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A generalized model of percolation encompassing both the usual model, in which bonds are

occupied with probability p and are vacant with probability (1 —p), and the model appropriate to

the statistics of lattice animals, in which the fugacity for occupied bonds is p and that for unoc-

cupied bonds is unity, is formulated. Within this model we discuss the crossover between the

two problems and we study the statistics of large clusters. We determine the scaling form which

the distribution function for the number of clusters with a given number of sites n assumes as a

function of both n and p. For p near p, we find that the distribution function depends on per-

colation exponents for u = n(p, —p) ~ small, where 4~ is a crossover exponent, and on ex-

ponents appropriate to the lattice-animals problem for large values of u. We thus have displayed

the relation between the two limits and show conclusively that the lattice-animals exponents
cannot be obtained by any simple scaling arguments from the percolation exponents. We also

demonstrate that essential singularities in the cluster distribution functions for p & p, arise from

metastable states of the Potts model.

I. INTRODUCTION

In recent years, considerable effort has been devot-
ed to the study of the statistics of clusters on a lat-
tice. ' ' Both site and bond clusters can be defined.
Site clusters occur in lattices in which sites can be ei-
ther occupied or vacant and consist of groups of adja-
cent occupied sites. Bond clusters occur in lattices
where bonds are either occupied or vacant and con-
sist of groups of sites connected by occupied bonds.
In this paper we will concentrate on the case of bond
clusters. The statistics of large clusters depend on
the rules for occupying bonds. In the lattice-animal
problem occupied bonds are weighted with relative
probability p and vacant bonds with relative probabili-
ty unity. This model also describes the statistics of
branched polymer in the dilute limit if p is interpreted
as the fugacity for bond formation. 4 In the percola-
tion problem bonds are occupied with probability p
and are vacant with probability (1 —p).

For lattice animals a statistical quantity of interest
is A (n), the total number of clusters (animals) per
site containing n bonds. For large n it is known' that
A (n) is of the form

-8
A (n) —n ann

where A. is a constant and 0, is the animal-cluster ex-
ponent. An exact analysis of the problem for the
Cayley tree yields the value 0, = —,, which is identi-

fied as the mean-field-theory result. Values of 8, for
spatial dimensionality d between 2 and 8 have been
obtained using series expansions"' and Monte Car-
lo simulation. ' These results show that 0, varies

between 1 at d =2 and its mean-field value at high
dimensionality. The renormalization-group treatment
of this problem showed that the critical exponents
are given correctly by mean-field theory for d & 8,
and they were calculated using an e expansion in
8 —e dimensions.

For the percolation problem one often considers
B(n,p), the average number of clusters per site con-
taining n sites. Near the percolation threshold at

p =p„numerical evidence„' supported also by
field-theoretic and e-expansion studies' " of the
one-state Potts model, shows that B(n,p) scales as

B(n,p) =n 'C(n(p —p, ) ') (1.2)

p
= 2 + Pp/(Pp + &q) (1.3b)

and A~ is usually called the gap exponent. In the
limit n ~ Kunz and Souillard' have proven that
for sufficiently large ~p

—p, ~
one has

—n, p(p,
lnB (n,p)——n, p)p, .

(1.4a)

(1.4b)

Numerical evidence' seems to suggest that these
results hold even for arbitrarily small values of
~p

—p, ~. Thus one of the forms of B(n,p) that has

where v~ and 4~ are related to the order-parameter
exponent, P~, and the susceptibility exponent, y~, of
percolation by

(1.3a)
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been suggested is

8 (n, p) —n ~exp ( —An v ) (1.5)

where e =8 —d. In Sec. V we extend the discussion
via a scaling argument to d (6. There one has

B(n,p) —n G[n(p p,),n(p ——p, )"] (1.6)

in disagreement with Eq. (1.2), where p, = Pvhv/@v,
where gv is the crossover exponent for anisotropy for
the one-state Potts model. Thus 8(n,p) undergoes a
crossover from percolation to animals behavior as a
function of u = n ip —p, i". We find that

Up to now it has been unclear whether Eq. (1.5) is

supposed to be consistent with or whether it is sup-
posed to supercede Eq. (1.2). In addition, it has not
been established whether 0 is the same as the an-

imals exponent 8, and also whether or not there are
simple scaling relations between the percolation ex-
ponents and 8. Indeed, as yet there have been no
satisfactory derivations of Eq. (1.2) using the renor-
malization group. Stephen' has attempted such a
treatment, but as we shall see, his result for B(n,p)
is incorrect.

In this paper we study the various distribution
functions for cluster statistics typified by 8(r(,p). To
do this we will show in Sec. II that the generating
function for both lattice animals and percolating clus-
ters can be obtained from the one-state Potts model
in the presence of an external field and an external
anisotropy field. This formulation is similar to that
of Giri et alt. ' for. the site-bond generating function
for percolating clusters. In Sec. III we study A (n),
8 (n,p), and selected other functions in mean-field
theory. Though some of the results presented here
are not new, they are needed as a basis for later dis-

cussion. At the level of mean-field theory vp and 8,
are equal, so it is impossible to tell whether 8 in Eq.
(1.5) is equal to (1, or to rv. In Sec, IV we present a

renormalization-group analysis of the cluster-
generating function. In particular we are led to con-
sider the one-state Potts model in a negative external
field and with external anisotropy. In the absence of
these fields we recover the usual results, ' namely,
that the critical exponents are mean-field-like for
d ) 6. In the presence of these fields we find that
there is a crossover to the animals behavior. For the
animals problem the critical exponents, in particular
H„depart from their mean-field values for d & 8.4 A

study of this crossover from percolation to animals
enab1es us to construct the scaling function for
8(n,p). For 6 ( d (8 this scaling function is of the
form

(1.8a)

(1.8b)

Thus for d & 6, C in Eq. (1.2) is in fact a scaling
function of a single variable, but it has a singularity
at large argument causing a crossover from percola-
tion to animals. For p p, and n ~ we have the
results

B(n,p) —n v exp[ —An (p, —p) v] u &(1
(1.9a)

-e (~ -e )a8(u,p) —n '(p, —p) & ' & exp[ —An(p, —p) ']
u )) 1 . (1.9b)

This behavior predicts that C(u) has a maximum at
some value of u, say u,„, since it must behave as

-e
u v 'exp( —au) for large u, and rv —8, is positive.
This behavior has been noted and discussed by
Stauffer in some detail.

