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Ultrasonic investigation of critical dynamics in KMnF3
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An extensive ultrasonic investigation of the cubic-tetragonal phase transition in KMnF3 with

respect to temperature, frequency, mode, and sample dependence has been carried out by

means of wave-vector-reversed echo technique as well as conventional pulse reflections. All

measurements of the attenuation n obey a dynamic scaling law o. —0) t ~G(cov). %e have
measured p =1.87+0.05, in accord with the predictions of the three-dimensional Heisenberg
model, a result which is consistent with the expected value @= 1.26 for the anisotropy cross-
over exponent. The relaxation time 7, governing the dynamics of ordered clusters„ is found to
be =(9 x 10 ' ) t ' ' s. The form of the scaling function G is experimentally determined, and

its expected limiting forms at low and high cov values discussed.

I. INTRODUCTION

Ultrasonic methods provide an important probe of
critical behavior near structural phase transitions.
The critical attenuation and the sound velocity pro-
vide information about qualitative or "universal"
properties as well as quantitative system dependent
features of the transition. Static or dynamic proper-
ties may be studied, depending on whether the ul-
trasonic frequency is lower or higher than the relaxa-
tion rate of the critical fluctuations,

The important role of fluctuations in ultrasonic ex-
periments was first established more than ten years
ago in SrTi03. Since then, several experimental in-

vestigations have been performed in the perovskite
structures. For reasons which were previously not
understood, a wide range of critical exponents was
observed. One of the motivations for the work
presented here was the realization that the sample
quality problem could have been one of the main
causes of these variations. In an inhomogeneous
crystal, where the transition temperature T, varies
slightly with position, i.e., T, = T, ( r ), the acoustic
wave fronts may be severely distorted during pro-
pagation due to the strong spatial variation of the
sound velocity through the dependence on reduced
temperature t( r ) = ( T —T, )/T, Such problems.
may seriously affect the results near T, . In addition,
as we have shown in a recent paper, 2 critical ex-
ponents have often been determined from data taken
in a temperature region where a simple power law
could not be expected, due to the influence of truly
dynamical effects, i.e. , effects associated with finite
cue values. Here co is the sound frequency and 7 the
relaxation time for fluctuations.

In particular, the situation in KMnF3 has been
rather unclear. The temperature dependence of the

critical attenuation, o. —t t', has been discussed in
several papers. ' Fossheim et al. ' found a change in

p from 1.95 to 1.25 about 1 K above T„using an
11.7-MHz longitudinal [100] mode. This effect was
interpreted as a possible manifestation of a dimen-
sional crossover. Later extensions of the theory (see
Sec. II), however, seemed to exclude this explana-
tion. Domb et al. found a temperature independent
p

—1.3 from measurements with longitudinal waves
along [123]. Courdille and Dumas' measured p
values varying slightly from mode to mode, in the
range 1.1 —1.4. Recently, Suzuki has obtained a p
crossing from 1.6 to 1.1 for the longitudinal [100]
mode. Concerning the frequency dependence of o., it
seems to have been accepted that it deviates from the
usual cv' law. ' ' This was first noticed by
Furukawa et al. ' (u —ru") and later by Fossheim
er al. ' [n —cu"tr~, where n (T) —1.3—1.4] and Domb
et al. 4 (n —o&"). Hatta et al. were able to fit their
data to a relaxation formula n —Ccu'r, /(I +co'r,')
where C and v, were temperature-dependent parame-
ters. The relaxation time 7, was related to the cen-
tral peak width. Suzuki found that the attenuation
could be described by a dynamic scaling function.
Unfortunately, however, his measurements were car-
ried out in a too-narrow temperature range to include
the truly hydrodynamic behavior.

To improve our understanding of the critical
features of this and similar structural phase transi-
tions, we found it necessary to perform an extensive
investigation of the frequency, temperature, mode,
and sample dependence of the attenuation. 2 To this
end, and in order to eliminate the sample quality
problem, a new technique was developed based on
application of wave vector reversed phonon echoes.
Since this technique has been presented in more de-
tail else~here it will only be briefly sketched here

2680 O198jL The American Physical Society



ULTRASONIC INVESTIGATION OF CRITICAL DYNAMICS IN. . . 2681

(Sec. III), after a short review of the present' theory
for ultrasonic absorption near structural transitions
(Sec. II). The main topic of the paper, attenuation
measurements above T, in KMnF3, is covered in
Secs. IV and V. Some results obtained below T, are
given in Sec. VI. Concluding remarks are presented
in Sec. VII.

I'
)3;,I= (Q.(r) Qp(r) Q„(r') Q3(t') )

and is written

(3)

where P(«), k, p, ) is the canonical conjugate momen-
tum to the normal mode coordinate, and u(k, p, ) is
the sound velocity. P(«), k, p, ) may be expressed by
four-point time correlation functions

II. THEORY

At 187 K, KMnF3 undergoes a weakly first-order
transition from a cubic (0),') to a tetragonal (D4), )
phase. The order parameter is the rotation angle of
MnF6 octahedra, and the transition is driven by a soft
optic mode at the 8 corner of the Brillouin zone.
The first-order nature of the transition is believed to
be caused by critical fluctuations via the anisotropic
dispersion of the soft mode. ' It is unclear whether
the system is described by a Heisenberg (HFP) or a
cubic (CFP) fixed point, but it is generally believed
to belong to a universality class with space and spin
dimensionalities d = n =3. However, the strongly
two-dimensional fluctuation correlations have led to
the idea" that a dimensional crossover might be ob-
servable. 3

