
PHYSICAL REVIE% B VOLUME 24, NUMBER 5 1 SEPTEMBER 1981

Scaling theory of the metal-insulator transition in amorphous materials
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A scaling model is presented for the metal-insulator transition in amorphous materials which

includes a localization, correlation, and screening, The model predicts a continuous phase tran-

sition at zero temperature with 1ocalized states and a correlation gap in the insulating phase.

Recent experiments have indicated that the metal-
insulator transition in several amorphous or disor-
dered materials [a -Ge~ „Au„,"granular alumina, 3

and crystalline P-doped Si (Ref. 4)] is continuous. In
a-Ge~ „Au„,' in particular, measurements of con-
ductivity versus temperature show that the electronic
states are extended in the metallic phase and local-
ized in the insulating phase; the transition involves
localization and therefore has something of the char-
acter of the Anderson transition. ' However, tunnel-
ing experiments on a-Ge~ „Au„(Ref. 2) and granu-
lar alumina' find a giant zero-bias anomaly in the
one-electron density of states of the metal due to
electron-electron interaction and also, apparently, a
correlation gap in the insulating state. Thus the tran-
sition also has something of the character of a Mott
transition. 6

In this paper I develop a scaling theory of the
metal-insulator transition in amorphous materials in-

cluding the effects of localization and correlation.
This theory is an extension of the scaling theory of

. the Anderson transition by Abrahams et al. 5 which
treats localization within a one-electron model.
Correlation effects are included by adapting a weak-
coupling approximation due to Altshuler and Aro-
nov' and Altshuler et al. ' and by screening the
electron-electron interaction within linear response
theory. The effects of correlation are cast into
renormalization-group language using an "exact
eigenstates" method. Included in the theory are
one-electron localization, many-body localization,
screening, and interaction effects on the one-electron
density of states and the correlation gap.

We consider a model for the motion of electron
wave packets of length scale L. We assume that the
single-particle motion is diffusive with diffusion con-
stant DI. for wave packets of radius L. The wave
packets are to be made up of eigenstates $1(x) with
eigenvalue hest of the one-electron problem and
chosen to have minimum energy spread FL, . There is
a characteristic energy tDL/L2 associated with DL
which turns out to be the minimum energy spread FL
(within a constant of order unity). We therefore de-
fine FL =tDL/L' One can verify .this relationship us-

ing the exact eigenstates method' which is discussed
below. We write down an unnormalized wave func-
tion

p(x ) = X41'(xo) 4I(x) exp[ —|r'(co( —r0)'/4F']
I

which is centered at xo with mean energy Aced and en-
ergy spread F. The mean-square radius is easily
found to be

(( x —x ) ') = 3h D/ 42rr F

in three dimensions. I have also verified this rela-
tionship by simulation. This relationship provides a
fundamental connection between length scale L and
energy scale FL. We use a renormalization-group ap-
proach and adopt a model at length scale L which re-
tains one-electron states within energy FL of the Fer-
mi energy EF. Roughly speaking, quantum states $1
with energy ~t&o~

—EF
~
) FL will have been "integrat-

ed out" by including their contributions to various
physical quantities. More concisely, we will integrate
out transitions between quantum state pl and $ so
that at length scale L transition between states such
that till —ru

~
) FL have been removed; we actually

remove matrix elements from the Hamiltonian, not
quantum states. A second physical parameter of the
system is the one-electron density of states (of one
spin and for a unit volume) NL at the Fermi energy;
we find a second energy scale EL =1/NLL3 We write.
for the interaction between electrons U(r) = e'/eLr,
where eL is the long-wavelength dielectric constant;
eL contains the screening contributions from the
quantum states which have been integrated out. The
dielectric constant is, of course, a function of wave
number q but it is approximately constant for qL & 1.
The third energy scale is UL = e /L eL. We believe
that the three physical quantities DL, NL, and eL or,
equivalently, the three energy scales FL, FL, and UL

are sufficient to describe the Hamiltonian of the sys-
tem at length scale L. We now define two dimen-
sionless parameters from ratios of the energy scales.
We first define a conductivity parameter
o-L =—2e'NLdL such that the physical conductivity at
zero temperature is o- = limL crL. Following Abra-
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hams et al. 5 we define a dimensionless conductance

gc —= 8J2mh'L rrL/e = 16err Fr. /EL

The second dimensionless parameter is the dimen-
sionless interaction strength Xr. —= 16 UL/EL W.e
derive below the renormalization-group (RG) equa-
tions for g~ and A.L.

