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The'eigenvalues and eigenfunctions of the transfer operator are used to develop an exact
renormalization-group (RG) transformation for the @4 model of structural phase transitions in

one dimension. The method we develop is applicable over the entire range from the displacive
limit to the order-disorder limit. Analysis of the RG flow near the displacive limit and far from

I

the fixed points enables us to identify a high-temperature Gaussian-like displacive region where

phononlike excitations dominate. At lower temperatures a crossover to order-disorder behavior
is driven by the formation of domain walls. The transformation is extended to two dimensions

by using the Kadanoff-Migdal transformation. A phase diagram is produced, and the displacive

region found in one dimension persists. The crossover which occurs above the critical tempera-
ture is still identified with the onset of domain-wall formation.

I. INTRODUCTION

A simple microscopic model that has been widely
used to describe systems undergoing structural phase
transitions' is defined by the Hamiltonian

0 = $p, '+ $ V(x, ) +—$(x, —x, )'
2 Pl I I 2 (ij')

Here (ij) are pairs of nearest-neighbor sites on a
d-dimensional hypercubic lattice, and }x;}and }p;}are
the displacements and momenta of a set of particles.
Each particle is coupled harmonically to its nearest
neighbors with interaction strength C. The local po-
tential, V, is of the double-well type:

V(x)= ——x + —x, 8)0B 4

2 4
(2)

For 3 ) 0, V has a pair of minima at + xo
=+ (3/8)'~'. For d ~2, this system undergoes a
second-order phase transition at a critical temperature
T, which is a continuous function of the parameters
of the model and vanishes as the double-well charac-
ter of Vdisappears, i.e., as A 0+.'

An interesting parameter in the above model is the
ratio of the well depth to the harmonic energy
s = —2 V(xo)/dCxo = (1/2d)A /C. Traditionally it

has been believed' that the behavior of the system in

the weakly anharmonic displacive regime s (& 1 is

qualitatively different from that in the order-disorder
regime s )) 1.

Exact results in one dimension and molecular-
dynamics studies in higher dimensions indicate that
the static and dynamic behavior in the displacive re-
gime has a strong order-disorder character, at least in
the critical region, indicating the presence of locally
ordered clusters or domains in the system. This is in

accord with the universality hypothesis, according to
which the model defined by Eqs. (1) and (2) has the
same critical behavior as the Ising model. These two
models are said to belong to the same universality
class. Indeed if we let A ~, 8 ~, A/8 —1, the
Ising model is recovered from Eqs. (I) and (2).
Above the critical temperature the short-range order
is expected to persist up to a temperature To above
which the system crosses over to a regime where the
dominant excitations are anharmonic phonons.

Momentum-space renormalization-group (RG)
techniques have been applied to this model in 4 —e
dimensions' and in the displacive limit. ' More re-
cently, ' these methods have been used to calculate
the probability distribution of block coordinates, lend-
ing further support to the hypothesis that the transi-
tion has order-disorder character.

In this paper we consider a position space RG
transformation on the model. Such methods have
been used successfully for discrete spin models, par-
ticularly in lower dimensions, Similar transforma-
tions for this model have been considered by Bruce
and Schneider in one dimension in the displacive re-
gime, and by Burkhardt and Kinzel' in the order-
disorder regime. Because of the difficulties of carry'
ing out multiple integrations over many variables, the
latter authors used an initial restructuring to convert
the model into a generalized Ising-like model. Their
approximations are not applicable in the displacive re-
gime and, since the Ising universality is built in from
the start, the universality properties of the original
model are obscured.

Usually RG methods are applied near the fixed
points, where the system can be parametrized by a

few dominant variables. Away from the critical re-
gion, particularly near the crossover region, as we see
later, the role of the irrelevant variables becomes

266 C'1981 The American Physical Society



RENORMALIZATION-GROUP STUDY OF CROSSOVER IN. . . 267

II. DECIMATION IN ONE DIMENSION

The configurational partition function for the @4

model defined by Eqs. (1) and (2) is given by

Qg= Jt Qdx;exp P X x; + 8 4
I

2 I 4 I
I I

+—(xi —x;+& ) (3)

where p = (1/ks T). By rescaling the field variables

physically important. Here we construct an RG pro-
cedure which takes into account all of the irrelevant
variables exactly. By studying the RG flow diagram
in a few variables, we are able to establish the region
where the crossover takes place.

We find for one dimension that even though the
pseudocritical behavior of the model is always Ising-
like for sufficiently low temperatures, the RG flow of
the system exhibits two types of noncritical flow
behavior. If the well depth is sufficiently deep com-
pared with the interparticle interaction, then the RG
flow of the system goes to the Ising high-temperature
fixed point. If the well depth is too shallow and if
the temperature T is large enough then the RG flow
tends to an infinite temperature fixed point which is
associated with a system with a Gaussian-like Hamil-
tonian.