Following Aharony, ' we write the coupling part of
the Feder-Pytte Hamiltonian in the following way:

r
N

0 = J d4r B, XS [Q (r)]'
a 1

)

n

+Bz X S [nQ (r) —Q'(r)l
a 1

XQ.(t)Q. (A XQ )i')0 )t')) .
ap a p

In that case, as is known from dynamic scaling
theory'

D, (~, k) —r '+"'G, (~r,k() (6)

Here o, is the specific-heat exponent, and the dynam-
ic exponent z = 2 + (6 ln

3
—1)q in lowest-order e ex-

pansion. v and q are, respectively, the usual ex-
ponents for the temperature and k dependence of the
correlations. G)(«)r, k f) is a dynamic scaling func-
tion, depending on the correlation length

40r
"

and on the decay time of the fluctuations

P(«), k, P, ) —«33D(«), k)

Here D(«), k) is a linear combination of Fourier
transformed correlation functions. For the terms as-
sociated with the B) part of Eq. (I), the relevant sum
of the functions in Eq. (3) may be written as an
energy-energy correlation function

a(k, p, ) = ImP(«), k, p, )
2«)3)(k, P, )

(2)

+B3 X S )3Q.(r)Qp(r) . (1)
asap

Here Q (r) is the a component of the local rota-
tion angle, while the 5 p are mechanical strain com-
ponents. The coupling constants 8& are assumed to
be only weakly temperature dependent. While the ef-
fect of the 8~ term is simply to shift the transition
temperature, the 82 and 83 terms correspond to in-
teractions in analogy with anisotropic exchange in-
teractions in magnetic systems, leading to crossover
exponents $3 and $3.)3'4 For instance, as can be
seen directly from Eq. (1), with stress applied along
[100], ordering will be preferable J. [100] when p & 0
(Bz & 0, XY model), and II [100] when p (0 (Ising
model). p =0 corresponds to the Heisenberg model.
p3 is hence a measure of the relative stability of the
corresponding fixed points.

According to Pytte, ' the ultrasonic absorption in
the cubic phase for a mode propagating with wave
vector k and polarization in the p, direction may be
written

Dz(«), k) —t G3(«)r, kg)
—[a+vs+2(y3-1) ]

D3(~, k) —r G3(«)r, kg) (10)

The general expression for the attenuation will

hence include up to three terms

ag —«) t ~GJ(«)r, kg)

where the critical exponents pJ are given as

pi =o, +vz

P3=P +2()4 1)3~

P3 Pl + 2( t3))

(12)

(13)

(14)

The terms arising from the 82 and 83 parts of Eq.
(1) are derived from correlation functions I')3, )3 and
I ~].~~

—I ~~.22, respectively. These are "spin-spin"
correlation functions of lower symmetry than those
arising from 8~ terms. Since the coupling constants
82 and 83 may be considered as analogous to ex-
change fields, the corresponding correlation functions
incorporate the crossover exponents p3 and Q3 (Ref.
16):
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TABLE I. Exponents for critical sound attenuation calculated by second-order e expansion.

d=3
P1

HFP CFP

P2

HFP CFP

P3

HFP CFP

Ising (n =1)
XV (n =2)
Heisenberg (n = 3)

1.39
1.36
1.34

1.39
1.33

1.59
1.73
1.86

1.92
1.87

1.59
1.73
1.86

1.39
1.84

Here p1 corresponds to the result derived by
Kawasaki' by means of a mode coupling approach.
$z and @3 have been derived by Wilson' and Aha-
rony. ' At the HFP Q, = $3, while they differ at the
CFP. For d = n =3, @z(HFP) = Q, (HFP) =1.26,
qhz(CFP) =1.27, $3(CFP) =1.26. In Table I we show
the resulting values for p1, p2, and p3 in the three-
dimensional case.

Murata calculated the ultrasonic attenuation using
the e expansion in renormalization-group theory. He
assumed the acoustic wavelength h, =2m/k to be
much larger than the correlation length g; i.e. ,

kg « 1. Further, the relaxation time was assumed
to be short compared to the period of the sound wave
(t«r « 1). This means that he assumed all scaling
functions Gt(cur, kg) =1. The resulting absorption is

written

n(k, p) = ", g(k, p)
4M, ks Tv3(k, p, )

where the critical part g(k, p, ) is given for four dif-
ferent modes in Table II. M, is the unit-cell mass,
and k~T the thermal energy. K1, K2, and K3 in

Table II are constants with unknown values, appear-
ing in the calculations of the Fourier transformed
correlation functions. The B's and the K's reflect the
quantitative (and hence less important) details of the
Hamiltonian, while the universal, qualitative features
are expressed by the critical exponents p1, p2, and p3

TABLE II. Sound attenuation functions g(k, p. ) entering
Eq. (15) for four different modes of propagation.

