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Distribution of magnetic short-range order in spin-glasses
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We discuss a description of the static magnetic order of spin-glasses at low temperatures
in terms of the distribution function of spin-pair correlation functions, P(g -, )
=P((S- S -)r). Related distribution functions which are relevant for the interpretationr~ r&+r
of Mossbauer and nuclear-magnetic-resonance experiments are also considered. Local spin con-
figurations of clusters of magnetic atoms are discussed for Ising, XY, and Heisenberg systems,
and it is shown that frustration effects lead to an enhancement of the variance of these distribu-

tions, as compared with corresponding distributions of a randomly diluted ferromagnet. Explicit
examples are given for a model with nearest-neighbor ferromagnetic and next-nearest-neighbor
antiferromagnetic exchange and random dilution with nonmagnetic atoms. Systematic series ex-
pansions for the ground state of this model are obtained (to low orders) in terms of the concen-
trations of both magnetic and nonmagnetic atoms. For intermediate concentrations, Monte
Carlo simulations are performed for the case of the fcc lattice with classical Heisenberg spins.
The results are consistent with experimental results for the Eu„Sr& „S system. We also study

the effect of a nonzero magnetic field and show that the magnetization process of a dilute Ising
ferromagnet with competing exchange is a sort of "devil's staircase. "

I. INTRODUCTION

Theoretical descriptions of static magnetic order in
spin-glasses have mainly concentrated on the
Edwards-Anderson order parameter qFA, '

QEA
= [ (SI ) T

' (SI ) r],„
here S; denotes the m-component spin at lattice site i,
( . ) r is a thermal average for a fixed realization
of disorder in the system, while finally [ ],„
denotes the configurational average over this
(quenched) disorder. However, increasing evidence
has been presented' that the "sharp cusp" of the
susceptibility X at the freezing temperature Tf is not
due to a static phase transition where qEA is nonzero
below T~.'rather the cusp is a dynamic phenomenon,
and qEA =—0 at all nonzero temperatures for both
two-dimensional and three-dimensional spin-glasses.

Nevertheless in spin-glasses there exists a wealth
of experimental data on local magnetic order, which
has an essentially static character, and can be seen
both in neutron scattering experiments and in mea-
surements utilizing "local probes" such as the
Mossbauer effect, electron paramagnetic resonance
(EPR), nuclear magnetic resonance (NMR), muon
spin resonances (p,SR), and so on. ' These latter
methods have the advantage that due to differing lo-
cal environments not only average correlations but
also their distributions are probed. These distribu-
tions should contain information on the "frustra-
tion" effects, which are also responsible for the des-
truction of long-range order in spin-glasses (and

hence' qFA
—=0). Thus a study of these distributions

is of interest, and hence this problem is the subject
of the present paper. It is also felt that more detailed
knowledge of these static correlations is needed be-
fore one can turn to a quantitatively satisfactory
theory for dynamic phenomena.

The spin-spin correlation is defined by

g-, = (S-, S-„+-, ) (2)

In inhomogeneous systems g -, depends on the posi-

tion r ~. Sampling over different r ~ of the spins S -„

we generate a distribution P(g —, ) of the correlation
function. This distribution is related to that of local
magnetic energies X-, via

gusS-, H-, = —XJ( r )g-,

B( r t) =Bo+fNN x g-, +fNwN
r NN r NNN

(4)

The distribution of this quantity has already been
studied for the case of the Edwards-Anderson bond
model. ' At T =0 P(X) is the distribution of "effec-
tive fields" H -, which is discussed in the context of

mean-field approaches. Here we will obtain the en-

ergy distribution for a more realistic site disorder
model.