We then use a Kadanoff-Migdal" type transforma-
tion to generate a two-dimensional RG for this model
by using our results from one dimension. This has
the advantage that extra interactions (e.g. , next-
nearest neighbors, etc.), are not generated, so the
parameter space is kept small. Even though the
Kadanoff-Migdal transformation does not yield accu-
rate estimates of critical exponents, it is expected to
provide a quite reliable phase diagram and a good es-
timate of the critical temperature.

In Sec. II we consider the traditional" decimation
transformation in one dimension by integrating over
every other field variable, yielding a scale change of
b = 2 ~ This is used to derive recursion relations for
the parameters in the model near the displacive limit.
In Sec. III the decimation procedure is extended to
arbitrary scale changes b ~ 1 by introducing the
transfer operator of the system. This is used to find
exact criteria for the crossover from displacive to
Ising-like behavior and to generate a RG flow dia-

gram for the entire parameter space of the one
dimensional version of this model. In Sec. IV the
results from one dimension are used to generate an
approximate RG transformation for two dimensions
by using a Kadanoff-Migdal transformation. We use
this to produce a phase diagram for the two-dimen-
sional system. Concluding remarks are contained in
Sec. V.

x; x = (x;, we can eliminate one of the parameters
of the model. Therefore the potential energy be-
comes

C2 (1+e),8 (5b)

are independent of f. K is an inverse temperature
variable which is similar to the one used to parame-
trize Ising systems. 8 is a measure of the displacive-
ness of the system. For fixed E, as 8 0+ the dou-
ble well vanishes. We will call this the dispiacive lim-
it. As 8 ~ the well depth diverges and therefore
the field variables x& become confined to the regions
near +xp = +[8/(8+1) ]' '. This is the Ising limit.
This particular parametrization is chosen so that even
at the displacive limit the quartic term in Eq. (4) is
positive, ensuring that the particles remain localized
near their lattice sites. A somewhat different form of
parametrization is used by some other authors. '

To define a RG transformation in one dimension
we rewrite Eq. (3) in the form

Q~ = g" J ff dx; exp[G(x;, x;+~)], (6)
i

where

G (x,y) = K —(x'+y') — (x'+y') ——'(x —y)2
i

Following the standard decimation scheme, " a real
space RG procedure can be carried out by integrating
over every other field variable.

J du exp [G (x,u) + G (u y) ] = exp[gp+ G (xy) ]

(8)

This yields a new function G which also has couplings
only between nearest neighbors.

gp is chosen so that G (0, 0) = 0. It is an analytic
function of the parameter (K, 8) and is important in
the calculation of the free energy per particie but
does not affect the critical properties of the system.
The above thinning out of the degrees of freedom
rescales all lengths in the system by a factor b ' = —,.
The next step is to rescale the field variables
x; x = gx; with a suitable choice of g. Since G cou-
ples only nearest-neighbor variables, the procedure
can be repeated until G reaches a fixed functional
form G'. In practice such an iteration procedure is

/3 UN xi
Ke p K(e+1) 4 K

2 4 '
2

xi ——(x; xi+& )

(4)
where the dimensionless parameters

(Sa)
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difficult to carry out analytically because G does not have the same simple form as G. To see this, substitute
Eq. (7) into Eq. (8) and obtain

exp[go+G(x, y)] =exp K (x2+y2) — (x4+y4)9 —2 2 2 0+1 4 4 4
4 g K(8+1)

t i/4 ' '
& 1/4 t

4E3

t

where

f(z) =
J~ du exp( —2pu' —u" +zu)

t i/2

2p =(2 —8) E
8+1

(10)

The function f (z) cannot in general be replaced by
a function of the form exp(nz2 —yz4). However for
one region of the (K, 8) parameter space it is valid to
expand f(z) in a power series. In this region (8 '
& K )2), one can cut off the power series after the
quartic term in z. By carefully identifying terms and
ignoring anharmonic bond terms of the form
(x' —y')' and (x —y)4 we get the following recursion
relations first obtained by Bruce and Schneider:

8=48 —8 +2

E =8E '+
(12)

(13)

There is a fixed point at 0' =0, E' = ~, which is
doubly unstable with eigenvalues A. ] =3, A2 =2. This
crossover leads to drastically different behavior on
the lines 8=0 and A = ~. For E sufficiently large,
the system maps onto the Ising model at low tem-
perature (as will be shown in Sec. III). On the 8=0
line, the system has no possibility of a spontaneous
symmetry breaking because of the monotonic nature
of the one-particle potential in this limit. The system
exhibits no pseQdocritical behavior on this line.