I

g(k, &)

given in Eqs. (12)—(14). Notice however, that there
may exist universal ratios between coupling con-
stants. "

As mentioned, Murata's results are valid only in
the quasistatic region. Closer to T„when r [Eq. (8)l
tends to diverge, the requirement co~ && 1 may be
relaxed. Still, for reasonable acoustic wavelengths,
kg « I will be assumed to be valid, even very close
to T, . For each of the different terms nt [Eq. (I I)]
contributing to o, , we thus have to incorporate the
corresponding dynamic scaling function
G&(cur, k(=0), as has been pointed out before. '

As mentioned, the dynamic scaling hypothesis as-
sumes

Gt(cur) =1, for (or 0 (16)

Now, since the critical slowing down is characterized
by an infinitely long relaxation time, singularities in
the ultrasonic attenuation may only occur at co =0.
Hence, n should be temperature independent in the
limit t 0(T T, ) for cu %0; i.e., GJ(cur) should be
written

G&(t«r) —(cur) "t, for cur oa (17)

and the exponents K~ determined by the condition

2-x —(p -uz~ )
uj(t -0) —«) t t (18)

III. EXPERIMENTAL METHOD

which directly gives tt&
= p&/vz, or ttt =0.94 and

K2 = K3 = 1.32. Little is known theoretically about the
form of G& in the region between the two limiting
values of co~.

[1oo]
[»o]
[»1]
[1oo]

g~ =K~B~ t &, (g =1,2, 3)P

Longitudinal

Longitudinal

Longitudinal

Transversal

g1+ g2
1

gl +
4 g2 +g3

4
g1+ 3 g3

g3

We have measured ultrasonic attenuation in

KMnF3 using the conventional pulse reflection
method as well as the novel phonon echo tech-
nique. '9 In the latter case (see Fig. I), a sound
pulse at frequency co is transmitted from the sample
through an acoustic bond (Nonaq stopcock grease)
into an echo active single crystal (Bi&zGeOzp). This
crystal is placed in the electric field of a helical
resonant cavity, which is tuned" to 2'. A phonon
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FIG. 1. Experimental setup for phonon echo investigation
of a nonechoactive specimen, as for instance KMnF3. The
echo crystal is located in a tunable spiral cavity.

echo results from the bilinear interaction between the
field F. =Eoej "' and the initial sound wave
$ = $0e & "' " ' ' . The echo may be written

J(~t+k ~ r )

y is a material parameter characterizing the echo gen-
eration efficiency. This effect was first seen by
Thompson and Quate23 in LiNb03. A possible inter-
pretation of Eq. (19) is that even in case of a distort-
ed wave front the echo wave vector is reversed at
every point of the wave front during echo generation.
Hence the echo propagates backward such that its
wave front reconstructs continuously into that of the
initial wave. This means that there wi11 always be
constructive interference at the detecting (LiNb03)
transducer. Consequently, the problem of low acous-
tic sample quality has been considerably reduced.
~ith a small and nearly temperature-independent at-
tenuation constant near 187 K in Bii26e020, the tem-
perature dependence of the echo amplitude directly
gives the critical absorption in KMnF3.

Measurements with the echo technique could be
performed in the frequency range 60—250 MHz using
tunable spiral cavities. In the present experiments,

transducer efficiency and bond losses set the upper
frequency limit, while the lower limit was due to the
tuning range of the cavities. This is however, merely
a practical limitation. Echoes may be used below this
frequency range by replacing the cavities with reso-
nant LC circuits, and above by using evaporated-
thin-film transducers. ReAected pulse data could also
be taken simultaneously with echo data, and far away
from T, these were sho~n to agree. %e have mea-
sured the attenuation for four different modes (longi-
tudinal waves along [100], [110],and [111],transver-
sal waves along [100]) using four different samples
up to —50 K above T, and throughout the frequency
region 15—700 MHz. Above 250 MHz conventional
technique was employed.

Crystals from two different sources have been used
(see Table III). Samples I—III were grown from melt
in He atmosphere by Dr. A. Linz at the Crystal Phy-
sics Laboratory of MIT around 1970. The quality of
the samples then was extremely good, as was shown
by neutron scattering. 3 Some of them (especially II)
were later exposed to mechanical stress which had in-
troduced considerable defects. Sample IV was cut
from a sphere grown by CEN in Grenoble in 1979.

For temperature control a Linear Research LR-130
unit was used along with an LR-110 Resistance
Bridge for temperature measurements. Homemade
Cu wire thermometers as well as commercial
Rosemount Inc. Pt thermometers were used
throughout the experiments. The reproducibility of
both was checked to be within the temperature reso-
lution (-0.01 K) of our experiments. All data were
taken as a function of decreasing temperature at con-
stant frequency. The temperature was controlled and
stabilized within —2 mK, using a stabilization time
of —10—20 min per measurement. Care was taken
to avoid heating of the sample by the power of the
acoustic pulses. It was also checked that reflection
and echo amplitudes varied linearly with input signal
strength.

The critical part of the attenuation was obtained by
subtracting a very weakly temperature-dependent
background. The background level was estimated
from least-squares calculations, but could not be

TABLE III, KMnF3 samples used in the present work. T~(= T, ) is the temperature of max-
imum attenuation at low frequency (measured with decreasing temperature).

Sample No. IV

Orientation
Length 2L (cm)
Acoustic quality
Origin
Measured T~(K)

[110]
1.7S

Good
MIT, 1970

187.20

[100]/ [110]
1.67/1.44

Poor
MIT, 1970

187.12

t1111
1.49

Good
MIT, 1970

187.21

t110]
2.09

Very good
CEN, 1979

187.15
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determined more accurately than within +0.5 dB/2L
(1.being the length of sample). Because of the weak
first-order character of the transition, the results
could be analyzed as a function of 6 T = T —T
= T —T, where T is the temperature of maximum
attenuation at low frequency. A thermal hysteresis
ranging from & 0.02 K (samples I—III) to 0.12 K
(sample I&) was observed. Hence, at least for data
taken more than 1 K above T„ this does not affect
the measured exponents p significantly.

a (dQkm)

50-
98 MHz 170MHz

T30-
'lI

20-

10-

Longitudinal ki(DOOJ

KMnF3 (SompleI)

IV. MEASUREMENTS AHORSE Tc

A. Longitudinal waves, k II f 100j

Experiments with longitudinally polarized waves
along [100] were performed in samples I and II (see
Table III).

