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Quantum sine-Gordon thermodynamics: The Bethe ansatz method
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We show that the thermodynamic properties of the quantum sine-Gordon system in the

zero-. charge sector can be found from the appropriate limit of the Takahashi-Suzuki Bethe an-

satz analysis of the XYZ spin chain. We prove that the rather complex criteria for allowed states

in thermodynamic sums in that analysis correspond simply to including only states with normal-

izable wave functions. The behavior of the JYZ phase-shift function in the sine-Gordon limit is

discussed.

I. INTRODUCTION

There has been considerable recent interest in the
properties of the quantum sine-Gordon (SG) system,
which appears to be a suitable model for several
one-dimensional spin systems, for example CsNiF3
and (CD3)4 NMnC13 (TMMC) (in a magnetic field),
at least in appropriate temperature ranges. Our
present understanding of the thermodynamics of SG
is based in large part on the ideal gas phenomenology
pioneered by Krumhansl and Schrieffer, ' and later re-
fined by Currie et al. 2 However, this picture be-
comes less reliable, and in some ways ambiguous, in
the quantum regime. Another method has been
developed by Maki and Takayama, who have applied
finite-temperature field-theoretical techniques to the
problem. They have discussed, for example, the
mass spectrum at finite temperatures. Their work
has given new insight into the nature of the excita-
tions, but the picture is still far from complete. In
particular, many of the results are restricted to weak
coupling and/or low temperatures.

A quite different approach to the finite-tempera-
ture properties of the system is provided by the Bethe
ansatz (BA). In 1972, Takahashi and Suzuki4 (TS)
set up the BA formalism for the spin- —, (anisotropi-

cally coupled) XYZ chain at finite temperatures, and
it is known from the work of Luther, 5 and Bergknoff
and Thacker, that the zero-charge-sector SG system
is a particular continuum limit of the XYZ chain.
This has the implication that the formalism of
Takahashi and Suzuki4 can be developed to give a
rather complete quantitative account of quantum
sine-Gordon thermodynamics in the zero-charge sec-
tor, and will probably answer some of the questions
raised by other analyses. The purpose of the present
paper is to initiate such a study. A major reason why
the very elegant work of Takahashi and Suzuki has
been little used so far is that its physical content is
not readily discernible, and, furthermore, some of
the arguments invoked to restrict sums over states

are not very transparent, and hence perhaps rather
unconvincing. In the present work, we attempt to
clarify the physical picture of the various excitations,
first at zero temperature, then at finite temperature.
In Sec. II we review briefly the work done so far on
the zero-temperature excitation spectrum and dis-
cuss, in particular, the "charged vacuum" excitations
found by Korepin. ' These correspond to certain
strings (uniformly spaced sets of complex rapidities)
whose energy and momenta are completely compen-
sated by backflow in the Fermi sea of negative energy
states. Korepin' gave a set of criteria for deciding
whether a particular string length corresponds to a
normalizable wave function. We present a very sim-
ple formulation of his ideas.

In Sec. III, we build up a picture of the system at
finite temperatures as a gas of interacting excitations,
including not only solitons, antisolitons, and breather
states, but also excitations corresponding to the
"charged vacuum" excitations of Korepin. For
nonzero temperatures, these last excitations no
longer have zero energy and momentum, essentially
because the shielding properties of the "hot" ensem-
ble are different for the ground state. Our main
result is that this picture corresponds exactly with the
analysis of Takahashi and Suzuki. They restricted
the sum over states to certain string lengths, and jus-
tified the restriction with arguments concerning exot-
ic states of the system in which all particles were
bound in strings of the same length. We show that
their restrictions have a simpler and more physical
justification —only strings corresponding to normaliz-
able wave functions are allowed. Thus the work of
Takahashi and Suzuki, including the criteria for al-
lowed strings in sums over states, can be understood
in terms of a rather direct physical picture.

In Sec. IV of the paper, and in the Appendix, we
point out that the expression for the phase shift
derived from the XYZ model in the appropriate limit
does not quite coincide with the sine-Gordon phase
shift —there is a small linear term, with coefficient in-
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versely proportional to the cutoff. Thus the conver-
gence of one model to the other as the cutoff goes to
infinity is not exponentially fast, as one might other-
wise have expected.