The crossover between the two different types of
behavior is describable by a crossover scaling func-

&

-)1,&/)2tion Y = Y(K '8 ' '). Therefore one can divide
the two regions by the curve A 0 ' =const which de-
fines a temperature To(8) =const 8'i'. To see the
significance of this we can make contact with the ex-
act calculations of Krumhansl and Schrieffer. ' They
find important low-energy excitations, domain walls,
which play a crucial role in the statics and dynamics
of this one-dimensional system at low temperatures.
The picture is as follows. At zero temperature, for
any positive 8, the system is perfectly ordered; i,e.,
all of the particles sit at the bottom of one side of a11

the wells. This order is broken at nonzero tempera-
tures by the formation of domain ~alls, so that there
is no long-range order in one dimension for any
T )0. Nevertheless, the density of these domain
walls is rather small at low temperatures, being pro-
portional to exp( —PED), where ED is the energy of a
domain wall. As long as k~T && ED, large regions of
nearly perfectly ordered clusters exist in the system

even though there is no long-range order. The ex-
istence of these clusters provides one model for an
important dynamical effect, namely, the central peak
in the dynamic response function, attributable to the
slow fluctuations of the local order parameter within
the clusters.

When k~T = ED the density of domain walls in-
creases rapidly with temperature and the central peak
disappears. We can define a crossover temperature
To which signals the onset of short-range order (for-
mation of clusters). Since, from Krumhansl and
Schrieffer, ED ~ 8, we find T0~ 0' in agreement
with the RG prediction.

The recursion relations (12) and (13) are valid
only for 0 ' & E ) 2, since the truncation of the
power series expansion of Eq. (9) is not valid outside
this region. Outside this region higher and higher
powers of (x+y) become significant. This means
that the parameter space must be enlarged, which in
turn makes the problem analytically intractable.
Even in the truncated problem the anharmonic bond
terms were ignored arbitrarily, We can avoid these
difficulties using an alternative formulation of the
problem which we now discuss.

III. DECIMATION IN ONE DIMENSION
USING THE TRANSFER OPERATOR

An alternative realization of the RG transformation
can be obtained by using the transfer integral tech-
niques of Scaiapino, Sears, and Ferrell. " This
method uses the fact that, in one dimension, e
can be expanded exactly in terms of a certain com-
plete set of functions, i.e. ,

e""~'= $ )t„@„(x)@„(y),
n-0

where (Q„}and [h.„}are the eigenfunctions and
eigenvalues of the integral equation

Jl dy exp[G(x, y) ]@„(y)= X„@„(x) (14)

X P.(x)g„(y)=&(x —y)
n~0

(16)

We choose the eigenfunctions to be normalized and,
as we show later, they are guaranteed to be orthogo-
nal and complete, i.e.,

Jt dxy„(x)@ (x) =g„. ,
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To see the advantage of the representation (14), let us integrate out b —1 out of every b spins. The resulting

Gb function is then given by

exp[gp+Gg(x, y)] = J dut dup ~exp[G(x, u, ) + +G(up ~,y)] = XX„&„(x)g„(y)
If 0

(17)

The advantage of Eq. (17) is that we can let the
decimation factor b assume any value greater than or
equal to 1, discrete or continuous. In particular,
G~(x,y) = G(x,y) (i.e., no decimation), and
G2(x,y) = G(x,y) used in Sec. II. By letting b =1+e

with e (( I, an infinitesimal (i.e., differential) RG
transformation can be generated. More importantly,
Eq. (17) allows us to avoid the problems encountered
by the direct integration method used in Sec. II.
Usually b is taken to be a small integer, say 2 or 3.
The resulting Gb function is usually much more com-
plicated than the original one. One then approxi-
mates Gb by replacing it with some simpler function
with the implicit assumption that the neglected terms
(e.g. , the anharmonic bond terms in Sec. II) are ir-

relevant. This is an uncontrolled approximation since
it is not obvious a priori whether or not after many
iterations such irrelevant terms feed back into the
relevant ones to make a significant difference. From
Eq. (17) we see that we can bypass this difficulty
since we can iterate many times simply by increasing
b. This involves no approximation at all. Thus we

can study the scaling of the entire Gb function as b

increases.
For K &.0 the kernel of Eq. (15) generates a posi-

tive definite, symmetric, Hilbert-Schmidt linear
operator. Therefore we know that the eigenfunctions
are square integrable and form a complete set, eigen-
functions associated with different eigenvalues are
orthogonal and

h o $o (x) Qo (y)

(18)

where the ellipsis represents higher-order terms.
This means that the renormalized temperature is

tending to ~ as b ~, and thus flo~s to some
high-temerature fixed point.