Attenuation data obtained in I are presented as a
function of the temperature deviation 4T in Fig. 2
and as a function of frequency in Fig. 3. Only in a
temperature range several degrees above T, do the
measurements confirm a law like Eq. (15), with the
frequency dependence ~2 expected from the Murata
theory. When the linear parts of curves like those in
Fig. 2 are analyzed by least-squares fits for 11 dif-
ferent frequencies, the exponent p =1.87 + 0.04
results. Hence, for 4T & 7 K, u can be expressed as

2.0+0.1 )-1.87+0.04

Thus, our results indicate that gq (Table II) dom-
inates over gi in the expression for n with k II [100],

5-

I ECHO

e REFLEC

MEAS

1 I I I I I 4 I

0.5 1 2 3 5 10 20 hT (K)

FIG. 2. Temperature dependence of the critical attenua-
tion of the longitudinal [1001 mode in KMnF3 (sample I),
with the expected t '8~ law sho~n at each frequency. The
uncertainty in determination of the background level was
here, as well as in the following figures, +0.5 dB/cm, and
the uncertainty of measurement at each point —+0.2
dB/cm.

and that the three-dimensional Heisenberg model,
for which pt =1.86 or 1.87 (Table I) governs the be-
havior of the critical attenuation, at least well above T, .

On approaching the critical point, on the other
hand, we find that the temperature exponent changes
to an apparent value of 1.2—1.3. The frequency ex-
ponent at the same time crosses gradually over to a

a (dB/crn)

50-
Longitudinal k [l flool

KAhnF3 (Sample I)

30-

20-

10-

5-

2-
HO

LECTION

I I

30
I

50
I I I I

100 200 300 500
ttt~ (MHz)

I I

1000 2000

FIG. 3. Frequency dependence of the critical attenuation of the longitudinal [100] mode in KMnF3 (sample I). Straight lines
fitted to the data points are shown at each temperature.
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CX (ditk'cm} ~ (dB/cm)
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',f=104MHz '„

Longitudinat k (([1101
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30-

5- '30MHz

3-

155MHz
~ 345 MHz

20- 95MHz ~ ~ o47OMHz~ z 220 MHz ~ ~II ~ ~ 0S ~
~ z ~ ~ 600MHz

~ ~ ~
10- 0 ~

a ECHO

~ REFLECTION

~ ECHO

05- ~ REFLECT

I I I

Q2 0.3 0.5
I I

2 3

gT-1.87

1
0.5 2 3 5 10 tits (K)

FIG. 4. Measurements of longitudinal attenuation along
)100] in sample II compared with the observed behavior in

sample I (broken lines).

B. Longitudinal waves, kll [110]

value of —1.2 about 1 K from T, . A discussion of
this behavior will be given in the next section. Mea-
surements in the close vicinity of T, were prevented
by the large critical attenuation.

Measurements in sample II are shown in Fig. 4.
Comparison with sample I, shows that, at least for
4T & 0.7 K, crystals of the same origin, but with dif-
ferent content of internal strains, behave similarly
both with respect to critical exponent and the quanti-
tative features reflected by the absolute value of n.

FIG, 5. Temperature dependence of longitudinal attenua-
tion along [110] in KMnF3 (sample IV), with the t law

sho~n at each frequency.

squares fits for thc seven different frequencics used,
well above T, . Close to T„on the other hand, the
exponent crosses smoothly to a value p

—1.2—1.3,
i.e., the same as for kll [100]. Hence, we are allowed
to conclude that in spite of the agreement well above
T, the behavior in the near vicinity of the critical
point is different for crystals II and IV. This is prob-
ably due to internal strains in sample II. However,

a (dS/cm)

30-
Lony'tudinal k i[[110

Experiments have been performed with samples II
and IV using longitudinal ~aves propagating along
[110]. Data could be taken much closer to T, here
than in the case above, since o. was much lower,

For sample II, the trend in both temperature and
frequency dependence is the same as in the [100]
direction. Far from T„p=1.8+0.1, and the fre-
quency dependence also approaches a ~' law. How-
ever, close to T„ the temperature dependence
changes in a somewhat shoulder-like fashion, a fact
which may partly be due to defects. Wc recall here
from Table III that sample II is of rather poor quality.

Hence, in order to compare two crystals of dif-
ferent origin, experiments with kll [110]were also
done in sample IV, which was of extremely high
acoustic quality. Data are given in Figs. 5 and 6, and
the result is p =1.86+0.15, obtained from least-

10-

I I

50
I I

300 500

u)/2m (MHz)

I

%00

FIG. 6. Frequency dependence of the longitudinal at-
tenuation along [110] in KMnF3 (sample IV). Fitted lines
through the data points are sho~n at each temperature.
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impurities may also be of importance here. Since no
theoretical treatment of the role of defects exists for
ultrasonic attenuation near a structural phase transi-
tion, we shall not discuss this point any further.