We will use the exact eigenstates method' to calcu-
late various physical quantities. We assume a one-
electron Hamiltonian with eigenstates $1(x) normal-
ized in unit volume and eigenvalues ho)1. We require
certain averages of the matrix element

Hartree-Pock approximation. The Hartree term
screens the one-electron potential and the contribu-
tion from the exchange term is

d 1nNL,

d lnL
(8)

d 1+ = —X' XU „ IM~ (q)I'f, , (7)
dA corn I dk Q)

where the sum is restricted by F & tI co~ cu
I

—& FL

and U~ =4m e~/queer is the Fourier transform of the
interaction. Performing the integrals we find

MI (q) —= d'x@1'(x)e '& "y ('x) .

which we derive as follows. We make up a wave
packet

—is@ f
e

y(x, r) = X&1'(xo)@1(x)
I tl

(2)

Finally we need to calculate the renormalizaton of
the diffusion constant. Instead of developing the ex-
act eigenstates formalism to calculate the conductivity
we will adapt the perturbative calculation of Altshuler
and Aronov7 to our purposes. These authors find for
the renormalizaton of the zero frequency, zero-
temperature conductivity

from n quantum states and assume diffusive motion
of the wave packet

Iy(x, r) I'= exp [—(x xo) ~/4Dt 1—

Fourier-transforming both sides of Eq. (3) in space
(~ t

) fa oo

d'x e and time dh e'"' ~', spaceJp
averaging „' d'xp, and taking the imaginary part we

find the average of the matrix element squared over
all states with fixed energy difference t(co~ —

a& )
(Ref. 7)

IW «) I'=(Dq'/~/qig)/~(~~ ~ )'+D'q'1 (4)

We now change length scale from L to L' by chang-
ing the energy cutoff from FL =tDL/L' to
F,=tD, /L'; to lowest order in A and g ', DL is in-

dependent of L and d lnF/d lnL =—2. We change
energy scale from FL to F by including the contri-

bution to all physical quantities from transitions
between states l and m such that F & tIco~ —co~I( FL. The contribution to the long-wavelength
dielectric constant is

d lno-L 2~L

d lnL gL
(10)

From the definition of o.L we have

d lnDL d lno. L, d lnNL

d lnL d lnL d lnL

so that Eqs. (8), (10), and (11) determine the renor-
malization of the diffusion constant due to interac-
tions. There is also a one-electron contribution to
the renormalization of the diffusion constant which,
according to Abrahams et al. ,

' is of the form —c/gL
with c unknown. The above results are valid within
perturbation theory, A.L « 1, 1/gr « 1.

Assembling these results we find

J E dE XU~Re(iE+Dq) (9)
L e

The perturbative calculation yielded limits on the en-
ergy integral from zero to infinity and we have modi-
fied that result by summing only over transitions
between F and FL. Carrying out the integrals we

find

where ff is the occupation number of the lth state
and the summation is over all states such that
F, &fIco, —co~I & Fr. Performing the integrals we

find

d lneg = +2k, Ld lnL

d lnN A. d inc
d lnL g d lnL

dlnD (c+k) dinE
d lnL g

'
d lnL

dlnF
2

(c+h.) dlnU
d lnL g d lnL

d lng
1

(c +2lt)
d lnL g

3 + j
A.

= —1 —2A, (12)

We next calculate the renormalization of the density
of states which is given by (1 + d X /dh co ) ' where
X is the self-energy of the mth state. We use the

d inc =2 —2A. ——
d lnL

Equations (12) are the differential equations of the
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two-parameter renormalization group, derived within
weak coupling (h. « 1, g ' « 1). The first correc-
tion term in the conductance equation is the one-
electron localization correction of Abrahams et al. ';
we interpret the second term as a many-body localiza-
tion correction. We feel comfortable extrapolating
the RG equations to intermediate coupling to study
the phase transition.