In Sec. VI we show that the dimensionality-
dependent essential singularity predicted by Kunz and
Souillard" arises from instantons of finite action in
the Potts model in a field. These states are essential-
ly identical to the metastable Ising clusters in a nega-
tive field discussed by Langer. ' Near p, we find

I 1-1 d8(n,p) —n ' exp[ —en(p —p, ) v]' 'i", (1.10)

P &Pc

where c is a constant. and ~' is a critical exponent
whose calculation will be presented in a future publi-
cation.

II. POTTS MODEL AND CLUSTER STATISTICS

It is now wel1 known that the one-state limit of the
s-state Potts model generates the statistics of per-
colating clusters. ' We will rederive this result in this
section. We will also show how the generating func-
tiori for lattice animals with a given number of
bonds, perimeter bonds, and sites can be obtained

- from the one-state Potts model.
Consider a lattice with coordination number z and

A' sites x. We write the Hamiltonian for the s-state
Potts model as

p =1

Ap =2

p, =4/e,

(1.7a)

(1.7b)

(1.7c)

(1.7d)

K(g, , (,)
—s ')

(x, x )

QH(8 ( & t s ) (2.1)
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I
where (x, x ) indicates that the sum is over pairs of
nearest-neighboring sites, a (x) is an s-state variable,
and 5 is the Kronecker 5. The anisotropic coupling
represented by the second term in Eq. (2.1) has pre-
viously been introduced by Giri et af. " to discuss
cluster statistics. The partition function for this

model can be written as

Z = Z'exp[(s —1)(N'H +NsK&)/s], (2.2)

where N is the total number of sites in the lattice,
and X~ = —Nz is the total number of bonds on the

1

lattice, and

Z'=exp( —N K&) $ ff exp[H(5 (-„),—I)] g (I + &
( ) ( )

exp[J(& (-„, ,
—I)])

Ia(x)} x )

(2.3)

where

K)1+v=e ',
1+re J=eK

(2.4a)

(2.4b)

e (e —1) = I —e . In other words, to the
-Kj K ) -K)

bonds in C' we may attribute the factor

nb(C )
exp[ —K, n~( C') ] [[exp( —K~) ] [exp(K) —11}~

We now evaluate Z' by associating each term in the
expansion of Eq. (2.3) in powers of v with a graph g.
To each factor v8, we associate an occupied

bond connecting sites x and x . The effect of these
bonds is to cause all sites x in a cluster to have the
same value of o(x). The trace over all states then
reduces to a product of traces over clusters C ( g)
contained in the graph g. In this way we find that

where nb(C') and n~(C') are the number of bonds
and the number of perimeter bonds, respectively, in
C'. The other bonds of g which are not in C' are
weighted by a factor exp( —K~) if they are unoccu-
pied and by a factor I —exp( —K~) if they are occu-
pied. The sum over all graphs g(C') is a sum over
these two possibilities and therefore yields a factor

Z' e=' ' $(e ' —1) b

5
x g {I+(s—1)e

c(g)
Ki Nb(C)

x [(e"-I)/(e '-I)] ' j,
(2.5)

where nb(C) is the number of occupied bonds of
C, n, (C) the number of sites in C, and nb(C) the
number of occupied bonds in C. In the limit s 1

we write Eq. (2.5) as

—Nf' = lim lnZ'
s-1 s =1

—K]Ng Kl N (&j)=Xe (e —1) ~'
9

[(~"—I)/(~ ' —I)] "
c(g) (2.6)

(a)
&ra

e ~
~ 5
~ ~

so that f' is the free energy corresponding to Z'.
Now consider a particular cluster, C, at some fixed
position on the lattice. For this cluster we define its
perimeter bonds as the set of unoccupied bonds at
least one end of which intersects the cluster (see Fig.
1). Let C' be the union of C with its perimeter
bonds. There will be many graphs g(C') in which
C' appears, and only these graphs contribute to the
terms in the sum of Eq. (2.6) involving C. In Eq.—K]N~(2.6) we write e ' s as a product over all bonds of—K)
e '. Then we note the following weightings. Unoc-

' —K)cupied bonds carry a factor e '. Occupied bonds in
C' carry the factor

'(e ' —1)[(e —1)/(e ' —1) ] = e '(e —1)
I

Occupied bonds not in C' carry a factor

~ ~ ~ ~

'I I'

FIG. 1. (a) Cluster, C, of occupied sites, indicated by

dark squares, connected by occupied bonds, indicated by
lines. The boundary of the cluster is shown. (b) Set C'
given by the union of the cluster C and its perimeter bonds,
shown here by wave lines.
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where A (nb, n~, n, ) is the number of clusters per site
with nb bonds, n~ perimeter bonds, and n, sites. We
now set

-K) —J
e '=qe &, (2.8a)

unity for each bond not in C'. Thus we find that

f'—= X exp( —K) n~
—Hn, )

n ,n, nb

x [(e —1)e ') bA (ne, n„nb), (2.7)

transformation. We have
Pi oo

N, (n, p, q) = — dH e™f'(pq 0 H, O)
2mi ~-i

nJb
Nb(n, p, q) = —

J dJb e f'(p, q;O, O, Jb)2' I

N~(n, p, q) = — . de e ~f'(p, q;Je, 0, 0)
2 VT I

(2.14a)

(2.14b)

—K -J
1(eK 1) pe b —e L-

in which case we may write

f'(K, —, H, L) = X exp( —K, n~
—Hn, —Lnb)

n, n, nb

x A (n, , n„nb)
or

(2.gb)

(2.9a)

(2.14c)

From both a mathematical and physical point of view
it is clear that the behavior of the distribution func-
tions for large n reflects the critical-point behavior of
the free energy, f'.

Finally, we introduce one two-variable distribution
function,

x A (n, n„nb) (2.9b)

Using Eq. (2.2) we relate f' to the free energy, f,
corresponding to Z by

f'(Kt, H, L) =f(Ki,H, L) +H+ —Ki (2.10)

We may define various probability distributions
based on A (nb, n~, n, ) We may . consider the distribu-
tion function for the number of clusters per site hav-

ing a given number of sites, a given number of
bonds, or a given number of perimeters. These func-
tions are, respectively,

f'(p, q; J~—,H, Jb) = gp q ~ exp( —Jen~ —Hn, —Jbnb)
Nbp(nb np p q) = XA (nb, n„nb)p" q

n

which may be obtained via the relation

(2.15)

Nb, &(nb, nl, ;p, q)
yi oo J rI/oo

dJ~ e ~ ~„dJb e f'(p, q; J&, O, Jb)

III. MEAN-FIELD THEORY

(2.i6)

Note that Jb and J~ are only used as dummy variables
for integration. Otherwise, they are set equal to zero.