On the other hand, near T =0 (K —~), for any
8 & 0, the only contribution to Eq. (15) comes from
the neighborhood of +xp = +[8/(8+ I) ]' ' (the bot-
tom of the welis). Then it is not difficult to show
that the eigenfunctions associated with the largest
two eigenvalues are essentially given by linear oscilla-
tor ground states centered at the bottom of each well

P+(x):— [exp[ —u(x —xp) ']L
J2

+ exp[ u(x+—xp)']}

(19)

that no one-dimensional system with short-range
forces can have long-range order. However, fixed
points can reside on the lines K =0 and ~. In par-
ticular, for any K (~, when the RG scale factor b is
taken large enough, the coupling between adjacent
particles can be made as small as desired, i.e.,

lim [gp + Gy (x y) ] = b lnkp + ln@p(x) + info(y)
b ~oo

(a) X„& 0 for all A.

(1) Iim ) „=0,
(c)

n 0

Furthermore, since the kernel is positive for all

}x},}y } & ~ (as long as K (~), the eigenvalue
spectrum is nondegenerate so we can order the eigen-
values

(d) Zo & X& & Z2 & X3» 0,

u =—[e(e+2)]'"
2

L is a normalization constant and n diverges as
K ~. The eigenvalues are given by

i+=exp[ —(op+ t) l

where

KH2 7r

8(0+I) 2 K [I +9+ [0(0+2)]'"}

r =exp( p+D)

(2o)

(21)

(22a)

(22b)

and because G (—x, —y) = G (x,y) the eigenfunctions
have the property

(e) @„(—x) =(—I)"y„(x) .

It is easy to see from this that there are no RG
fixed points for a system of this type of any K in the
range 0 (K & ~. This is just a reflection of the fact

The quantity ED is the domain-wall energy and is

independent of temperature. As K ~ (i.e. , T 0)
the two states become asymptotically degenerate, sig-

naling the onset of a phase transition. Thus to obtain
the fixed point function we must retain both of these
states in Eq. (17). In this limit the states (19) reduce
to the sum and difference of 5 functions, so the
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model maps onto the Ising model at low tempera-
tures. This shows that the critical behavior of this
model is identical to that of the Ising model.

Since the functions Gb do not have the same func-
tional form as G, some method other than the one
used in Sec. II must be devised in order to define the
recursion relations for E and H. Let us first define
the renormalized one-particle and two-particle cou-- (b) - (b)
plings Uj and U2 by

Gb(x,y) = —,'
(U~ (x) + U~ (y)) —U2' (x,y)

(23)

(2)
-u, (x)

e

(a)

Of course for b =1 these functions reduce to the ori-

ginal forms:

U(i) ( )
KH 2 K(8+1)

2 4

U2 (x,y) =—(x —y)
- (i) E 2

2

(24)

(25)
0

-I:0 0.0

0
Np

I

I.O

8Ui (xp)
~b - (b)

U2 (xp, xp)
(26)

From numerical work to be described later, we ob-
serve that for most of the (K, 8) parameter space the- (b)
function U~ has minima at +xp and looks qualita-- (i)
tively like U~, %e therefore define the renormal-
ized coupling constants (Kb, Hp) and the rescaling
factor (b by

f
/ 0

o
/

/
I
I
I

/ 0 0
\

1 ~b+1 (b)
Kb = — U2 (xp, -xp)

2 gb

Hb+1
fb xp

Hb

(27)

(28)

(2)
-U2 (X,y)

e
y=0.

0
I

/
/

/
o/

/

Io

~o

- (b)
The points +xo are the x values where U& has its

minima. This method ensures that the renormalized
coupling function Gb is exactly correct at the points
(x,y) = [(0,0), (xp, +xp) ]. For b = I, these defini-

tions reduce to the original form. For b ) I a "$~"
potential parametrized by (Kp, Hp) agrees with the
true renormalized coupling at the top and bottom of
the wells.

This definition of the renormalized coupling con-
stants is certainly valid near the Ising limit because
there the field variables x; can only have the values
+xp. In fact an asymptotic expansion of Eq. (10) for
large 8 gives the exact Ising RG recursion relation for
K, plus correction terms of order I/II when these de-

finitions are used. It is not obvious a priori that these
definitions are valid for small values of 8 (except in

the region discussed in Sec. II) or for 8 = 1. Figures
1(a) and 1(b) show the quality of this fit for K =6.0,
8=0.45, b =2. Figure 1(a) shows the exponential of
the one-particle coupling obtained from Eqs. (17) and
(24) plotted over the fitted function using the param-
eters (Kb, Hp, fp) defined by Eqs. (26) —(28). Figure

I

—I.O 0.0
X

I.O

FIG. 1, Renormalized one-particle and two-particle cou-

plings for A =6.0, 8=0.45, b =2. The circles and squares
are exact and the solid and dashed lines result from fitting
the exact couplings at the top and bottom of the double-well
single-particle potential.