The local hyperfine field B observed in resonance
experiments' is also related to g-, . Since usually

B( r t) has contributions from first and second
neighbors only, one has
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Thus the line shape of NMR of Mossbauer signals is
related to the distributions of first- and second-
neighbor spin-spin correlations. The first two mo-
ments of P (g -„) are of interest, too T. he average
correlation [g-„],„ is accessible via the Fourier
transform of the quasielastic neutron scattering inten-
sity. The second moment

becomes long ranged if the Edwards-Anderson order
parameter in nonzero, 2

hm gEA( f ) qEA

Before we discuss the spin-spin correlations for frus-
trated spin-glass models we want to mention their
properties for two models without frustration. First
consider the Mattis model' of spin-glasses

XM„,;, ———ge, a, ~J,,~S, S, , e, =+1(random) . (7)
(IJ)

For constant
~ JIJ~ =J )0, one can "gauge away" all

disorder by the transformation S; = e;cr;. Kith

P(g -, ) =x S(g -„—1) + (1 —x) S(g —, ) (10)

Similarly, P( Xg-, ) can be obtained easily as well

where the sum is performed over the range of in-
teractions. Noting that P( Xg -„) is nonzero only if

g-, takes an integer value 0, 1, . . . , z;, for r ~+ r

lying in the ith neighbor shell of r &, we write

Z.
t

i n
Z.—n

P gg-„= g „' x"(1—x) ' 8 gg-, —n . (11)
nW,

P (g -„)= —,
' (1 + 4]„)&(g -,

—1)

+ —,
' (1 —[~].,) &(g -, +1) (9)

However, one gets nontrivial correlations at finite
temperatures, and Monte Carlo simulations have
shown" that this model has many qualitatively simi-
lar properties as the Edwards-Anderson model,
although there is no frustration in the Mattis model.
Secondly we consider these correlations for an "ordi-
nary" dilution problem. Consider a ferromagnet
where magnetic atoms are randomly replaced by non-
magnetic ones with probability 1 —x. These spins
which belong to the same cluster are always fer-
romagnetically aligned, therefore one has at T =0 for
these correlations

g-=e- e- -&cr- (r -}-r r& r&+r ~ r& r&+r

any disorder is left in the sign of e-„e-, +-„=+1.r~ r&+r
Thus P(g -„) is a two-8 distribution.

lf
~ Js~ is taken from a continuous distribution the

model still has trivial ground-state properties. For
T =0 one has the same distribution as before, name-

.f '1

Xg-
. av ,

r av,
=x(1 —x)Z; . (13)

Finally we note that the energy distribution is

From Eq. (11) it is straightforward to obtain mean
and variance of the correlation g —, as

1

Xg-, = Jl d Xg-, P $g-, =xZ, ,

z.

P(X-, ) =P —QJ(r)g-, =X X
i n,.W

r

I l

So far we have introduced the correlations of unfrus-
trated models. With the inclusion of competing in-

teractions, however, the situation is much more com-
plicated, even in the ground state. In the following
section the frustration effect on local spin configura-
tion in Ising, XF, and Heisenberg spin-glasses is dis-
cussed. In Sec. III concentration expansions and
Monte Carlo results for the correlation distributions
are presented. Finally, Sec. IV contains our con-
clusions and briefly mentions relevant experimental
work' on the Eu„Sr~ „S system.

II. CONFIGURATIONS %ITH NONFERROMAGNETIC
SPIN ALIGNMENT IN DILUTED FERROMAGNETS

KITH COMPETING INTERACTIONS

As a simple model of a system which has a (super)
paramagnetic phase at very low concentrations x of
magnetic atoms, a spin-glass state at intermediate and
a ferromagnetic phase at high concentrations, we con-
sider a Hamiltonian with nearest-neighbor (NN) ex-
change J~ )0 and next-nearest-neighbor (NNN) ex-
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change J~ &0,"
X=—J) X c, cJS( SJ+Jg X c(cjS; SJ . (15)