N, (n, p, q) = $ A (n, , n, nb)p 'q
nb, n

Nb(n, P, q) = X A(ne, n„n)P q b

n, n

Ne(n, p, q) = X A (n, n„nb)p q
n bnb

(2.11a)

(2.11b)

(2.11c)

We start by recasting the partition function for the
Hamiltonian of Eq. (2.1) in terms of a field theory.
To this end we first reexpress the Hamiltonian in
terms of vectors ei for cr =1,2, . . . , s and
I = 1, 2, . . . , (s —1), in the manner of Zia and Wal-

lace. ' These vectors satisfy

For the variables the special cases of interest are $e, =0, (3.1a)

q = 1 —p, percolation,

q =1, lattice animals,

p = 1, perimeter animals

Specifically we will study the functions

B (n,p) = N, (n,p, 1-p)

A (n) = Nb(n, 1, 1)

P(n) =N, (n, i, i),

(2.12a)

(2.12b)

(2.12c)

(2.13a)

(2.i3b)

(2.13c)

Xe, e, , =g„ (3.1b)

I

ge e =S —s'
I

(3.1c)

We write Eq. (2.1) as

—QHIe, -&~+ —,
' (s —i)NZ(K, K)/s', —

/[K'„, +(K~ —K)ei'e, ', ]ei t"'e, , t" '

(x, x )4I

where P(n) is the number of clusters having a given
perimeter, n. The cluster distribution functions of
Eq. (2.12) can be obtained from f (or f') by Laplace

x, l

(3.2)
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where
(

H( ——H + —(K( —K) e(' —= H'e('
S

( (

(3.3)

Then we find

r(e) —= lim F((ej) +H'e (3.11a)s-(iN s —1

Now we use the Hubbard-Stratonovich transforma-
tion to write

= —zK 4' —zK 4 —e-'
2

(3.11b)

—/i/{s —i)fo

where

Nfo = —Nz (K( —K)/s'0

The value of 4 is determined by the equation. of
state:

r(()(qr)—Br(e) - zE + —zE (1 —e-*" ) = H
9O

and

(3.5a)

+ —,
' (s —1) ' $ QH((x)K„,(x, x )H, ,(x )

x, x V
and the inverse susceptibility is given by

8'r(+)r&'&(e) —= =ZK(1 —ZEe '"+) = r
/+2

(3.12)

(3.13)

Z, =C, Jl gdy, (-) -"l»&,
x.l

where Co is a normalization constant and

F((+j) = —, $ $(i(((x)E„,(x, x )(i(,, (x )
x, x U

—y H(( x ) li((( x ) + $ 8 ( x )
x, l

(3.5b)

(3.6)

For the purposes of mean-field theory it is not neces-
sary to consider the general tensor susceptibility,
$21/Qp(B(i(, because its anisotropy vanishes as s 1.
This anisotropy will be treated in the next section,
inasmuch as it becomes relevant for d ( 8.

Criticality occurs when r =0, i.e. , when exp(zK+)
=zK. However, 4 must satisfy the equation of state,
Eq. (3.12). Thus, there is a criticai line in the
(H', zE) plane, H, '= H,'(zE), determined by the rela-
tion

with H,
' =1 —zK +lnzK (3.14)

(

g(x) = —ln /exp QQK„,(x, x')y, ,(x')e(
CT

l, l x
1 j

(3.7)

Here we set

E„,( x, x ) = y( x, x ) [E5„, + (E( —E)e('e, ( ]
(

(3.8)

where

tl if x and x' are nearest neighbors (3.9a)

,
0 otherwise. (3.9b)

One can verify that H,'(zE) has a single maximum at
zK =1, with H,'=0. Thus, there is no critical point
for H' & 0. For H' (0 there are two solutions to Eq.
(3.14), one for zE (1, which we shall call the weak-
coupling transition, and one for zK & 1, which we
shall call the strong-coupling transition. In the latter
regime there is a singularity at H'=O, Ki —K =0 cor-
responding to the instability of the ordered phase
with instantons giving rise to the essential singulari-
ties discussed by Kunz and Souillard. ' %e will refer
to the special point H'=0, zK = I as the percolation
point, since percolation is described by Ki —K =0,
and H =0, which gives H'=0. The critical surface
and the essential singularity surface are sho~n in Fig.
2.

It is often convenient to consider the free energy in
terms of particular sets of variables. To relate the
phase diagram to values of Ki, L, and H we write

Since all the critical effects are contained in Z~, we
concentrate our attention on it.

Mean-field theory is obtained by ignoring config-
urations in F( (4)) in which (i(((x) is spatially vary-

ing. That is we set

H'=H —z ln(e '+e )

K =ln(1+e ' )

(3.15a)

(3.15b)

Then the relation for criticality may, be written as

4((x) = e( = we(' . (3.10) H+zK
i Ki —L

e ' =ze ln(1+e ' ) (3.16)
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exp( —L) =p, whence criticality occurs at p =p,"
with

~(a) el/ze 1 & p (3.18)

For perimeter animals one sets H =0, L =0, and
exp( —Kt) = q, whence criticality occurs at q = q,

t'~

with

l-p, ) q,& ~-1-—lnz,1

z
(3.19)

H'=H —z ln(p+q), K =ln —
.=constp+q

t

(3.20a)

for large z. Except in Sec. VI we confine ourselves to
the disordered regimes: p & p, for percolation,
p & p, ' for bond animals, and q & q, ' for perime-
ter animals.