1(b) shows the corresponding points for the two-
particle coupling. This is a quite satisfactory fit con-
sidering the abundance of high-order terms which ap-
pear in the true renormalized couplings. Other re-
gions of the parameter space give equally satisfactory
fits.

The numerical calculation of the renormalized cou-
plings is accomplished by the following method. '4
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We approximate the integral eigenvalue equation
(14) by

Displacive Limit

wjexp[G(x;, x&)]P„(x,) = h.„P„(x;)
1

(29)

where (wj) and (xj) are the Gaussian integration
formula weights and abscissa points, respectively. '

By multiplying both sides of Eq. (29) by ( w, )' ' we
get

N

g T y(n) ) @(n)
J~l

where

T,, = ( w, wq ) '~' exp [ G (x;,xq ) ]

y(n) (+ )1/2y (x )

(30a)

(30b)

(30c)
T=o

Now the problem has been reduced to finding the
eigenvalues and eigenvectors of a real, symmetric,
N x N matrix. This is easily accomplished by using
standard computer routines.

Once the eigenfunctions are determined at the N

points, very accurate estimates of the eigenfunctions
at all points can be determined by

Displacive Limit e=o

N

@„(x)= $ w& exp[ G (x,xj) 1 g„(x,)
~n )-l

(31)

The bulk of our results, the RG flow pattern of the
system in the parameters K and 8 for one dimension,
are displayed in Figs. 2(a) and 2(b). Figure 2(a) is
produced by starting at some initial points (K, t)) and
performing the summation (17) with the eigenvalues
and eigenfunctions of Eq. (15) for many values of
b(bo, bo, bo, . . . , br,„,~). Then we use Eqs.
(26) —(28) to find the renormalized coupling con-
stants (KI„HI,) for all these values of b This is.
hereafter called method I. Figure 2(b) is produced
by starting with (K, I)) and performing the above RG
transformation with b =ho. We than start all over
again using (Kq, &t, ) in place of (K, 8) in G(x,y).
This procedure is iterated n times to get a system

whose scale has been changed by bf-,„,]
= bo . Th&s

will be called method II.
If these two methods give sensibly the same values

of (Kq, Hb ) for the same initial point then we
final final

can safely assume that we have not left out any
relevant terms from our calculation, i.e., replacing G
by a $4 form is valid. Therefore either procedure
discussed above constitutes a valid means of defining
recursion relations for the system.

However, if grossly different (Kb, 8q, ) result
final final

from these two methods then some relevant parame-
ter has been omitted inadvertently. In this case the
RG recursion relations must be supplemented by re-
cursion relations for this additional parameter.

In the present case both methods give qualitatively

T=O

Ising Limit

FIG. 2. RG flo~ for the one-dimensional @4 model.
Method I is depicted in (a) and method II in (b). The area
above the crossover line is the high-symmetry displacive re-
gion and the area below the crossover line is the order-
disorder Ising-like region. tanh(1/4K) is plotted vs
1 —tanh( e/4).

the same results over most of the parameter space of
the model [Figs. 2(a) and 2(b)l. Both show a dicho-
tomy of flow separated by a sharp crossover line. All
points (K, 8) which start below the crossover line
eventually flow to the Ising high-temperature fixed
point.

All points which start above the crossover line flow
to a high-temperature fixed point which is distinct
from the Ising high-temperature fixed point. This
fixed point, as will be seen shortly, is associated with
a model Hamiltonian which exhibits a Gaussian-like
symmetry. Since we are discussing a one-dimension-



272 BEALE, SARKER, AND KRUMHANSL 24

al system, this divergence of flow is not associated
with critical behavior. It does, however, cast some
light on the nature of the short-range order of the
system and of the form expected for the correlation
functions away from T, .

Figures 3 (a) and 3 (b) show the shape of the one-- (b)
particle potential U~ (x)/Kb for several values of b

The two figures depict the difference between the
behavior of two points which start on opposite sides
of the crossover line. This is not a fit, but the actual
couplings generated from Eqs. (17) and (24). In Fig-
ure 3(a) the system starts at a point just below the
crossover line. Note how the well depth increases
dramatically as b increases. Figure 3(b) depicts a sys-
tem which started just above the crossover line. The
well depth increases slightly and then goes rapidly to
zero. For b large enough the potential becomes
monotonic and similar in form to the Gaussian
model. A system with a one-particle potential of this
sort has no possibility of having a spontaneously bro-
ken symmetry, even in higher dimensions.