I,JNN i,JNNN

Here c; =1 if the ith lattice site is taken by a- magnet-
ic atom and zero otherwise, and hence [c;],„=x.
Both for the two-dimensional Ising case and the
three-dimensional Heisenberg case the phase diagram
has qualitatively the structure as shown in Fig. 1.'
In the pure system (x =1), one has a transition from
a paramagnetic state to ferromagnetic one at
T, (x =1) as long as R —= Jq/J& )R, while for
R & R the ordered state [which occurs for tempera-
tures T & T~ (x =1)] is antiferromagnetic. Both
transition temperatures T„T~ go to zero tempera-
ture at the multicritical point T =0, R =R ." In the
diluted case for R & 0 a spin-glass state occurs for
concentrations x,' & x & x,", where x,' is the critical
concentration for the transition paramagnet spin-glass
in the ground state T =0, and x," is the critical con-
centration for the transition spin-glass ferromagnet.
For R R the critical line x," [and perhaps also the
line x,

' (Ref. 12)l tends to the multicritical point R

T =0.' At intermediate values of R, the phase dia-
gram in the T-x plane has then both spin-glass and
ferromagnetic states, as indicated by the left of the
three shaded phase diagrams in Fig. 1. An experi-
mental example for this case" is provided by
Eu„Sr~ „S (note that there R =———, , while R = —I1

for the case of fcc lattice).
It has already been pointed out in Ref. 12 that the

greater instability of the ferromagnetic state against
dilution for R & 0 is due to the fact that the spins in
the "infinite cluster" coupled together by exchange
interactions are no longer aligned all parallel to each
other, such as occurs for R «0. In the Ising case,
one can identify typical cases of spin configurations
for both x 0 or 1, where spins are either aligned
antiparallel or not aligned at all. ' Here we extend
these considerations to the XY and Heisenberg case,
and investigate the effect of this nonferromagnetic
alignment on the spin-correlation functions and their
distributions. '

Let us start by considering the very dilute limit
x 0, where the magnetic atoms occur in small clus-
ters of monomers, dimers, trimers, etc. , well separat-
ed from each other (Fig. 2). Isolated atoms do not
contribute to the magnetic correlation at all, of
course. For x 0 the dominating contributions to
the correlations are due to pairs [Figs. 2(a) and 2(b)].
Nearest-neighbor pairs are ferromagnetically aligned,
and next-nearest neighbors antiferromagnetically, ir-

respective of spin dimensionality. Thus the average
correlation for nearest-neighbor distances will be the
same for x 0 as for the ferromagnetic state, x 1,
and deviations from this ferromagnetic nearest-
neighbor correlation are hence expected for inter-

(a) (b)

]-x

FIG. 1, Schematic phase diagram of a diluted magnet
with nearest-neighbor ferromagnetic exchange J& and next-
nearest-neighbor antiferromagnetic exchange J~ as a func-

tion of the concentration x of magnetic sites, of temperature
T and the ratio R = J&/J&. Full curves describe the second-

order phase transition (dash-dotted portions are hypotheti-
cal). The dotted curve represents the "freeze-in" into a

(metastable) spin-glass state.

(e) (g)

FIG. 2. Spin configurations of isolated clusters of magnet-
ic atoms: pairs (a) and (b), triplets (c) and (d), and quad-
ruplets (e), (f), and (g). Nearest-neighbor exchange is indi-

cated by full and next-nearest-neighbor exchange by broken
bonds. Dash-dotted lines indicate alignment direction of the
corresponding spin configurations in the Ising case. For fur-
ther explanations cf, text.
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mediate concentrations only. The correlation of spins
at next-nearest neighbor distances, on the other
hand, must change from ferromagnetic (for x I) to
antiferromagnetic (for x 0).