In evaluating the inverse Laplace transforms, e.g. ,
Eq. (2.14), we will set two of the variables equal to
the fixed values for the model and integrate over the
third one. In all cases p and q are taken to be fixed.
For the site distribution function Jb = J~ =0, for the
bond, H = J~ =0, and for the perimeter bond
H = Jb =0. The integration trajectories in the H, K,
hK =z(KI —K) plane for the three cases are

FIG. 2. Phase diagram within mean-field theory. The
critical surface (APB), the essential'singularity surface {PC),
and the trajectories for evaluating Nb(n, p, q) (curves B) and

Nz (n,p, q) {curves P) projected onto the plane KI = K for
z =6. Trajectories for evaluating N, (n,p, q) are vertical lines
at positions along the horizontal axis determined by p and q

(the trajectory for p =1 —q =p, passes through P). Curves

B~, B2, B3, and 84 correspond, respectively, to q ) 1, q =1,
q =q, =exp( —1/z), and q & q, . Curves P&, P2, and P3 cor-
respond, respectively, to p & p, =1 —exp( —1/z), p =p„and
p )p, . Bond curves for q & q, (e.g. , B4), perimeter curves
for p )p„and site curves for p )p, intersect both the
essential singularity and critical surfaces indicating that there
will be an essential singularity and a critical singularity in N,
and N~ and Nb for these cases. The critical surface (APB) is

independent of the value of 4K =KI —K; The essential
singularity surface is not independent of KI —K, but we

have not calculated its form in the general {0',K, AK)
plane, Fluctuations will quantitatively affect the shapes of
the critical surface and of the essential singularity surface.
The bond, site, and perimeter trajectories being determined
by constitutive equations will not be affected by fluctuations.

For percolation we set H =0, exp( —L) =p, and
exp( —Kt) =1 —p in which case Eq. (3.16) yields the
critical percolation concentration, p„as

(3.17)

For bond animals one sets H =0, K~ =0, and

/bK = —z ln(p + q) =const

for sites;

H'= —z(lnq +K), 4K = —z(lnq +K) =H'
1

K =ln 1+&e
q

(3.20b)

for, bonds; and

H'= —z lnp+z ln(1 —e «), AK =H'

K =ln(1+ —e ~)P J (3.20c)

for perimeter bonds. These trajectories (for real
values of the variables H, Jb, or Je) are shown in Fig.
2. All the site trajectories are parallel to the H' axis
intersecting the critical curve in the weak-coupling re-
gime for (p + q)/q ( exp(1/z) and in the strong-
coupling regime for (p +q)/q ) exp(1/z). Note that
both low-density percolation (p +q =1, p (p, ) and
animals (q =1, p (p,t'~) lead to a weak-coupling
transition, whereas the percolation problem with

p )p, corresponds to strong coupling.
The bond trajectories begin at H' = hK = —z ln(q),

K =0 and run to H'= b,K = —zK —~, intersecting
the critical curve in the weak-coupling regime for
z lnq ' & 1 and in the strong-coupling regime other-
wise. Note that pure bond animals with p = q =1 as
well as low-density percolation correspond to the
weak-coupling regime whereas percolation for p & p,
again leads to the strong-coupling case. Finally, the
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qr = w '[—r + (r'+2wH')' ']
I'"= (r'+2wH') ' '

(3.21)

(3.22)

where

perimeter trajectories begin at E =+~, H'= AE
=z lnp ' and run to E =0, H'= AE = —~, intersect-
ing the critical curve in the weak-coupling regime for
p & p, and the strong-coupling regime otherwise in-

dependently of q, for q & 0. Thus pure perimeter an-
imals with p = q = 1 correspond to the strong-
coupling regime.

All trajectories in the strong-coupling regime are
expected to intersect an essential singularity surface
giving rise to large-n behavior of the form of Eq.
(1.10). In Sec. VI we show that this surface inter-
sects the line H'=0, E & E, when E~ —E =0. We
have not calculated the shape of the general surface
when E~ —E W 0 and cannot say whether it always
lies above the extension of the mean-field critical
surface shown in Fig. 2.

We now present a few detailed calculations. We
begin our analysis by considering the case of percola-
tion near p, . In this case 4" is small and we can ex-
pand I "' and I" in powers of +. In this way we
obtain

ously by Stephen. " Similarly we obtain

Nb(n, p, 1 —p) = (27r) I/z-n 5/2-(zp )3/& ezp
zpc

Np(n, p, 1 —p) =(27r) ' 'n '/'[z(1 —p, )]''
I

nro2
x exp ——

2 z(1 —p, )

(3.28)

(3.29)

The above results are of the form

N (n,p, 1 —p) =3 n '/ze (3.30)

where n is s, b, or p. For the Cayley tree the exact
analysis gives /I, = )Ib = (z —2) hb. Our mean-field
results do not quite reproduce this relation. As
Stephen' has pointed out in a similar context, a

more delicate form of mean-field theory is needed to
reproduce these consistency relations near p, .

Results away from the percolation threshold can
also be easily obtained. Let (K„H,') be the coordi-
nates of some point on the critical line given by Eq.
(3.14). For this point qr, is found via

(3.31)
r =zK(1 —zK) —z(K, —K)

z(p, —p) —zp ( Jb —J,),(I —p, )

w = (zK)' —(zK, )' —1

H' = H +z(pJb+ qJr) —
—,zpq(Jb —J, )2

(3.24)

(3.2s)

f = —,
' (zK, )'(aq )' —(/bH') (/b. q ), (3.32)

where 4H'=H' —H,
'

and

Using the equation of state and Eq. (3.13) we can
also obtain 4%' = 4 —'0, away from criticality. The
nonanalytic part of the free energy in the vicinity of
the critical point is then quite generally

For H'=0 we have I'&2' —(p, —p)r, with y =1, as
expected for pure percolation. For H' & 0, we have
r"' —[ro —r, (H')]r and q —[ro —r, (H')]& with

r, (H') = (2 wH') ' ' and y = P =
z . Thus within

mean-field theory the one-state Potts model in a neg-
ative field has the same critical exponents as for an-

imals. 4 Substituting Eq. (3.21) into Eq. (3.11b) we

find, apart from some unimportant terms from fo

2 z — —(K —K, ) +2AH1 /

E,

i/2

(3.33)

Using Eqs. (3.32) and (3.33) we can determine the
dominant contribution to any of the N (n, p, q) for
cases when the trajectories in general do not intersect
the percolation point, zE =1, H'=0. We find that

——"H'+, (r'+2wH')" . (3.26)
3 w2 w 3N)

N, (n, p, q) =(2rr) ' '(3/2)n s/2[1 (-zK )2]~™

Henceforth we set NJ =1 near the critical point.
From this result we obtain 8(n,p) via Eq. (2.14a) as where

(3.34)

8(n,p) =(2m) ' 'n ''exp( —
—, «o ) (3.27)

I I

E, =ln p+q
q

(3.3Sa)

with ro=z(p, —p)/(1 —p, ), with p, given by Eq.
(3.17). This result agrees with that obtained previ-

H
e ' =zeE,

p+q
(3.3Sb)
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and

&/2

Nb(n. p. q) = — (1 ——zK. )
3z
2 2%. 3

where,

fl+ = nb + np

n = (1 p)—nb pn-,
a =p(1 —p —pz)

(3.41)

(3.42)

(3.43)

where

K, = (zeq*) '

1 3/2

qeE,
—5/2e

"
b (3 36)

(3.37a)

This result has the same form as the site-bond distri-
bution function calculated by Stephen' and suffers
from the same limitations: a is negative for some
values of p. This presumably results from the incom-
pleteness of mean-field theory.