Using method I, a precise criterion for the cross-
over iine can be derived. From Eqs. (18) and (23)
we see that as b

(b)
Ul (x)

Kb

(a)

-1.00 0.00
X

1.00

r ~ b)- (b) 4o(x)
U) (x) = —ln +0

yo(0)
(32)

(b)

For large b the one-particle coupling depends only on
$o(x). From an examination of the possible solu-
tions of Eq. (15) we find that @0(x) is positive defin-
ite, even in x, and has at most two local maxima.
Therefore either U~'b ' has two minima at +xp or lt
has only a single minimum at the origin. In the
former case the one-particle potential maintains the
symmetry of the Ising model. Since the interparticle
coupling tends to zero for large b, Hb is proportional
to the well depth divided by the interparticle cou-
pling, which approaches ~. The coupling constants
flow to (K =0, 1)=~), the Ising high-temperature
fixed point.-(b- )

'

Ut (x) has two minima if and only if the
quantity

(b)
u, (x)

AJ

Kb

b=2

y"(0) g JI dy y' exp[ G (0,y) ]yo(y)
=K --1+K

J dy exp [ G (O,y) ] Po(y)

I

-1.0
I

0.0
I

I.Q

(33)

is positive. One can instantly see that this is always
satisfied for 0 ) 2. All systems with 8 ) 2 therefore
flow to the Ising high-temperature fixed point. For
8 ( 2 we find that there is always a nonzero range of
K such that the inequality (33) is not satisfied. In
that region the RG flow is to the displacive high-
temperature fixed point. There is a fixed point at
(K =0, 8 = 2) which sharply divides the two regions.

FIG. 3. Shape of the renormalized one-parucle potential
is shown for various values of the scale change factor b, In
(a) the starting value of (E, 0) is K =6.0, 8=0.6, which is

just inside the order-disorder region, The well depth in-

creases without limit as b ~. In (b) the starting values
are A' =6.0, 8 =0.3, which lies just inside the displacive re-
gion. The well depth vanishes for b «4.29. U& (x) is

well behaved and tends to a fixed form as b ~. The in-

creasing well depth in (a) reflects the fact that the ratio of
the well depth to the interparticle strain energy diverges as
$ ~oo.
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The locus of points such that the quantity (33) is set
equal to zero is the dotted line in Fig. 2(a). This de-
fines the crossover line between the two types of flow
behavior. For 8 » 1, these points are numerically
consistent with the relation K 0' = const, in agree-
ment with the analysis in Sec. II,

One might note here that QO2(x) is precisely the
one-particle probability distribution function P~(x)
for the one-dimensional model. Bruce, Schneider,
and Stoll use the disappearance of double maxima in
a block-spin probability distribution to signal the onset
of displacive behavior. In two dimensions, phonon
contributions mask the appearance of double maxima
in Pt(x), but by averaging over several nearby sites
the double peak structure of the block probability dis-
tribution function reemerges.

Very near the crossover line, methods I and II give
drastically different RG flows, especially near the
fixed point at (K =0, H =2) because the crossover
lines do not coincide exactly. If methods I and II are
applied to the same point (K, H) near the crossover
line the RG flows may go to different fixed points.
So in this region the RG recursion relations we have
constructed do not consititue a setnigroup (i.e., if Rb
is the RG operator, R„,Rb & R„).Two parameters

are not sufficient to describe the flow completely.
Two parameter scaling is not valid in this region.
Elsewhere in the parameter space the two methods
agree very well, two parameter scaling is valid, and
the recursion relations we have defined constitute a
valid RG.

and has had some success in providing reliable phase
diagrams, particularly in two dimensions. " Also, as
was shown by Kadanoff, the transition temperature is
given correctly in two dimensions for the Ising and
Potts models since the Kadanoff-Migdal transforma-
tion commutes with the duality transformation. The
similarity of the system under consideration here to
the Ising model suggests that at least for large 8 one
may expect the transformation to give reliable esti-
rnates for T, . In what follows we adopt a version of
Kadanoff's bond moving scheme to study the
behavior of the system.

We start by associating with every bond [Fig. 4(a)]
of a square lattice an interaction of the form

G (x,y) = K —(x'+y') — (x" +y") ——'(x —y)'
8 16

Notice that the local term differs from the corre-
sponding term in one dimension by a factor of 2
since every such term in the Hamiltonian is divided
into the four bonds at each site. The decimation is
effected by first moving b —1 out of every b vertical
bonds as shown in Fig. 4(b). The field variables at
the lattice points marked by crosses are then connect-
ed with their neighbors only along the horizontal
directions and therefore can be integrated out using
the methods of Sec. III. Denoting the horizontal and
vertical interactions by G„and G~, respectively, we
obtain [Fig. 4(c)]:

IV. EXTENSION TO TWO DIMENSIONS:
THE KADANOFF-MIGDAL TRANSFORMATION

exp[G„'(u,u) 1 = X A.„"(K,H) @„(u;K,H) @„(u;K,H)
n 0

(3S)