It is clear however, and of great importance, that
the qualitative features as expressed by the value of
the exponent p and the frequency dependence o. —~'
far from T„are independent of sample quality and
origin. The absolute value of o. turns out to be
—20—30% larger in- crystal II than in IV. This means
that the quantitative features of the transition are
sample dependent, as one could expect. Bearing in

mind that n(I) = n(II) (I and II are of the same origin)
for kll [100], this sample dependence between II and
IV may be connected to the difference in impurity
content of the two crystals from different sources.

ct (dB/cm)
20

Transversa

KphnF3 (s10-

QT (K)

C TION

C. Transversal waves, k II t100]

a (dB/urn)

30-

20-

10- e

Transversal k(~ [100j

ltlMnF3 (Sample I j
e e215MHz e

290MHze e
400MHze e e e

a ~ e 510MHz
150MHz

e R e

95MHz ~g ee 8

e Q

e

0-5-

~ ECHO

REFLECTION

02 03 05
I

2 3
j

aT (K)

FIG. 7. Temperature dependence of transversal attenua-
tion along f100] in KMnF3 (sample I), with the t 8 law

shown at each frequency.

Shear-wave experiments were done in sample I.
Transmission of shear waves through the acoustic
bond was much lower than that of longitudinal
waves, and echo experiments could be performed
only in one case (at 150 MHz). The measurements
indicate (see Fig. 7) the value p =1.90 +0.10 far
from T,'.

From Table II one finds that the critical attenua-
tion for this mode is described by only one term,
namely, g3. Thus we have determined p3 1.9 +0.1,
in agreement with the three-dimensional Heisenberg
model. It is not possible within our limits of uncer-
tainty to distinguish between the Heisenberg and cu-

1QO 200 300 500
u)/2rt ((v(H z)

I

1000

FIG. 8. Frequency dependence of transversal attenuation
along I100] in KMnF3 (sample I). Straight lines fitted to the
data points are shown at each temperature.

bic fixed points.
A change in frequency dependence similar to that

for the other modes is also found (see Fig. 8).

D. Longitudinal waves, kll f111]

Sample III, of the same source as samples I and II,
was used in our experiments with longitudinal waves
propagating along [111]. Data are given in Figs. 9
and 10. The most remarkable feature is the extreme-
ly low attenuation. At 100 MHz and 1 K from the
transition we find an attenuation only —

—,0
of for

longitudinal L[100] and ——of n for transversal

waves T[100] in the [100] direction, measured on the
logarithmic dB scale. This of course leads to com-
paratively large uncertainties in determination of the
behavior far from T„where we expect to measure
the true value of the critical exponent p. Below 200
MHz, all measurements are clearly in the region
where rounding of the exponent occurs. At frequen-
cies above 200 MHz, p seems to be 1.80+0.15. This
is significantly larger than the value of pI =1.34 in
Murata's theory, which predicts that the attenuation
of this mode is given by a superposition of gI and g3.
Hence the experiments indicate that g3 dominates the
picture. The frequency dependence (Fig. 10) changes
slowly with temperature, in a manner similar to that
seen for the other modes investigated.

For this mode we also measured the sound velocity
versus temperature (Fig. 11), using the pulse overlap
technique. According to Murata the critical part
of the velocity may be expressed similarly to the criti-
cal attenuation (Table II), but with constants LJ re-
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I t
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I
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FIG. 9. Temperature dependence of longitudinal attenua-
tion along [111]in KMnF3 (sample III), with the t ' law

shown for comparison by a straight line at each frequency
far from T,.

50
I I I

100 200 300 500
tu/2& 0MHz)

I

1000

'I

FIG. 10. Frequency dependence of longitudinal attenua-
tion along f111] in KMnF3 (sample III). Straight lines fitted
to the data points are shown at each temperature.

placing E& and with critical exponents p, ~
= n

(specific-heat exponent), ps = pt +2(P3 —1). From
the insert in Fig. 11 we see that in the region corre-
sponding to n ~2t-i.86 we find p, =0.4+0.1, in
agreement with the expected value' for p,3. This
may indicate, however, being far from a proof, that

g3 really is the leading term in the attenuation of the

L[ll1] mode. The rounding closer to T, is presum-
ably of dynamic origin similar to what is found for
the attenuation (see Sec. V). The behavior at
AT ) 10 K where p, crosses to -0.9—1 is not under-
stood. We recall, however, that similar observations
have been made before2s's for the L[100] mode.
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- FIG. 11. Temperature dependence of sound velocity for the longitudinal f111] mode in KMnF3 (sample III). In (a) the fully
drawn line represents the weakly temperature dependent background which is subtracted when the log-log plot in (b) is drawn.
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V. DISCUSSION OF THE RESULTS ABOVE T,

We are now, from the data presented in the
preceding section, in position to estimate numerically
the weight of g~, g~, and g3 relative to each other.
To do that, the data must be scaled with the third
power of the measured sound velocity v in the
respective directions [recall Eq. (15)]. Having data
for four different modes, we have an over-
determined system of equations in the three un-

known parameters K]B], K~B~, and K3B3 here
represented by g~, gq, and g3 (see Table II). We
have seen, however, that the absolute value of o.

depends upon the origin of the sample. Therefore we
use only the data for samples I, II, and III (for
T ) 7 K) and give only ratios between the coupling
constants. We deduce the following:

t
1/2

= 7.2'+ 0.3
K3 83

(21)

Ki 8 =0.75 + 0.3
3 3

(22)

corresponding to
' 1/v2

OJ
(24)

when Eq. (8) is applied. cap is a constant frequency.
Figure 12 shows a log-log plot for the longitudinal

Data for all modes are consistent with these values,
within the limits of uncertainty. Notice that even if
the exponent p~ never can be measured directly, it is
still possible to estimate the ~eight of the term g& in
comparison with gq and g3.