We now study the properties of the RG equations.
We first study the RG trajectories in parameter space
to locate the fixed points representing phase transi-
tions and stable phases. The constant c is unknown;
however, we expect the qualitative behavior of the
theory to be insensitive to the value of the constant.
We will work through the theory with the value
c = 4, chosen so that one-particle localization and

many-body localization are of equal importance at the
phase transition. With this value of c the flow dia-
gram is given in Fig. 1. There is a fixed point at
(g, X) = ( —,, 0) which represents the Anderson transi-

tion studied by Abrahams et al. ' The trajectory to
the right is toward (~, 0) which represents the
noninteracting conducting state with extended states;
the trajectory to the left is toward (0, 0) which
represents the noninteracting insulating state with lo-
calized quantum states. The Anderson-transition
fixed point is unstable with respect to interactions
and does not represent an observable metal-insulator
transition (according to the present theory) although
it can represent a mobility edge far from the Fermi
energy. The noninteracting insulator and conducting
states are not physically observable states. The fixed
point at ( 2, s ) represents the metal-insulator transi-

FIG. 1. Flow diagram of the two-parameter renormaliza-
tion group showing trajectories in parameter space with the
two fixed points marked by open circles.

tion in the interacting system and the two trajectories
flowing into it are the critical surface separating
parameter space into two regions, conducting on the
right and insulatimg on the left. On the right the flow
is toward (~, 1) which represents an observable
phase which we call the amorphous conductor phase.
On the left the flow approaches the A. axis as g goes
to zero which represents an observable phase which
we call the amorphous insulator phase. We show
below that these two phases have unique, universal
properties which depend only on a length scale g and
an energy scale 4.

We now study the fixed point at ( 2, 8 ) and
7 7

develop the scaling theory. We start the calculation
at microscopic length scale "a"with properties N„
etc. If we start on the critical surface we find
EL =E,(a/L)", FL =F,(a/L)~, UL = U, (a/L)",
DL = D, (a/L )", e( = a, (a/L ) ' ",
NL =N, (a/L) ", oL=o, (a./.L), with g=

4
. We

now linearize the differential equations near the fixed
point and find a single positive eigenvalue of
417/8 ——=0.96. Making the usual renormaliza-

tion-group arguments' the correlation length g (at
which the system crosses over from the critical re-
gime to the conducting or insulating regime) is pro-
portional to ~x —x, ~

" where v ' =0.96 and x is the
composition with x, the critical composition. We as-
sume here that composition is the external control
parameter that drives the system through the transi-
tion (at zero temperature). Thus we find two critical
exponents q, relating energy scale and length scale in

the critical regime, and v, relating correlation length
and composition. Both exponents depend upon the
value of the constant c and upon the way in which
the theory is extrapolated from weak coupling and
therefore the numerical values should not be taken
seriously. We have 1 ( g & 3 and we expect v = 1.
The energy scale of the system as it crosses over
from the critical regime to the conducting or insulat-

ing regime is

6 =—Fr =tDg/g' = (tD, /a2) (a/g) ~

We now discuss the properties of the system in the
three regimes: critical, conducting, and insulating.
In what follows we will estimate the order of magni-
tude of various quantities and will omit constants of
order unity. In order to estimate properties of the
system at finite energy E, frequency co, or tempera-
ture T, we stop the renormalization group at a length
scale such that the energy scale is E or @co or kT. In
the critical regime at finite temperature we stop at a
length scale Lr = a (F,/kT) ' " and find for the con-
ductivity

o(T) = o, (a/Lr) = o, (kT/F, )'~&.
Similarly at finite frequency o (co) = o, (tee/F, )'~~

The one-electron density of states versus energy is
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N(E) =W, (E/F, ) '+3~'t The Coulomb interaction is
partially screened U(r) = (e'/e, ) (a/r )". In the con-
ducting regime the solution to the RG equations are
h. =1, gL =3.5(1+L/(). We find

o.r. = 0.1(e'/t()(I +g/L)

and energy scale FL = 5((/L ) z. The length scale at
finite temperature is Lr = g4h/kT and the conduc-
tivity at finite temperature is therefore

g (T) =0.1(e /tg) (I + JkT/g)

Solving the differential equation for the density of
states we find WL = A'r(1+ g/L )/2 so that the density
of states versus energy is

The dielectric constant is

this implies exponential screening with a screening
length g. The theory behaves sensibly in the insulat-
ing regime. The conductance goes to zero at a finite
length scale g which we interpret as the localization
length. The dielectric constant goes to a constant
e=(e, )(g/a)" ' and the Coulomb energy

U& = 5 = U, (a/g) ", which is the relevant energy
scale in the insulating phase, is finite. The density of
states goes sharply to zero and there is a correlation
energy gap equal to 4. The conductivity goes quickly
(exponentially) to zero for kT & A. AII these proper-
ties are undoubtedly characteristic of the amorphous
insulating phase. We do not, of course, expect a
sharp energy gap in the density of states; we expect
band tailing below A. At present we have no viable
microscopic model of the amorphous insulating
phase; the theory presented above in deriving the RG
equations is a primitive microscopic theory of the
amorphous conducting phase.