II. ZERO-TEMPERATURE EXCITATION SPECTRUM
OF THE SINE-GORDON SYSTEM

The quantum sine-Gordon system is defined by the
Lagrangian density

physical vacuum state of the MTM system these neg-
ative energy levels are all filled —the usual Dirac sea.
The interaction term in (2.3) is a reflectionless poten-
tial and causes a phase shift between particles having
relative rapidity P of

sinh-,
'

(P 2i p—, )
1t(p) = i ln—— ', , l2,

= —', (2r+g0)
sinh —,

' (p+2il2, )
(2.6)

In the standard Bethe ansatz fashion, allowed mo-
menta in any state are given by applying periodic

, 6„$—8"p+,cospqh, (2.1) boundary conditions and computing the total phase
shift (kinetic plus interactions) for a particle taken

where Q is a canonical boson field in 1+1 dimen-
sions. The corresponding classical theory is well
known to have as excitations the soliton and antisoli-
ton, and "breather" states which can be regarded as
soliton-antisoliton (ss) bound states. Dashen,
Hasslacher, and Neveu8 (DHN) used a semiclassical
quantization method to derive the discrete set of (ss)
binding energies for the quantum system. Coleman
proved the equivalence of the SG.system (2.1) to the
massive Thirring model (MTM)

g = 1ii(i rl m0) 1]—I —
2 g0jJ1' (2.2)

where j„=—,[1', y„f] and 111 is a Dirac fermion field.

The Hamiltonian of this model can be written

i( ill'41i 1 ir2Bx P2) ™0(1]111i12+1i121l11)

+ 2g011111121li21iil]

It was shown by Luther~ that the MTM (and hence
SG) arose in a certain continuum limit of the XI'Z
spin chain, ' described by the Hamiltonian

(2.3)

E = m0coshP, k = m0sinhP (2.5)

Thus the real P axis corresponds to positive energies,
the line Imp = 2r to negative energies, and in the

H =—X(J„(r„"rr„"~1+Jr(rr(rrqt+ J (r„o„*+1) . (2.4)
n

0-' being the Pauli matrices. The elementary excita-
tions from the ground state of (2.4) had been previ-
ously found by Johnson, Krinsky, and McCoy"
and they corresponded —in the appropriate limit—
precisely with the semiclassical results of DHN, sug-
gesting that the latter had a wider range of validity
then the semiclassical regime.

A clear analysis of the MTM excitation spectrum,
and a discussion of the XYZ limiting process, has
been given by Bergknoff and Thacker. %e briefly
outline some of their notation and results. The sin-
gle Dirac fermion eigenstates of the quadratic part of
the MTM Hamiltonian (2.3) are conveniently labeled
by a rapidity variable p,

around the system, that is

Lk; = Lm0 sinhp; = —22m; —Xg( p, —p&)
J

(2.7)

The density of negative-energy states in the physical
vacuum is found by subtracting from (2.7) the corre-
sponding equation for p, 1 and going to the L
limit, yielding a nonsingular integral equation. The
bare excitations of the system are holes in the Dirac
sea, particles with real p, and certain multiparticle
bound states called strings, in which individual parti-
cles have complex rapidities. The physical excitation
spectrum from the ground state is given by comput-
ing the backflow in the Dirac sea caused by the bare
excitations —from (2.7), the allowed p; in the sea are
shifted slightly. The integral equations are solved by
Fourier methods.

Our particular interest in this section is the sets of
complex rapidities called strings. As a preliminary
exercise, it is interesting to compare the nature of the
(bare) bound-state wave function for two particles
with that in another Bethe ansatz system, the nonrel-
ativistic boson gas with a 8-function attractive poten-
tial. ' ' Consider a scattering state of two such
bosons —in the center-of-mass frame, this corre-
sponds to a single boson interacting with a fixed 6-
function potential. There will be an incident wave, a
reflected wave, and a transmitted wave. Continuing
the momentum in the complex plane to a pole of the
scattering matrix, we find both transmitted and re-
flected waves have (equal) infinite magnitude—
normalizing gives the usual symmetric bound-state
wave function -exp[ —(c/2~x ~) ], where c is the
strength of the potential, the pole being at k =i

~
c ~/2.

For the MTM fermions, the picture is rather dif-
ferent. Here there is no reflected wave, so the nor-
malized bound state corresponding to a pole of the 5
matrix has only the "transmitted" wave (no incident
wave), the wave function is nonzero on only one side
of the potential (of course, subsequent antisymmetri-
zation adds a term in the wave function with the par-
ticle orders reversed). Thus, for a certain value of
the complex momentum difference, the scattering
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matrix acts as a 8 function, cutting the wave function
to zero on one side, thus suppressing the growing ex-
ponential and giving a normalizable bound state.
From (2.6), the appropriate rapidity difference is
2i ( rr —p, ), or 2i cu where ro = m —p, .