For larger clusters less trivial possibilities occur. In
Table I and Figs. 2 and 3 some simple examples are
listed. In the Ising case there exists a threshold for
the coupling ratio R below which the ferromagnetic
alignment changes into a more complicated one as
shown in Figs. 2(e) and 2(f) and 3(a), 3(b), and 3(c)
for R (—

2
and (0, respectively. It is interesting to

note that an average over the three degenerate confi-
gurations of Figs. 3(a), 3(b), and 3(c) leads to nonin-
teger values of g-, even in the Ising case. Here the
second-neighbor correlation takes the values + —,.
For larger clusters more and more degenerate states
and hence more and more intermediate values for
the correlations (averaged over ground states of the
cluster) occur. Thus the distribution function of spin
correlations becomes quasicontinuous even in the Is-
ing case, although it will have most of its weight at
values +1 for all x.

In the XY and Heisenberg case the spins are again
ferromagnetically aligned for R above a critical ratio
R,. However, R, differs from that of the Ising
model [compare Figs. 2(e) and 2(g) 1 and the spins
gradually change their angle @ between each other.
Apart from an overall rotation of the spins there are
more degeneracies as shown in Figs. 2(c) and 2(d) ..

In the XYmodel the system has the same energy for
@ and —P. In the Heisenberg case there is an addi-
tional rotation of spin directions around the dash-
dotted line. Even in the Heisenberg case the spin

//

/'

//
(

/

(c)

(d) (e)

FIG. 3. Spin configuration of a certain cluster of five
magnetic atoms: (a), (b), and (c) denote the three degen-
erate states in the Ising case, while (d) and (e) denote the
two degenerate states in the XY case. For notation, cf.
Fig. 2.

directions still are in a common plane. Only for four
and more degrees of freedom the Heisenberg case
may differ from the XYone.

Next we consider the ferromagnetic limit, x 1

and R )—,. With probabilities of order ( I —x)"we
find clusters of k nonmagnetic atoms which are either

TABLE I. For coupling ratio R = J2/J~ (R, the XY or Heisenberg spins of configurations Figs. 2, 3, and 4 have a noncol-
linear ground state. Critical ratios R„ the energies of the noncollinear spins U„and their angles $; are given for some simple
examples.

Fig.

2(c), 2(d}
1

2

1R+ cosy' = —1/2R

2(g)
1—1(R (——
3

-(5R'+1)/2R cos$& ———(1+3R )/4R

3(d), 3(e)

4(a), 4(b)

4(c)

2 1————H/Js s

3(1+H/J))1

11R 2+6+—(H =0)
2 R

—+4+6R (H =0}2

R

3R 1HcosP= 1+ +——
2 2Ji

1 H
cos@= 1+R +——

2 Ji 2R)

m+$)
+ R +0(R2)
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nearest or next-nearest neighbors on the lattice. Fig-
ure 4 shows some examples in low orders in the vari-
able 1 —x. In the Ising case the first configuration
containing antiparallel spins occurs in order (1 —x),
Fig. 4(e), while for the XYand Heisenberg model de-
viations from ferromagnetic alignment occur in order
(1 —x)', Figs. 4(a) and 4(b). In Table 1 angles,
thresholds, and energies are given for the cases
shown in Fig. 4. The energy can still be lowered to
some extent by relaxing the ferromagnetic alignment
of the surrounding spins. The deviation 5&t& from the
ferromagnetic axis decays with some inverse power of
the distance

~
r

~
to the defect. '6

ln the XY model one again has the degeneracy + ItI;

of the canted spins, while in the Heisenberg case
against rotation around the ferromagnetic axis is pos-
sible. These additional degrees of freedom interact
via the deviations 4P( r ) of the spins between the
defects, therefore they may freeze into a spin-glass
phase at low temperatures. ' In Table I and Fig. 4,
an external magnetic field has been included, too.
An important observation is that the angle It& goes to
zero continuously if 0 is increased. In the Ising case,
on the other hand, antiparallel spins do not change
their orientation in weak fields, - until a critical field
H, is reached [in the case of Fig. 4(e) we have H, /JI
= —1 —4R, for R & R, = —

I ]. At this critical field,

the orientation of an antiparallel spin jumps discon-
tinuously from —1 to +1.