It is not easy to extend our formalism to higher
dimensions since the one-dimensional transfer in-

tegral is of limited use. However, the Kandanoff-
Migdal" transformation is tailored to take advantage
of the exact nature of the one-dimensional results

and

G,'(u, u) =bG, (u, u) =G, (u, u;bK, H) . (36)

The standard procedure is to rotate the lattice by 90'
and repeat the operation, which gives

exp[G„"(u,u)] =exp[bG„'(u, u)] = Xk„(K, )H@„(u; K, )HP„( uK, H) (37)

exp[G~" (u, u)1 = X) «(bK, H) @„(u;bK,H) P„(u;bK,H) (38)

G (u, u) = —, [ G„"(u,u) + Gy" (u, u) ] (39)

For b 1+, this averaging does not change the

The new interactions G„"and G~" are usually not
equal even if the starting interactions are isotropic,
except when b is infinitesimally close to unity. To
make the new interactions isotropic we just take the
average of G„"and G~", i.e.,

resulting couplings. For b & 1 but small, the change
in the critical parameters (e.g. , T,) is small. For ex-
ample, applying this procedure with b =2 to the Ising
model gives K, =0.429, which is within 3% of the ex-
act value K, ""'=0.4407.

The Kadanoff-Migdal transformation can be ap-
plied to the @4 model (l) in two dimensions by using
Eqs. (35)—(39) and finding the renormalized cou-
pling constants by methods similar to those used in
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X 0
Dispiacive Limit

0 X X

X 0

(b) 0 0

0 X 0

0 0 T=O T ISING
C

e=
T=co

(c) 0 Displaclve Limit
8=O

0 0 acive Region

FIG. 4. Kadanoff-Migdal scheme for creating an approxi-
mate RG in two dimensions. The case with b =3 is illustrat-
ed.

T, =—08e, e«l . (40)

Another feature of the RG flow diagram is the per-
sistence of nonuniversal flow [points (E, 8) ] which
flows into the displacive high-temperature fixed
point. For small 8 crossover line To(8) takes the

Eqs. (26)—(28) in Sec. III. Since the Kadanoff-
Migdal transformation works best for b close to 1 we
use only method II (i.e., repeated decimation) to pro-
duce the RG flow of the system. Figure 5(a) shows
the RG flow using a step size of b =2. The most ob-
vious difference from the one-dimensional RG flow
diagram is the appearance of a critical manifold,
E,(8), i.e., a locus of points E, (8) that flow to the
fixed point at 8 = ~ and E,(~) =0.429. Since the
coupling is finite there, this is the critical fixed point
corresponding to the Ising critical point. Since the
RG flow of points near the critical line goes by the
Ising critical point, the critical exponents of the Q4

model 0 ( 8 (~ are identical to those of the Ising
model. We find numerically that E,(8) =const [(8
+ I)/8] for all 0 & 8 & ~. This just means that the
critical temperature is proportional to the intersite
strain energy, which has been shown rigorously for
dimensionality d ~ 3.'

For 8 && 1, the critical temperature departs from
the Ising value linearly in 1/8. For 8 ((1 the re-
duced critical temperature T, (8) = I/Ec is given by

(b)
~ass~~~~ep.-- &/ne

~e=~

High Temperature

Order-Disorder Region

T=O ISING
C

FIG. 5. RG flow (a) and "phase diagram (b) for the @4

model in two dimensions using the Kadanoff-Migdal
transformation. The scales used are identical to Figs. 2(a)
and 2(b).

form

To(8) =1.28, 8 «1 (41)

rhis is in agreement with the result of ap 1
'

th
adanoff-Migdal transformation to the recursion re-

lations (12) and (13) near the displacive limit. This
gives a crossover exponent of h. ~/A2=1 so the cross-
over line is predicted to be

Tp

0
=const (42)

By using the same identification of the meaning of
this crossover used in Sec, III, we find that the onset
of domain-wall formation occurs for temperature Tp
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such that To=—1.3T,. By using this identification, it
is plausible that for T ) Tp(H) the primary excita-
tions of the system are phononlike oscillations about
the top of the well. As the temperature is lowered to
To, domain walls form around regions of the size of
the correlation length. At T = T,(8) the system un-
dergoes a continuous phase transition into an ordered
state. The critical exponents take on-the Ising values

l 7of a=0 (log), P= —, , y= —,, etc.
For 0 & 2 the primary excitation mode of the sys-

tem is domain-wall formation. The effect of phonons
is small because the well depth is too big to allow
thermal excitations between wells except very infre-
quently, The system is Ising-like for all tempera-
tures. For 8 ((1 the system is Ising-like below T„
where the system is ordered, and the Ising-like
behavior persists above the critical temperature for a
small range To —T, =0.3T,. In that region the dom-
inant excitations are domain walls separating regions
of opposite signs of the order parameter. Above the
crossover temperature To the domain walls begin to
disappear and the dominant excitations are phonon

oscillations about the center of the one-particle po-
tentials.