IV. e EXPANSION

e = —(e '-1)-Jb q

P
(3.37b)

Similar results for Nb(n, p, q) can be obtained but
since the result is more complicated, we omit it. Spe-
cial cases of the above results are

To obtain an e expansion leading to expressions for
generating functions in the critical region, we express
Zq, in terms of deviations of $((x) from its equilibri-
um value. '

I '-n

A (n) —n ' exp ——1
-52

ze
(3.38)

y, (x) =We, '+y((x)

where we require

(4.1)

(4.2)
and

p(/2) /2 5/2(q (a)) -n- (3.39)
We may now express F( [4')) in t'erms of @,(x) and
write

F([q']) = XF.([y]),
Finally we consider the two variable distribution

functions near percolation obtained via Eq. (2.16).
We find that

where F„contains all contributions to F of order P".
We can obtain Fo from Eq. (3.11). Also

Nbb(nb, nb ,p, 1 —p) ='(22r) 'n+5a '/~z2/2

with

F, = —h ge('@,(x),
l, x

(4.3)

2
ron+x exp-

2z

n 2

20n+
, (3.40)

and

h =zK(1 —e '"b) +0' —zKqi (4.4)

X [Ky(x x ) —K'e ' y'(x, x )]@((x)p((x )

+ —, g X[(K(—K)y(x, x ) —K2e '«~y2(x, x )(2K, —K —Ke ' s')] $ (x)$,( )ex(eI
x, x V

(4.S)

where y2, = X „y „y „,. The cubic terms have a symmetry similar to that of the animals problem:

F5= X X [—
&

l(( ( ( w(x(, x2, x5)+
&

e/ e/ e( U(xt, x2, x2) +e( 5/ / 1(2(x(, x2, xb)]@/ (x&)@( (x )f 2(x3()
x ] x2b x3 ly, l2, l3

(4.6)

where u3, v, and ~ are short-ranged potentials. Near and above eight dimensions u3, v, and also all the poten-
tials in F„with n )4 are irrelevant and need not be considered further. It is necessary to retain ~ even though it
is irrelevant because it occurs in the recursion relations in combination with a relevant variable. Keeping only
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relevant terms in the gradient expansion of F we then obtain a model Hamiltonian for d near 8 of the form

X =ED —$J d"x h, g((x) + —, $~ d x ((r(t(((x)'+ l&y((x) I'j5„+ Te, 'e, l g((x)P, (x))
I

f, l

—
—,'w $ Z(. (, (, J d"x@(,(x)y(, (x)y(, (x)

I l.l2 l3

(4.7)

where

.= Kz(I -Kze-"'),
T=z[K, K K—ze "—(2K-, —K —« "' ))

(4.8a)

(4.8b)

Note that r, T, and h depend not only on the external fields K, H, and K1 —K, but also on 'P. Recursion

relations for the potentials of Eq. (4.7) can be developed in the usual way leading to4

—"=(2 —r()r + —w K (d1+r) +K~w T(1+~)
dl

(4.9)

= (2 —r() T ——w K„T (1 + r) —2 w2Kd T(I + r)
dl

(4.10)

dl
= —(6 —d —3q) w —2w K3(d1 +r) —3w KdT(1 +r) (4.»)

dt
—= —( d + 2 —r() h + wKd T (1 +—r) 2, (4.12)

2
fies

q= ——N KdT ——N Ky (4.13) —=(8 —d —4q)g ——g (1+r)dg 13 . 2 4

dl 2
(4.15)

where Kd '=2 'rr' I'(d/2).
For the percolation problem K1=K and H =0, so

that 9'=0 and T =0. In this case one can show that
the symmetry of the Potts model is preserved and
hence that u3 = v =0. Thus percolation corresponds
to a multicritical point in which the most relevant
nonzero potentials are r and w Then, as expected,
one finds a fixed point in 6 —e dimensions with
K~(w')'=2&/7, r(, = —e/21, (, = —,

'
+5m/84,

p~ =1 —e/7, and y~ =1+a/7. In addition the cross-
over exponent for turning on T is

d =I ——=pP 7
(4.14)

Zia and Wallace' have shown that Q~ =-P~ to all or-
ders in e. Since (t~ )0, the percolation fixed point is

unstable with respect to turning on T. In the usual
percolation problem, T is zero at the fixed point be-
cause q( and K( —K are zero. From Eq. (4.8b) one
sees that it is possible, however, to reach the percola-
tion fixed point even if H and '0 are nonzero, provid-
ed K1 —K is adjusted to make T =0. This is not the
usual situation at all. Here a critical point can be
reached even for finite order parameter induced by
an external ordering field.

%hen T is nonzero, the system goes to a different
fixed point that first appears in 8 —e dimensions, It
is controlled by the variable g = Kq~ T which satis-

1 SV= —+—E

y=1+ —e
1

2
g

(4.16a)

(4.16b)

(4.16c)

(4.16d)

In addition, the exponent p,3 describing the behavior
of the three-point vertex function' near criticality is

of some importance. %e find

1
P,3 = (4.17)

These exponents refer to behavior when r is varied
keeping the order parameter fixed. If the external
fields (H, K( —K) are varied, then, except on a spe-
cial surface, 'P will change in response to changes in
K leading to a renormalization of critical exponents.
To treat this case, the equation of state for '0 must
be solved. This rather complicated procedure is
described in detail in Ref. 4. Here, we will outline

near 8 dimensions. This equation and Eqs.
(4.9)—(4.13) are identical to those obtained in Ref. 4

for the statistics of animals or dilute branched poly-
mers using a slightly different model to generate clus-
ter statistics. Thus, we can use those results without
modification. W e obtain
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only the essential details. The equation for g can be
integrated to yield

g (I) = e"g (0)/G(1),

G(0 =1+—', g(O)(e"—I)/. .
Similarly, we find

'I'
exp r((() dl =G(l') '

i4 {)

w(l') = w(0) exp[(3 —
2
d)l']G(1') '

r (I")= r (0)e" G (I") 'I

(4.18a)