There is a characteristic conductivity which
separates normal metallic behavior from the amor-
phous conductor behavior. In the normal metallic re-
gime the conductivity is e'kF'l/3rr~k, where kq is the
Fermi wave number and I the mean free path; this
description breaks down for mean free path less than
atomic spacing "a" (we assume a macroscopically
homogeneous material). Since kFa is a typically n,
the normal-metal regime is for cr & e~/3ta The con-.
ductivity in the amorphous conducting regime is
O. le'/tg which should apply when f & a or
o & O. le~/ta. Therefore we expect a crossover from
normal metallic behavior, with o- decreasing with in-
creasing temperature, to amorphous metallic
behavior, with 0. increasing with increasing tempera-
ture for o = . 0e~2/fa which is a resistivity of about

200 p, A cm for metals.
The theory predicts a strong universality: all

metal-insulator transitions in (macroscopically homo-
geneous) disordered materials should have the same
exponents. Further, since the only relevant parame-
ters are the length scale g and energy scale 5, both
the amorphous insulator and amorphous conductor
phases should obey a law of corresponding states.
The materials must be homogeneous on a length
scale larger than g to avoid the complication of a clas-
sical percolation problem. I see no reason why the
theory should not be applicable to granular materials
provided the correlation length is larger than the
grain size and the material is homogeneous; presum-
ably, the critical region will be narrower for granular
materials.

It is clearly desirable to have a more detailed pic-
ture of the conducting and insulating phases than
that presented here. One wants to use the renormal-
ization-group approach for L & g to find the Hamil-
tonian parameters for L = g and then develop a mi-
croscopic theory using the Hamiltonian. The physical
picture of the conducting phase is pretty clear. There
is electron-hole symmetry (in both phases). There is
a square-root anomaly in the one-electron density of
states which is a precursor to the opening of the
correlation gap at the transition. The screening
length is g and the electron-electmn interaction is

strong and is the dominant interaction. A somewhat
more sophisticated calculation of the self-energy us-
ing the screened exchange approximation shows that
the quasiparticle approximation is valid for energies
much less than 5 but breaks down for E = 6 due to
electron-electron scattering. The conductivity
mechanism at low temperatures is quantum diffusion
of quasiparticles; the quantum states are, or course,
extended in the Anderson sense. Since the density-
of-states renormalization for each spin direction fol-
lows the Fermi energy for that spin, the spin suscep-
tibility is not renormalized. In the insulating phase it
is clear that there is a correlation gap but there is, at
present, no satisfactory microscopic model of that
phase.

The present experimental situation is as follows.
The metal-insulator transition appears to be continu-
ous in a-Ge~ „Au„,' granular alumina, 3 and, possi-
bly, phosphorus-doped silicon. 4 Certainly one can
make samples with very small conductivities; it is not
clear at what point inhomogeneities and classical per-
colation become imporatnt. The observation of
correlation effects by tunneling experiments~ in
a-Ge~ „Au„motivated the present theoretical work.
More recent tunneling experiments on granular
alumina' have shown that the square-root anomaly in
the density of states scales with the conductivity over
several decades and that q = 2; this is the first real
test of the scaling theory. Tunneling experiments' in
the insulating phase indicate an absence of available
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states at low energy and thus an energy gap; howev-
er, a quantitative interpretation of the experiment re-
quires an understanding of field penetration into the
insulator which requires a detailed model of the insu-
lating phase. The conductivity crosses over from an
exponential dependence (with a fractional inverse
power of T) at low temperature to an algebraic
dependence at high temperature. The crossover tem-
perature is a characteristic energy- which might be in-
terpreted as an energy gap; however, one could al-

ternatively interpret this behavior as a crossover from
variable-ranged hopping at low temperature to
nearest-neighbor hopping at high temperature. Thus,
the experimental evidence for an energy gap is ambi-
guous. In summary, the experimental evidence is

strong that correlation and localization effects are irn-
portant near the metal-insulator transition and one
scaling prediction has been tested experimentally.
However, many of the predictions of the theory await
experimental confirmation.
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