To summarize, we have seen that the critical
attentuation far from T, behaves according to
Murata szo and Schwabl s~i predictions for the hydro
dynamic regime, i.e., o. —co t ~ with p=1.87+0.05,
for all modes investigated. This is the value expected
for a three-dimensional Heisenberg model, which is
believed to describe the critical features of the cubic
perovskites. The results are also consistent with the
theoretical value of the anisotropy crossover ex-
ponent P = 1.26.

%e now turn to a discussion of the behavior closer
to T, . As was seen in Sec. II, we have to incorporate
a dynamic scaling function [Eq. (11)] of which we

only have some knowledge about the limiting forms
[Eqs. (16) and (17)]. From this we can say that the
temperature T& at which nj crosses from a behavior
characterized by the theoretically predicted values of
the exponents pJ to a nonhydrodynamic behavior, is
given approximately by

(23)

Longitudinal k [) (110j

K Mr]F3 (Sample I Vj

05-

10 100
I I I I

200 300 500 1000
~/m (~Hz)

FIG. 12. The temperature AT&, at which the "crossover"
from Murata's hydrodynamic law occurs, vs frequency for
the L[110] mode in sample IV. An OP. law, as expected
from dynamic scaling theory, is shown. With an interpreta-
tion in terms of cluster dynamics, as suggested in the text,
the half width of the central peak may be read, as a function
of temperature, from the drawn line.

[110] mode in sample IV, from which
t 0.70+0.05

(25)

is found, with co /2m=1. 8+0.2 &&10" s '. For the
three-dimensional Heisenberg model I/vz =0.71. It
turns out that for all investigated modes in all sam-
ples the variation of 4Tq vs co follows the line in Fig.
12, within limits of uncertainty, but with a greater
spread of data points for the other modes.

Rounding, similar to what is seen in the plots of o.

vs T, often takes place in experimental studies near
phase transitions as a result of low sample quality.
We have seen, however, in this case that the
behavior is systematic in frequency, and sample in-
dependent. This is seen by echo technique as well as
reflection technique. It should also be clear that the
first-order nature of the transition cannot explain the
observed change in frequency exponent on approach-
ing T, . This exponent has a definite value at a fixed
temperature, independent of the location of T, . We
thus conclude that the observed deviations from the
co t ~ law are due to breakdown of the hydrodynamic
approximation coo &( 1.

To get a better idea of the form of G (cur), we
have made scaling plots of u b /upton r ~ vs (o) )r
recalling here that o.ocu t ~ is the linear extrapolation
of the detected behavior far from T, . Figure 13
shows the results for the longitudinal [110] mode.
The drawn curve is the average for all frequencies
and all modes. There is no significant difference
between different samples or different modes. Hence
we are allowed to conclude from experiment, that
Gg G3 since uz(or gz) and a3(or g3) dominate the
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critical attenuation for the observed modes. The
number of data points and their accuracy at large cow

values are not sufficient to draw any definite con-
clusions about the limiting form of G~(cur). Howev-
er, the theoretically expected value for K2 K3 =1.32
[Eq. (18) and following] lies within the limits of ex-
perimental uncertainty. We notice also that Fig. 13
may be dragon without the knowledge of Fig. 12,
which only gives a numerical scaling factor (coo) for
the abscissa in Fig, 13.

Some remarks on the physical mechanisms leading
to the observed hydrodynamic crossover are in order
here. The measured relaxation time (in s)

]—vg 9 y 10—13] vs1

&do

(26)

is —1.4 x 10 s at AT =1 K. From the neutron data
of Shapiro et al. ,

"the inverse width of the heavily
overdamped soft mode in KMnF3 is estimated to be—10 " s close to T,. The observed relaxation pro-
cess is thus much too slow to be associated with the
soft phonon. The temperature dependence is also
quite different, since the width as well as the fre-
quency of the soft mode is almost insensitive to tem-
perature near T, .

However, in KMnF3 above T„persistent Raman
scattering has been seen from modes which by sym-

metry are Raman inactive in the high-temperature
phase. ~ This indicates a fluctuation induced pre-
cursor order due to formation of clusters of the low-
temperature phase above T,. We interpret the relax-
ation time in Eq. (26) as the lifetime of such correlat-
ed regions. At least in the model of Schneider and
Stoll, the cluster dynamics is responsible for the
central mode phenomenon. A narrow central peak in
KMnF3 was found by Shapiro et al. 2 Their instru-
ment resolution did not allow any investigation of the
peak width which was stated to be (4.8 & 10 s '.
Hence, ~ may be interpreted as the inverse width of
the central mode. In that case, since cue- = 1 along
the line in Fig. 12, the half width I' =1/2r may be read

directly from this figure.
As mentioned in the Introduction, Hatta et al.

derived a relaxation time 7, from their measurements
of the frequency dependence of n and interpreted it
as representing the inverse width of the central
mode. They did not obtain a functional form for v

vs b, T, but found 7 —4.1 & 10 9 s at AT -0.8 K and
T 0.45 x 10 s at 5 T —4 K. This is slightly larger,
but within the same range as found here. We note
that the full temperature dependence for the charac-
teristic time v was obtained here only by assuming
dynamic scaling to be valid. Our results are sample
independent within error limits, which indicates that

+obs
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FIG. 13. Scaling plot of observed attenuation vs (cv7), where ~ is given by Eq. (26). The fully drawn curve is the average
over all samples, all modes, and all frequencies. Data points for the t110] mode are shown. Uncertainties of measurements are
indicated. Data have not been corrected for the temperature dependence of the sound velocities, which would only cause
changes within the limits of uncertainties.
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the behavior may be intrinsic. However, no definite
conclusions regarding this point can be drawn from
measurements on only two samples with unknown
concentrations of impurities.