As a result, we predict for the magnetization pro-
cess of a diluted Ising ferromagnet with competing
interactions a sequence of magnetization jumps, oc-
curring at critical fields where clusters of antiparallel

spins start to become parallel oriented. Thus, consid-
er the general case ~here a cluster of I spins, which is

coupled by m nearest-neighbors J& and n next-nearest
bonds J2 to its (ferromagnetic) environment. This
cluster will be overturned when the energy difference
AU = mJ~+nJ2+tH =0, i.e., critical field is

H, /JI ———m// —( n/I )R

While for small I the geometrical possibilities allow

only a few choices of m and n, for large I, m and n

will take on a variety of possible values, correspond-

ing to the various configurations of empty sites at the
surface of this cluster. Since for large enough com-
pact clusters both m/I and n/I may be arbitrarily

small, the magnetization process is a sort of "devil' s
staircase" of singularities. Note that the magnitude

of the magnetization jump decreases rapidly with in-

creasing cluster size, and therefore the behavior will

be qualitatively as shown in Fig. 5. In contrast, for

(a)
I I

~

&I

„I
I

I&

I
I

o

(c)

&o
0

I
I &

&I
&I

I ~

I
I&

a» l

O. l

1

0.2 0 3 HIJ1

FIG. 4, Spin configurations near clusters of nonmagnetic
atoms (indicated as empty circles) in the XY case r(a) —(d)l
and Ising case [(e)]. For notation, cf. Fig. 2, for further ex-
planations cf, text,

FIG. 5. Qualitative magnetization process of a diluted Is-
1

ing system with 8 = —
3

at a concentration x in the range

x,"(x (1. Magnetization jumps occur for 0,/J&
= (n —3m) /3I, where n, m, and I are integers (cf. text).
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XY and Heisenberg systems the magnetization pro-
cess is predicted to be perfectly smooth. Computer
simulations for a diluted fcc classical Heisenberg
model with R = —

2
confirm this prediction (Fig. 12).

These calculations are in qualitative agreement with
corresponding experimental data for the Eu„Sr& „S
dilution system. "

take rational numbers. For instance the values +—
3

occur with probability 8x4. One obtains for the aver-
age value and the variance of the next-nearest-
neighbor correlation

$g -„„„„=4x+ 16x —8x + 16x
aV

VNNN =4x(1 —x) +64x' —176x' . (18)

III. DISTRIBUTION FUNCTIONS FOR MAGNETIC
CORRELATIONS: NUMERICAL RESULTS

A. Exact concentration expansions
for the square Ising model

In order to derive a systematic expansion of the
distributions P( gg -„), P(X -, ) in powers of the

concentration x, on which we concentrate our interest
in the following, one has to compute the quantities

Xg-, , X-, for each possible site of a cluster (such

as shown in Figs. 2 and 3, etc.), and weigh the result-

ing contributions with the corresponding statistical
factor appropriate for that particular cluster. Finally
the result is summed over all possible clusters up to
some given maximal cluster size, and the resulting
expression is then expanded in powers of x. Com-
puting the statistical ~eights we assume perfectly ran-
dom mixing (although the procedure can in principle
be extended to include "chemical clustering" effects
or any prescribed short-range order in the occupation
probabilities of magnetic atoms). Experience with

similar expansions for other quantities" has sho~n
that in higher order the coefficients typically behave
rather irregularly reflecting singularities of the same
nature as those in Fig. 5. Thus we restrict ourselves
to low orders of the expansion here, appropriate for
considering the behavior near x 0 and 1 (for the
expansion in the concentration of "holes" with con-
centration y =1 —x).