(4.18b)

(4.19a)

(4.19b)

(4.19c)

where, to avoid introducing extra notation, we as-
sume that r measures distance from the actual rather
than the mean-field critical point. As usual I' is
chosen so that r(l') —1. The functions I' and I'"
consist of regular and singular parts, with

in fact H, (K,g), and

r,'„',(t, h%', g) =H H, —= EH

= —, (rp' +2wH)/w1

(4.24a)

(4.24b)

From Eqs. (4.24) and (4.21) we find that

e 4' =—2w(0)EH

x 1 + {[2w(0)hH] 'I —I }
9g 0

2c

4/9

(4.26)

where Eq. (4.24b) applies to a critical point in the vi-
cinity of H =0 and r =0 (percolation). To order e,

t (I'.) + w (I') aq ((')

=e" G( I ') ' [t(0) +w(0)b@(0)] . (4.25)

I",'„', = ,
' r'(I') ex—p —

„~ —,
' (d +2 —q) d(

t

= —,
' e~' G(l')''/w(0)

(4.20a)

(4.20b)

and from Eqs. (4.21) and (4.24)

f,,„,= r - (~H) sy(0) .

Thus we have

f,;„=—[3w(0)'] '[2w(0)AH]

(4.27)

and

r„„=—~

r ((")e ' /w ((")

= ——,'e " G(l')/w'(0)

(4.21a)

(4.21b)

Equations (4.18) to (4.21) suffice to describe cross-
over and critical behavior near eight dimensions pro-
viding 'P is held constant as the critical point is
reached. Usually, however, the critical point is ap-

proached along a path in the K~ —E,H plane for
which 0 is not fixed. In this case, %" and r are deter-
rnined by the equation of state, I" ' =H. To solve
this equation we note that to a given critical point
there corresponds a critical value, 'P„of 'P. Away

from the critical point, one has 0' = +, + 5 P. Since
44 should scale as an order parameter, we define

x I + {[2w(0)AH] 'I —1}
9g (0)

2c

1 1/3

(4.28)

—(AH)31' g(0) [2w(0) AH] '14 « e (4.29a)

—(AH) ' g(0)[2w(0)(tH] 'I )) e

where 8, = —,
—e/12 is the animals exponent. 4 From

Eq. (4.8b) we see that g(0) depends on 4', and thus
on r and H. If g(0, qr, ) is of order unity, the 4
dependence of g can be neglected and animals ex-
ponents are obtained for all AH ( 1. One can easily

see from Eqs. (3.21)—(3.23) that this is the case for
bond animals when considering the average number
of percolating clusters with n, sites or nb bonds, if

p (p„so that

6%(i")=dqr(0) exp
2 &

(d —2+q) dl . (4.22)
-8 -n ]I,

B(n,p) —n 'e

A (n) —n 'K",
(4.30a)

(4.30b)
One can easily verify using Eqs. (4.22) and

(4.9)—(4.13) that

r(l) =t(l) +w(l)h+(() (4.23)

where P, and E are constants.
On the other hand, for cluster statistics near per-

colation, g (0) is zero at the critical point and the 4'

dependence of g (0) is important:

where t(l) is r(l) evaluated at qr = qr, . We are now

in a position to investigate the equation of state. At
the critical point, I",„', is zero, so that I",,", (K,g, 9', ) is and

g (0) = w'T = w'qt

—w'[ —rp+(rp+2wH)' ']
(4.31a)

(4.31b)

f = —(3w2) '(2whH) I 1—

{

2whH
2E

i/3

[(2whH) 'I' —1], (4.32)
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Using Eq. (2.14a) we then find that

B(n,p) —(3w24r) 'n ' exp( —ron/2w)

2
OO 9W rp

x dy e "«Im (—2wy)' ' 1—
26

&/2—2 wP

fp fl2

g/4—2 wP —1 (4.33)

—(3w'mn") '(2 w') '"exp—

—(3w2mn5/2) '(2w')'"exp—

flf
r(5/2), r11n'/4 (( 1

2w

1 1/3
fir 9W

(2 2) —e/4 1/3na/12 r ne/4 )) 1
2w 26

(4.34a)

(4.34b)

As expected, the result, Eq. (4.34a), for the percola-
tion regime, rpn' « 1, agrees with the mean-field
result, Eq. (3.27), since the percolation problem is
mean-field-like for d =8 —e )6.

as

g
sing

p «

t~ tl', (S.la)

In the vicinity of S, the correlation functions scale

V. CLUSTER STATISTICS IN GENERAL DIMENSION
2 —a 5 "tIf g.

~sing = t
t~ tl' (s.lb)

From the mean-field theory and e expansion of the
previous two sections, we can surmise the scaling
behavior of the cluster-generating function in general
dimension. First we recall that there is a critical sur-
face H' =H,'(K, /2. K) on which rt21 vanishes. In al-
most all instances, we are interested in critical behav-
ior as a particular point, which we denote
S, = (H,', K„ILK,), on the critical surface is ap-
proached along a particular trajectory. At S„ there is
a critical value, 4„of4, Motion away from 5, can
be described in terms of the variables 4H' = H' —H, ',
t —K —K„and SKi =5K —AK„or in terms of
b, %" ='Il —0'„ t, and 5Ki. To simplify our discus-
sion, we will consider only the calculation of the site
distribution function B(n,p). In this case AK, =0,
SK~ =0, H' = H, and the trajectory of interest is that
described in Eq. (3.20) with (p +q) =1. Note that t
measures distance along the K axis from the point S„
so that it is zero for the site trajectory under con-
sideration.