Comparing with other previous work on KMnF3
our results are similar to those obtained by Fossheim
et at. , particularly with regard to the exponent

p =1.95, crossing over to a lo~er value near T, .
However, the conclusions are different, partly due to
improved knowledge of the values of critical ex-
ponents revealed by the renormalization-group
theory. The dependence of ETa on cu (Fig. 12) con-
vincingly demonstrates that the change in p cannot
be due to a dimensional crossover, in which case ATq
should be insensitive to frequency.

Our results do not agree with those obtained by
Domb et al. 4 or Courdille and Dumas. ' In the first
case, p =1.3 was found for the quasilongitudinal
[123] mode. It may well be that the term g~ with an
exponent p~ =1.34 dominates the attenuation in this
direction, where no theoretical results are available.
It may also be that the data in their investigations to
a large extent were taken in the nonhydrodynamic re-
gion. However, this question remains since the fre-
quency dependence was not investigated in detail in

either of those investigations.
Suzuki analyzed his results in the light of dynamic

scaling theory, but did not obtain internal consistency
in his data. %e believe that this may be caused by
having taken measurements in too narrow tempera-
ture and frequency regions to permit a complete test
of the scaling assumption.

VI. MEASUREMENTS BELO% T,

While the attenuation above T, is determined com-
pletely by interactions with critical fluctuations and
clusters of the ordered phase, the situation below T,
is much more complicated. A sound wave will ex-
perience, in addition to fluctuations and clusters of
the high-temperature phase, also interactions with the
domain walls, either by inelastic damping or elastic
scattering. Further, Landau-Khalatnikov damping '
also takes place, with a relaxation time related to the
order-parameter dynamics. The resulting acoustic at-
tenuation below T, is thus much larger than above.
This caused all acoustic signals above —100 MHz in
our experiments to be completely damped out near
and below the critical point for all modes except long-
itudinal waves along [111]. The small critical at-
tenuation in this direction permitted echo measure-
ments to be done throughout the whole critical re-
gion at 94 MHz (Fig. 14). At 155 MHz, the echo
vanished in a region narrower than 0.2 K below T„
where the first reflected pulse still could be detected.
All data were taken as function o& decreasing tem-
perature with a least interval of 12 mK between the

5a (dB/cm)

50-
Longi

It;M

30-
g- a & =&55MH&

20-
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FIG. 14. Longitudinal attenuation [111]above and below

T, in KMnF3 (sample III), measured with echo technique at
94 and 155 MHz. Reflection data are shown near the max-
irnum of the 155 MHz curve where echo data could not be
taken. T, for this sample is =187.21 K.

185 186 187 188

points, and the same stability as before.
During the experiment, echo and reflection mea-

surements were compared in the region below T, .
No significant difference was found, except in the
close vicinity of T, . Hence, we are led to believe that
the sound wave interacts with the domain structure
and the order parameter mainly via relaxation. If, on
the contrary, scattering on domain walls were a pri-
mary source of damping, reflections should be more
affected than the echo, which is not sensitive to elas-
tic scattering processes, except for possible mode
conversion.

The most interesting feature of Fig. 14 is the fre-
quency dependence of the temperature of maximum
attenuation. In fact, at 155 MHz, two maxima are
seen. This behavior may be explained by taking into
account a Landau-Khalatnikov form:

AlP Cd 'T

O'LK
lP 1 +cd

(27)

Here Av is the difference between the sound veloci-
ties at co~ = ~ and m~ =0. ~ is a temperature-
dependent relaxation time

=r( r—or) "'

Hence nLK, which is zero at t =0, peaks at cu7 =1. A
double maximum like that at 155 MHz may result
from superposition of the critical attenuation (cen-
tered at t =0) and an LK term [Eq. (27)]. The dis-
placement of the LK-associated maximum from 94 to
155 MHz is —0.05+0.015 K. Curve fitting of the
measurements, including 15 MHz reflection data not
shown in Fig. 14, gave r —(4 & 10 '4)

~
t

~

"*or—6 && 10 " s at 1 K below T,.
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%e interpret this as the relaxation time of the or-
der parameter. Domain relaxation may be expected
to be much slower. In SrTi03, Fossheim and Berre
found vd, „„,—4 & 10 ' s 1 K below T, . %e stress,
however, that improved temperature resolution and
measurements at more frequencies are necessary to
obtain the quantitatively correct relaxation time.

VII. CONCLUSIONS

%e draw the following conclusions about the criti-
cal behavior in KMnF3 from our experiments with
echo and reflection techniques.

Far above T„ the critical exponent dominating the
ultrasonic attenuation is p = 1.87 +0.05. In this re-
gion, the frequency dependence is in accord with an
eo law. This is concluded from experiments with-

four different modes of sound propagation. Samples
with different strain and impurity content were used.
The behavior agrees with the expected fluctuation
dominated attenuation in a three-dimensional

. Heisenberg system. Thus, the theoretical value

P =. 1.26 for the anisotropy crossover exponent is
confirmed.