Let us consider the conditional probabilites for the
square lattice Ising system with —0.5 & R & 0 up to
order x (clusters of one central occupied spin and
between 0 and 4 first or second neighbors). In this
order of the expansion no antiparallel nearest
neighbors occur; thus we have as in ordinary dilution
[Eqs. (11) and (12) with Z;=4 here]

$g -, =4x, VNN =4x(1 —x)
NN, av

For the distribution functions of the second-neighbor
correlation, the situation is different, however. Clus-
ters with free second neighbors and the central spin
give integer values for Q„„Ng -, between —4 and —l.
If the second neighbors are connected by nearest
neighbors as in Figs. 2(c) and 2(e), XN„„g-, has the

values 1 and 2 . Due to degeneracies as in Figs.
3(a) —3(c) the second neighbor correlation can also

Thus the concentration dependence of this correla-
tion differs from the ordinary dilution problem al-
ready in low order and the variance is enhanced.

The local energy is given by the spin correlations

r

NN NNN NN
t , . av

NNN

(20b)

Since J~J2 is negative the correlation between first
and second neighbors V reduces the variance of the
energy. From Eqs. (17) and (20) we obtain

[X],„=—2x(J~ —J2) —4J2(2x —x'+2x4), (21a)

VH =x (1 —x ) ( Ji2 + J22 ) +4 Jq2 (4x —11x )

+ 8J,J,(x' —2x'+ x4) (21b)

Since to the order of our expansion there are no
"frustrated" nearest-neighbor bonds the corrections
to the leading order in Eq. (21a) involve J, only.
Note that the variance V~ is reduced as compared to
the variance of the pure dilution problem
[ Vsc= ( J~2 +J2 )x(1 —x) then], which is an unex-
pected result. This reduction of the variance is due
to the strong correlation between local disorder and
local spin arrangement, due to energy minimization.

Next the expansions of the corresponding quanti-
ties in powers of the concentration y of nonmagnetic
atoms are considered. For —0.5 & R & —0.25 and up
to order y3, only the configurations of Fig. 4(e) are
responsible for different correlations as compared to
ordinary dilution. From Fig. 4(e) we see that both
first- and second-neighbor correlations are changed,
and we obtain

=4x —16y'
NN

(22a)

V„N =4x(1 —x) +80y' (22b)

J) J23i= ——Xg, ——X g
NN

, The corresponding equation also holds for the condi-
tional averages. However, the variance is given by

VIr =[(X—[X],„) ]„=J& VNN+ J2 VNNN+2JiJ2 V

(20a)
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and

X g -, =4x —64ys
NNN

av

VNNN =4y(1 —y) +320y

(23a)

(23b)

Again the distribution of the local energy can be ob-
tained from the distributions of correlations by Eqs.
(19) and (20), one obtains

[3C],„=—2x( Jt —J2) + 8y'( Jt +4J2) (24a)

ggcond
~

p p 4

Z X

VH =y(1 —y)(Jt' —J2 )+4y'(SJ'+20J'+28J J )

(24b)

Again the variances of the individual correlations are
enhanced awhile the variance of the local energy dis-
tribution is reduced as compared to an ordinary dilu-

tion problem. For 8 & —
4

the configuration of Fig.
4(e) is responsible for the y' correction to the ordi-
nary dilution problem. It is interesting that at
8 = ——„ the energy (24a) is continuous as a function

of 8 ~hereas the variance has a discontinuous jump.

Thus when crossing 8 = ——from above degenerate

spins are flipped without cost of energy. However,
these spin flips increase the fluctuations of the sur-
rounding local fields.

On the basis of these expansions one expects a
behavior as shown in Fig. 6. Of course, a quantita-
tive estimate of these quantities is not possible with
these very short series. Even if longer series were
available we would expect them to be valid only for
x & x,

' (x expansion) or x & x," ( y expansion),
respectively: at the phase bouridaries x,', x," (weak)
singularities are expected for all quantities under con-
sideration.