Before proceeding, we make the following observa-
tions. First, if g is zero at S„ there is no crossover to
animals behavior and the critical behavior is that of
percolation (even if S, does not correspond to the
percolation point). Therefore there is a line of criti-
cal points in the (H', K, hK) space passing through
the percolation point with percolation exponents.
Second, I ') consists of a regular and a singular part
both of which participate in determining d O. Final-
ly, above six dimensions w is zero at the percolation
fixed point, so that the crossover exponent for g in
the vicinity of percolation is Q«

= (8 —d) v = e/2,
whereas below six dimensions w' is nonzero at per-
colation and the crossover exponent for g is simply
that for T: P« =P«.

and

(5.2)

Since we are interested in a trajectory with t =0 and
AK = 0, we write

(gqr) «« (s.3b)

which implies that

(5.4)

Of course, in general g is a function of 4O, SKi, and
t. From Eq. (4.8b), we can write

g =g, +cA'0 (s.s)

for t = AK =0, where c is a constant and g, is the
value of g at the critical point. Using Eqs. (5.4) and
(S.S) we find that

gc

(aa) « ~
(5.6)

, (/2. H) «

(5.7)

For 6(d(8, Q(x,y) 1 asx ~, y 0;for
d ( 6, y =1, Q is a function only of x and Q(x, I) 1

as x 0. We can now combine Eqs. (5.6), (5.4),
and (5.2) to arrive at
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Thus, by Laplace transforming, we find that
—n)H, (p)I8(n,p) =n «e

x Im&l dye «( —y)
x+(p /a )

'~p"p
' —

y~
'

n
' (5.g)

%e see immediately that when n » 1, we can re-
place X(x,y) by X(x), a function of x only. Thus we

have

-~}H,t p) [8 (n,p) —n «e ' R (ng, ») (5.9)

y /a
%hen g, n p p » 1, we know that there is a cross-
over to animals behavior, so that

T

r
, X, X~~
,const, x 0.

(S.IOa)

(s.1ob)

Equation (5.9) gives the general scaling form for
B(n,p) Wh.en p is not near p„g, is of order unity,
so that animals exponents are obtained for all
n » 1. Near p„however, both g, and H, go to zero
as

fD =fa+fs
= —zdE+ ~~d-', (6.2)

~here 8 is the radius of the droplet and E is the
difference in energy between the uniform down
phase and the uniform up phase, and 0- is the surface
tension. The metastable droplet is obtained by max-
imizing fr«with respect to R:

—dRd 'E + o.(d —1)R" 2 =0 (6.3)

so that R —(o/E) Th.us w. e have

d/Ed-1 (6.4)

ing the spins to be up at spatial infinity. Under this
constraint, one expects there to be droplets of down

spins in the sea of up spins. If H is near 0, the den-
sity of the down-spin droplets should be sma11 and
one can calculate properties of the metastable parti-
tion function by considering a noninteracting gas of
the down-spin droplets. To do this, we need to cal-
culate the free energy, fD, of an average droplet.
There is a bulk as well as a surface contribution to
fD'.

d
H, = —arop

g, —w 0, —rop
P

(5.11a)

(5.11b)

Here o- is a condensation energy times a correlation
length and E is proportional to H. The droplet, of
course, only exists for H & 0. Thus we have

where a is some constant and ro —p —p, . Using Eq.
(5.11) in Eq. (5.9) we find

-anro p
8(n,p) —n «e 0 R (nro«««) (5.12)

This function agrees with Eqs. (1.6) and (1.9). Note

that ro pn controls crossover to animals behavior.
Thus, for 6 & d & 8, the naive scaling form of Eq.
(1.2) does not apply. For d ( 6, however, @« =P«
and Eq. (1.2) does apply.

VI. ESSENTIAL SINGULARITIES

Langer in his classic paper" on the droplet model
showed that there is an essential singularity associat-
ed with passing from external field H =0+ to H =0
for all temperatures T & T, and that for H =0 there
is an imaginary part to the partition function. The
detailed mathematical analysis of this problem is
quite complicated. One can, however, obtain the
correct behavior of the leading singularity by reason-
ably simple arguments. When H is positive, the sys-
tem is in stable equilibrium with spins pointing up.
When H is allowed to become negative, the state
with all spins down is stable. The state with the aver-
age magnetization up is, however, metastable. The
metastable up-spin state can be studied by constrain-

d/zd-i &/~H ~d (6.5)

There is an imaginary part to Z because the con-
straint that the spin be up at infinity requires defor-
mation of contours to ensure convergence.

We now wish to use this general droplet picture to
calculate the p dependence of the essential singularity

predicted by Kunz and Souillard. ' For simplicity we

restrict our attention to the case K~ —K =0. %e
proceed exactly as outlined above. First, we demon-
strate within mean-field theory the existence of local
equilibrium states with two different symmetries in

the presence of a field. The first, which we will call

the "up" state, is the one discussed extensively in

Sec. III. It is singly degenerate. The second, which

we will call the "down" state, has a degeneracy of
(s —1). It is this degeneracy which ensures that the
partition function for the Potts model tends to unity

as s 1. For H & 0 the up phase is stable and
down-spin regions are unstable. For H & 0, small
finite regions of down spins are unstable because of
their positive surface energy, whereas large regions of
down spins grow uncontrollably due to their negative
volume energy. It is clear that for H & 0 regions of a
critical radius R, (H) are metastable and in our pic-

ture it is this metastability that leads to the essential
singularity discussed by Kunz and Souillard. '

When H' and K~ —K are zero, spontaneous order-

ing can occur into any of s different equivalent states
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when p )p, . These states have order parameters be along a single direction e~. Instead, we seek solu-
tions of the form

(pi) =el"%k, k =1,2, . . . , s (6.6) (Pi) = 9'tel' + 'P, e,", k = I, 2, . . . , s (6.7)

When H' is positive, the state with k =1 is preferred
and stable. When H' becomes negative, states along
other directions become stable. In view of the sym-
metry of the Potts model, we do not expect (Pi) to

so that there are (s —1) solutions corresponding to
the (s —I ) possible choices for k. The mean-field
free energy is easily calculated from Eq, (3,6). We
find that

—zK%
1

-zK%
2

—zK ( 01++2f = zan%&%—'2+VzH —ln(e '+e 2 —e ' ~ )

+(s —I) —,'zIt'(e', +q,') Hq, ——
—xK% z

—gxp
&

—gK (V&+42)
)ZEt, e, e 2+e2e '+e

-zK+ -zKe -zK(O +W )1 + e 2 e 1 2
(6.s)

To minimize fwe see that %~ and qr2 satisfy the equations of state

e '(1 —e ')
(6.9)

—zK %1
( 1 — —zK 4

2 )
—,its +p l

+0('-')
e

' '+e ' ' —e
' (6.10)

A general solution to these equations is complicated.
However, we can investigate their solution for small

H. For H =0, of course, there are the solutions

1 +p %2 =0 and 41 =0 +2 = 'Po where %'p is

given by Eq. (3.12) with H =0. When H AO, there
is the up solution with Ii'2=0 and a down solution
with II2 —4p and 41 —H. We therefore write

and the surface tension by

(6.15)

where fp is the free energy of Eq. (6.8) evaluated at
K, —E =H =0 and g is a correlation length. We are
particularly interested in properties near percolation
where

01 =aH

%= q'o+PH ~

and find

(6.11a)

(6.11b)
fo —ro

r lr2

'Po Irol

(6.16)

(6.17)

(6.is)
a=zing(I-zine )-—zK%'O

p=q, e
' '(I zlr, e -')-' .