The crossover from displacive to order-disorder
behavior can be observed experimentally by the ap-
pearance of a central peak at co =0 in the dynamic
response function S(q, eo). For T above Tp the
response function would have peaks at co = +co~ cor-
responding to phonon oscillations. The peaks are
widened due to the nonlinearities in the Hamiltonian.
As T is lowered to the crossover temperature To
domains of oppositely ordered particles form. Note
well that this is a local ordering phenomenon only
and no long-range correlations are present. The
domain walls move around due to the inherent
dynamics of the system and due to random thermal
fluctuations. Occasionally a particle will be flipped
from one side of its well to the other in addition to
performing phonon oscillations. The effect of these
two processes on S(q, ru) can be described phenom-
enologically follow'ing the analysis of Krumhansl and
Schrieffer. For q

' less than the average distance
between domain walls they find

tDS(q, o)) —(r(q) xp, , +n' +1+4(u'to 1+4((o—coq) rij 1+4(co+cuq) tD
(43)

where tD is the average time between passages of
domain ~alls, n is the average squared phonon am-
plitude, and o(q) is the spatial Fourier transform of
x; over a correlation length (approximately equal to
the distance between domain walls). The central
peak appears naturally as soon as the domain size be-
comes appreciable. Since tD is proportional to the
average domain size, the width of the central peak
decreases and the height increases as the critical tem-
perature is approached.

There is no effect on the smali q (q ' correlation
length) behavior of S(q, &o) or the long-range (r &
correlation length) behavior of the equal time corre-
lation functions in the crossover region because the
formation of domain walls is a local phenomenon
only.

Recent molecular-dynamics simulations by
Schneider and Stoll' show that for a two-dimensional
system with 8 =0.5 the central peak in S(q, co) ap-
pears at a temperature some~here between 22% and
63% above the critical temperature. Our analysis
predicts a displacive to order-disorder crossover at a
temperature 30% above T, and a central peak forma-
tion at that temperature. This seems to be in at least
rough agreement with the molecular-dynamics
results.

Let us reiterate that no long-range order appears at
the crossover temperature, only a local ordering
which causes a central peak to form in the dynamic
response function.

V. CONCLUSION

We have developed an exact real-space renormal-
ization-group technique for a continuous spin model
in one dimension, based on the eigenvalues and
eigenfunctions of the transfer operator for the sys-
tem, and have applied it to the $4 model of structural
phase transitions for the full range of the parameter
space from the displacive limit to the Ising limit. We
find that the critical universality class is clearly Ising-
like. However, away from the critical fixed points
the system displays two different kinds of noncritical
RG flow, with a sharp crossover in between. One re-
gion of the parameter space flows to the Ising limit
and another flows to a high-temperature fixed point
associated with a system with a Gaussian-like sym-
metry. In this latter displacive region the dominant
excitations of the system are anharmonic phonon os-
cillations about the center of the one-particle poten-
tial. Analysis of the RG flow in the crossover region
well away from the fixed points leads us to the con-
clusion that the formation of domain walls drives the
crossover from displacive to Ising-like behavior. In
one dimension the crossover reduced temperature To
takes the form Tp(8) —03 2 for 8 ((1 (near the
displacive limit).

A Kadanoff-Migdal transformation is used to pro-
duce an approximate RG for the two-dimensional @4

model. The Kadanoff-Migdal'method is expected to
give a reliable phase diagram in two dimensions. Our



276 BEALE, SARKER, AND KRUMHANSL 24

conclusion is that the critical behavior remains strictly
Ising-like in two dimensions; i.e., the system is in the
same universality class as the Ising model. The
crossover to displacive behavior still occurs near the
displacive limit at a temperature Tp(e) 1.3T,(e).
Above this temperature the primary excitations are
anharmonic phonon oscillations about the high-

symmetry points of the one-particle potential. For
T, & T & To the primary excitations are mobile
domain walls, the RG flow goes to the Ising limit and
the crossover is driven by the domain-wall formation.
The formation of oppositely ordered domains can be
observed by the appearance of a peak at co =0 in the
dynamic response function S(q, cu) for q

' less than
the average domain size. At T = T, the system un-

dergoes an Ising-like continuous transition into an or-
dered phase. Below T, the dominant excitations are
oscillations about the bottom of one side of the one-
particle potential.

Presumably some of the techniques used here
could be applied to block spin RG treatment of the
two-dimensional $4 model. " If this is possible, a
check on the capabilities of the Kadanoff-Migdal
transformation for describing continuous spin sys-
tems could be obtained.
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