The absolute value of the critical attenuation varies
slightly between samples of different origin, indicat-

ing a dependence on impurities. For samples from
one source, the attenuation level for the four modes
investigated are found to be consistent with theory.
Ratios between the relevant coupling constants are
estimated.

On approaching T„ the apparent exponents for the
frequency- and temperature dependence of the at-
tenuation are gradually lowered. The results obey a
dynamic scaling law n —ru2t ~G (&or) where the fre-
quency and temperature exponents are those deter-
mined well above T, . %e have experimentally deter-
mined the form of the scaling function G. The mea-
sured relaxation time 7 =9 & 10 ' t "' s is interpreted
as the lifetime of ordered clusters known to exist
above T, . In at least one model this v gives directly
the inverse width of the central mode.

Measurements below T, with longitudinal waves
along [111]indicate order-parameter relaxation of the
Landau-Khalatnikov type.

ACKNO%LEDGMENTS

The authors would like to acknowledge illuminating
discussions with E. Pytte. NTH's Fund and NAVF
(The Norwegian Council for Science and the Human-
ities) have given financial support to the project.

'Present address: Electronics Research Laboratory, Univer-
sity of Trondheim, The Norwegian Institute of Technolo-
gy, 7034-NTH Trondheim, Norway.

'B. Berre, K. Fossheim, and K. A. Muller, Phys. Rev. Lett.
23, 589 (1969),

2K. Fossheim and R. M, Holt, Phys. Rev. Lett. 45, 730
(1980).

K. Fossheim, D. Martinsen, and A. Linz, in Anharmonic

Lattices, Structural Transitions and Melting, edited by T.
Riste (Noordhoff, Groningen, 1974), p. 141.

E. R. Domb, H. K. Schurmann, and T. Mihalisin, Phys.
Rev. Lett. 36, 1191 (1976).

5J. M. Courdille and J. Dumas, Solid State Commun. 9, 609
(1971).

M. Suzuki, J. Phys. C 13, 549 (1980).
M. Furukawa, Y. Fujimori, and K. Hirakawa, J. Phys. Soc,

Jpn. 29, 1528 (1970).
I. Hatta, M. Matsuda, and S. Sawada, J. Phys. C 7, 2038

(1973}.
R. M. Holt and K. Fossheim, Ferroelectrics 25, 515 (1980);

K. Fossheim and R. M. Holt, in Phonon Scattering in Con-

densed Matter, edited by H, J. Maris (Plenum, New York,
1980), p. 291; Physical Acoustics {in press).

'OA. Aharony, Ferroelectrics 24, 313 (1980).
F. Schwabl, Phys. Rev. B 7, 2038 (1973).

' A. Aharony, Ann. Israel Phys. Soc. 2, 13 (1978),
' E. K. Riedel and F. Wegner, Z. Phys. 225, 195 (1969); M.

E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
'"A. Aharony and A, D. Bruce, Phys. Rev. Lett. 33, 427

(1974); A. D. Bruce and A. Aharony, Phys. Rev. B 11,
478 (1975).

'5E. Pytte, Phys. Rev. B 1, 924 (1970).
' P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,

435 (1977).
K. Kawasaki, in Internal Friction and Ultrasonic Attenuation

in Solids, edited by R. R. Hasiguti and N. Mikoshiba
(University of Tokyo Press, Tokyo, 1977), p. 29.

SK. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).
' A. Aharony, Phys. Lett. A 49, 221 (1974).

K. K. Murata, Phys. Rev. B 13, 4015 (1976); F. Schwabl
(private communication) has verified Murata's calcula-
tions using a mode-mode coupling approach. The numeri-
cal coefficients quoted here are as given b'y Schwabl.
A. Aharony and P. C. Hohenberg, Phys. Rev. B 13, 3081
(1976).

K. Fossheim and R. M. H'olt, J. Phys. E 11, 892 (1978).
3R. B. Thompson and C. F. Quate, Appl. Phys. Lett. 16,

295 (1970). For a technical demonstration of echo
properties, see also for instance N. S. Shiren and R. L.
Milcher f1974 Ultrasonics Symposium Proceedings, IEEE
Catalog No, 74CH 896-ISU, p. 558 and Phonon Scattering
in Solids, edited by L. J. Challis, V. W. Rampton, and A.
F. G. Wyatt (Plenum, New York, 1975), p. 405].

2 E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045 (1967).
R. L, Melcher and R. H. Plovnick, in Phonons, edited by
M. A. Nusimovici (Flammarion, Paris, 1971), p. 348.
M. Matsuda, I. Hatta, and S ~ Sawada, Ferroelectrics 8, 595
(1974),



2692 R. M. HOLT AND K, FOSSHEIM 24

~ S. M. Shapiro, J. D. Axe, G, Shirane, and T. Riste, Phys.
Rev. 8 6, 4332 (1972).
D. J. Lockwood and B, H, Torrie, in Anharmonic Lattices,
Structural Transitions and Melting, edited by T. Riste
(Noordhoff, Groningen, 1974), p. 147.

A. D. Bruce, W. Taylor, and A. F. Murray, J. Phys. C 13,
483 (1980).

T. Schneider and E. Stoll, Ferroelectrics 12, 31 (1976); 24,
67 (1980).

'L. D, Landau and I. M. Khalatnikov, Dokl. Akad. Nauk
SSSR 96, 469 (1959).
W. Rehwald, Adv. Phys. 22, 721 (1973).

~ K. Fossheim and B. Berre, Phys. Rev. B 5, 3292 (1972).