(6.12a)

(6.i2b)

Substituting the evaluations of Eqs. (6.14) through
(6.18) into Eq. (6.4) and remembering that there are
(s —1) equivalent down solutions, we obtain

Finally, we calculate the free energies f„,of the up
state and fp,„„ofthe down state described by Eq.
(6.11) as

f„p ——0(s —I)

fp,„„=qrpH

(6.13a)

(6.13b)

E =OpH (6.14)

Thus we see that fp,„„&f„, for H & 0 and harp )0.
This region is indicated in Fig. 2. When A1 —E &0,
there will be a surface in the (E~ —Ir, IC, H') plane
where the uniform solution along H becomes un-

stable.
The free-energy difference between the up and

down phases is thus given by

ImZ —W(s —I) exp( —a IroI r +'/IH
I

'), (6.19)

'd —1

, (p —p, )'
ImZ —N(s —1) exp —a' (6.20)

~here a is a constant. We included a factor A' in Eq.
(6.19) because there are N sites on which to center
the metastable solution. The above form is valid for
d ) 6, where mean-field theory gives a correct
description of percolation. The results below six
dimensions can be obtained by integrating the
renormalization-group recursion relations until
r(1') —I and matching to Eq. (6.19). The result'p is
that predicted by scaling
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and leads to
I

B(n,p) —n ' exp[ —c (n (p —p, ) &) ' '"],
where c is a constant and 7' is another critical ex-
ponent. The calculation of v' requires a more careful
treatment of the metastability problem than present-
ed here. It will be given in a separate publication.

We close this section by noting that the partition
function in the metastable region takes the form

(6.21)

Z =e '+W(s —1)c'e (6.22)

where c' is a complex constant. This form satisfies
the requirement that Z tend to unity as s 1, and
gives a free energy of the form

-ff =f& —c'e

This requirement would not be met if the system
were allowed to condense into a single one of the
down solutions for negative H.

(6.23)

VII. SUMMARY

In this paper, we have presented a detailed analysis
of the statistics of clusters on a lattice using mean-
field theory, the ~ expansion, scaling arguments, and
a generalization of the droplet model. Clusters are
defined as groups of adjacent sites connected by oc-'
cupied bonds. Perimeter bonds are unoccupied
bonds connected to sites in a cluster (cf., Fig. 1).
Lattices are characterized by the number of clusters
per site, A (nq, n~, n, ) containing nq bonds, n~ perime-
ter bonds, and n, sites. Generating functions for
A (nq, n~, n, ) can be obtained by assigning weight fac-
tors p, q, and e 0 to bonds, perimeter bonds, and
sites. Familiar statistical problems correspond to spe-
cial cases of these weighting factors. For example the
probability P(n„p) of having a percolating clusters
with n sites is obtained by setting p & 1, q = 1 —p,
H =0, and summing over nb and n~. Similarly, the
number of animals, A (n~), with nq bonds is obtained

by setting p = q =1, H =0 and summing over n, and n~.

We have shown how one can use the free energy,

f, of the one-state Potts model in a field and in the
presence of a uniaxial anisotropy field to obtain the
generalized generating function for A ( nq, n~, n, ). We
find that two types of critical points appear in f. One
describes the statistics of animals and has critical
corrections to mean-field theory belo~ eight dimen-
sions; the other describes percolation and has correc-
tions to mean-field theory below six dimensions.
The percolation critical point is a multicritical point

that is unstable to the animals critical point. The an-
imals critica1 behavior occurs only at negative H.
Thus the critical properties of any function such as
moments of P(n, p) evaluated at H =0 will be con-
trolled by the percolation critical point. Most func-
tions, however, involving negative 0 will exhibit
crossover from percolation to animals critical
behavior. Thus P(n, p) which is obtained from f by
a Laplace transform with respect to H is controlled by
the percolation critical point for n less than a cross-
over value, n", and by the animals critical point for n

larger than n', The value of n' depends on dimen-
sionality, d. For 6 & d & 8, n' —(p —p, ) 4 8 ~,
whereas for d & 6, n' —(p —p, ) ~, where A~ is the
gap exponent, p~+7~, for percolation.

Cluster functions such as P(n, p) are known to ex-
hibit essential singularities at large n of the form
exp( —const n' i~) when an infinite cluster exists.
We have shown that these singularities emerge from
metastable states of the Potts model in a negative
field analagous to those studied by Langer for the Is-
ing model. Using scaling arguments, we determine
the dependence of the coefficient of n' ' on p —p, .

Note addedin proof Since this. paper was submit-
ted, several other papers relevant to this paper have
appeared. The lattice animals problem has been re-
lated to the Yang-Lee edge singularity in a random
imaginary magnetic field [G. Parisi and N. Sourlas,
Phys. Rev. Lett. 46, 871 (1981)]. A Flory-like ap-
proximation for v,„;,], is remarkably good for a11

dimensions between 2 and 8 [Joel Isaacson and T. C.
Lubensky, J. Phys. (Paris) 41, L469 (1980)]. Using
the Flory approximation and the results of Parisi and
Sourlas, one can obtain an excellent approximation
for tl, for 2 & d & 8 [T. C. Lubensky and A. J.
McKane, J. Phys. (Paris) Lett. (in press)]. The ex-
ponent 8' has been calculated [T. C. Lubensky and
A. J. McKane, J. Phys. A 14, L157 (1981)]. We
should also mention a very complete computer study
of B(n,p) by H. Nakanishi and H. E. Stanley [Phys.
Rev. B 22, 2466 (1980); J. Phys. A 14, No. 3

(1980)]. This work does not, however, address the
question of crossover from percolation to animals
behavior.
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