B. Monte Carlo calculations for the face-centered-cubic
classical Heisenberg model

Being interested in the distribution of spin-spin
correlations at arbitrary concentration, it is con-
venient to apply Monte Carlo methods. ' We again
study the model treated in Ref. 12 because it can be
compared to data on Eu„Sr~ „S.'" Typically a sys-
tem of 4000 sites with periodic boundary conditions
is simulated.

Figure 7 shows the distribution functions of indivi-

dual spin correlations P( (S; S&) r) at a concentration
deeply within the spin-glass phase. It is seen that
most nearest-neighbor pairs are ferromagnetically
aligned, at least to some extent. On the other hand,
for next-nearest neighbors antiferromagnetic align-

ment is about as likely as a ferromagnetic one, and
there is also considerable weight for pairs of spins

4x(1-x)

P (S;S)

0.5 )( 1.0

FIG. 6. Normalized conditional correlation between
nearest-neighbor (NN) and next-nearest-neighbor (NNN)
shells on the Ising square lattice with J2 & —J~/4 (upper

part) and associated variances (lower part). Full curves
represent series expansions, while broken curves indicate a

qualitative interpolation,

NNN

0 SiS)

FIG. 7. Distributions P((S, S&) r) for nearest-neighbor
(NN) and next-nearest-neighbor (NNN) sites of a classical
fcc Heisenberg magnet with J2 = —J~/2 at x =0.3, T =0.
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which are nearly orthogonal to each other.
Figure S shows the distribution of I'( g-„g -„) for

nearest-neighbor distances at several concentrations.
In order to compare with the distribution in the ordi-
nary dilution case, Eq. (10), for which X-, g -, can
take integers only, P( X-, g-„) was recorded as a

histogram with integer stepwidth. It is seen that the
actual distribution is not very different from this dis-
tribution occurring in the ordinary dilution problem.
The situation is different for next-nearest-neighbor
distances, however (Fig. 9). In this case, Eq. (10)
would be a bad approximation. This result is particu-
larly important for the Eu„Srl „S system, where it is
believed that the next-nearest-neighbor correlations
dominate in the transferred hyperfine fields. Final-
ly, Fig. 10 presents our results for the distribution of
the local energy of magnetic sites, which can also be
interpreted (at T =0) as the distribution of local ef-
fective magnetic fields H, ff, as noted above. Note
that there is (almost) no' weight near H, rr=0 for this
spin-glass model.

The results of our calculations are then summa-
rized in Fig. 11. It is seen that the mean nearest-
neighbor correlation stays nearly perfectly ferromag-
netic for all concentrations, while the next-nearest-
neighbor correlation changes from ferromagnetic (for
x 1) to antiferromagnetic (for x 0), the behavior

P
x=0,5 x = 0.6

0.2—

0.1—

P

03 x=03 x =0.4

0.1—

-5 -4-3 -2 -1 0 1 2 3 4 5 -5-4-3 -2 -1 0 1 2 3 4 5 6

s, s,
jE nnn

FIG. 9. Same as Fig. 8 but for the next-nearest-neighbor
shell,

near x.=0 being given by

Sp S„"NNN
'= —I +Sx+O(x2)

The behavior of [ X-, g-, ]„is similar. We note that
the average energy behaves as

[(X)],„/[ —(6Jt+3J,)x'] 1

for x 1, while

"- x=05 x =0.6

[(X)],„[(6J,+3iJ,i) —24x[J, i]
[—(6J, +3J,)x'] (6J, +3J,)

0.2- 0.2-

x =0.5
P x =0.6

03- o

x=0.3
0. —

tL
10

0 5 10

x=0.3
10 15

x =0.4

0.1— 0.1—

5 10 O

S Si
jinn

10

FIG. 8. Distribution P(g-„g-„) for the nearest-

neighbor shell of a classical fcc Heisenberg magnet with

J2 = —JI/2 and T =0 at various x. The number N of sites
occupied by magnetic atoms in the lattice sites also indicat-
ed. Histogram denotes recorded distribution while straight
lines represent Eq, (10).

