) qp+ +52 —(53+sqp)

VI. CONCLUSIONS

In this paper we have discussed the effects of im-

purities in the host crystal on dilute concentrations of
DC. The relevance of our results to experimental
systems will depend on the values of the various
parameters which enter the theory. Unfortunately we
do not have good a priori values of these parameters
and we must depend on experiment as a guide.

The system which has been most studied experi-
mentally is 28-TaSe2. The scattering experiments "4
were briefly reviewed in the previous section. These
experiments and recent NMR experiments support
the existence. of an array of parallel DC in the striped
phase of 28-TaSe2 (Ref. 24) which occurs on warm-

ing in the temperature interval 90 & T & II10 K. In
this region the period of the stripes, and therefore
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the spacing between DC, rises rapidly initially and
then is essentially constant. Since the separation

0
between DC is of order 300 A it is not a priori obvi-
ous which side of the criterion (4.13) is obeyed.
Several years ago, Barmatz and collaborators" stu-
died the low-frequency ( —3 kHz) vibration of a plate
of 20-TaSe2. In these vibrations a nonuniform stress
is set up and as discussed in Sec. V this wi11 drive a
motion of the DC relative to the host crystal. How-

ever, Barmatz et al. did not observe an extra damp-

ing in this temperature interval —a result which indi-

cates that the DC array is pinned to the lattice and
moves rigidly with it at these low frequencies. There
is no evidence for a change in the damping with tern-

perature and one is forced to conclude that the pin-

ning frequency of the array of DC is much higher
than the driving frequency (-3 kHz).

Surprisingly Barmatz et al. ' observed a large
temperature-dependent damping at T & 90 K—the
region in which Fleming et al. observe only the
commensurate structure by x-ray scattering. An ex-
planation is that there remains a small but finite den-
sity of DC which are now behaving as isolated DC
and as a result the thermal vibrations are large. The
average pinning frequency y( T) drops exponentially
with increasing temperature [see (4.5)l which causes
an exponential rise in the damping at low frequen-
cies. This hypothesis explains the strong temperature

rise in damping that Barmatz et aj. observed in the
commensurate phase. There is a sudden disappear-
ance in the damping at T = 90 K on heating, and at
the same temperature Fleming et al. observe the Q
vector move away from the commensurate value.
This could signal the crossover transition from isolat-
ed DC to an array of DC with a simultaneous reduc-
tion in (z~) and a rise in the pinning frequency.
These suggestions can be tested, hopefully, by elec-
tron microscope and high-resolution x-ray experi-
ments.

In conclusion, we have examined the pinning of in-

dividual DC by impurities and discussed the tempera-
ture dependence of the pinning and the possibility of
thermal "depinning. " Further experiments on 20-
TaSe2 to test our results are suggested.
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