H/3)

J
0 5 10

H/ jq

I

15

FIG. 10. Distribution of local effective magnetic fields for
a classical fcc Heisenberg magnet with J2 = —JI/2 at T =0
for various x.
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FIG. 11. Concentration dependence of individual correla-
tions g: [ XNNg -, ),„/12x, [ QNNN g -, ),„/6x, and the nor-

malized energy 0 = [X]gy/(6J)x +3J2x ) (a), and of the
associated variances V'. VNN/[12x(1 —x) ],
VNNN/f6x(1 —x)], and V~/r. (12J) +6J2 )x(1 —x)] (b).
Dashed straight lines indicate asymptotic behavior for small x.

discussed. While these distributions can be obtained
rather trivially for Mattis spin-glasses, dilution prob-
lems with noncompeting magnetic interactions, etc. ,
diluted systems with competing interactions (which
show nontrivial spin-glass behavior) are much more
complicated. We proceeded by first analyzing the
spin configurations for Ising, XY, and Heisenberg
spins, and then identified the behavior of the distri-
bution functions by exact concentration series expan-
sions in the Ising case and by Monte Carlo computer
simulations in the Heisenberg case. Our results
show, at least for the model with ferromagnetic
nearest- and antiferromagnetic next-nearest-neighbor
exchange which is realistic for Eu„Sr4 „S, that one
can have a pronounced ferromagnetic short-range
correlation throughout the spin-glass phase: it is only
the ferromagnetic long-range order which is lost in
the spin-glass phase, but locally still most of the spins
are oriented nearly parallel to each other. The orien-
tation of this local ferromagnetic order changes in the
system gradually but irregularly, due to the random
distribution of the configurations of nonmagnetic
atoms. Of course, if an antiferromagnetic with com-
peting interactions would be diluted rather than a fer-
romagnet, we expect local antiferromagnetic order in-
stead. In fact, we expect similar local order effects in
other spin-glasses such as nonmagnetic metals diluted
with magnetic ions, too: but since longer-range in-
teractions (such as the Ruderman-Kittel exchange)
are cumbersome to treat by either the concentration
expansion method or the Monte Carlo simulation
method, we have not attempted any quantitative
analysis here. We feel, however, that for a more
complete understanding of spin-glass systems the
analysis of such short-range-order effects will be in-
dispensable.

As mentioned above, the present calculations have

for x 0: while all antiferromagnetic bonds are un-
satisfactory ("frustrated") in the ferromagnetic state
for x 1, there are no frustrated bonds for x 0.
With respect to the variances, we note as in the Ising
case that the variances of X-, g -, are enhanced in

comparison with an ordinary dilution problem [Eq.
(10)], while the variance of the energy distribution
gets reduced for intermediate concentrations.
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IV. CONCLUSIONS

In this paper distribution functions of magnetic
short-range order in magnets with quenched disorder
were introduced, and their ground-state properties

FIG. 12. Monte Carlo results for the root-mean-square
magnetization as function of magnetic field of a fcc classical
Heisenberg system at composition x =0.595, for a lattice of
4 &&10 sites and periodic boundary conditions. Note that
the estimate for the critical temperature of ferromagnetic or-
der in this case is kz T,/J&

——0.95.
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immediate applications to Eu„Sr~ „S. Thus it is grati-
fying that both the variation of the magnetization
with an applied magnetic field (Fig. 12) and of the
quantity t $g-, ],„, which is related to the hyperfine
field measured in resonance experiments, are in
reasonable accord with observation. But a more
quantitative analysis of the data yielding information

on the full distributions would be desirable. It would
also be interesting to find an experimental realization
of a dilute Ising system with competing interactions:
its magnetization process would be a sort of "devil' s
staircase" (Fig. 5). Thus we hope that the present
work will stimulate further experimental efforts on
sp~n-glasses.
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