The generalization of this two-particle bound state
to n particles is straightforward. Suppose we have a
wave function

&=exp imo Xx,sinhi3; (2.8
I~]

& Xn

(suppressing the spinor components of the wave
function, which are not relevant to the argument).
We can ensure that P will be identically zero for any
other ordering of the x s by taking the rapidities to
form a string.

p, =8 + i ( n —I ) o), p2 ——8 + I'( n —3 )co,
P„=B—I (n —1)o) (2.9)

where, for the string to have real total energy and
momentum, ImB =0 or m. We define the parity v of
the string by

1

+1 if B is real
—1 'f I 8= (2.10)

Thus as any particle moves past its neighbor, P goes
to zero, using the two-particle argument given above.
(The complete wave function for the bound state is
given by antisymmetrizing P. )

We now show, following Korepin, ' that (2.8) is not
normalizable for all string lengths. Introducing
difference coordinates,

yl +1 y2 +2 +1, ' ' ' i yn Xn &n-1

the wave function must decay for positive y2,

y3 ~. . .y„. This leads to

(2.11)

Im(sinhP2+sinhP3+ +sinhP„) & 0,
Im(sinhP3+ +sinhP„) &0

(2.12)
~ ~ ~

l

Im sinhP„& 0

Substituting the values (2.9) gives a bound state with

mass

m, if since i cos(nn —p) &0sin~n
sin%

p =I, . . . , n —I for u=+I (2.13)

—mo . if sin&up since(n —p) & 0
sincon

since

p = I, . . . , n —I for u= —I (2.14)

The conditions (2.13) and (2.14) can be written

cos( It —2p) o) & costi o),

p = I, . . . , n —1, u =+I (2.15)

and

cos( n —2p) cu & cosn co,

p=l, . . . , n —1, v= —I . (216)

Hence for a given o&, (2.15) and (2.16) give the
values of n corresponding to bound states with nor-
malizable wave functions. This leads to a simple
method of finding allowed string lengths. For exam-
ple, let us consider which strings of even n satisfy
(2.15). In Fig. 1, we mark on a cosine curve the
points cos0, cosa', cos2co, cos3cu, . . . . For an al-
lowed string with even n, the point cosn~ must be
lower than all preceding even points in the sequence.
It is easy to see that all points are allowed up to and
including the neo closest to n. . This set of strings cor-
responds to the quantized SG breathers. (In Bergkn-
off and Thacker, 6 these are the strings ending in the
first zone. ) However, there are in general longer
strings which satisfy (2.15). Considering still only
even values of n, if the closest point of the set n ~ to
3m is closer than the closest point to m was, then the
string ending at the point near 3m has a normalizable
wave function. This does not correspond to anything
in the previously discussed SG spectrum, and in fact,
when the energy and momentum of this longer string
is evaluated by including the backflow in the Dirac
sea, it is found to be zero. This is one of the charged
vacuum excitations of Korepin. For irrational co,

there will be arbitrarily large odd integer multiples of
m having some even integer multiple of ~ closer than
any preceding even integer multiple of ~ was to an
odd multiple of m. A similar argument works for odd
n. For strings of negative parity, cosnco must be
higher than cos(2p —n) r» for p = I, . . . , n —1. This
can only be true for odd n, from the case p =

2
n.

1

Actually, these negative-parity strings correspond to a
charged vacuum plus a soliton. We note that on

m=0.6

+ ALLOWED STR IHGS

0 HOT ALLOWED STRIHGS

FIG. 1. Allowed and not allowed strings for a given cv.

The length scale shown is in units of co, following Ref. 4,
and pp = m/co.
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varying the coupling parameters ~, the set of'allowed
excitations changes each time co passes through a ra-
tional value —some long strings dissociates into two
shorter strings or vice versa.

to those in Sec. II, there are allowed strings

u~=A +i(n —1)k, u2=A +i(n —3)X,

u„=A —i (n —1)X
(3.5)

III. BETHE ANSATZ THERMODYNAMICS

ASu(p+ p) ln(p+ p) —
p lnp —p lnp

The energy of the system is simply
k'

E = p(k) - dk
~ -oo 2 f77

(3.1)

(3.2)

Putting together (3.1) and (3.2) we can construct
an expression for the free energy, and minimizing
this with respect to p, say, gives an integral equation
connecting p and p. An equation for p + p in terms
of p arises from (2.7). These equations can be
solved for p, p and the thermodynamic properties fol-
low.

Gaudin" extended this analysis to the Heisenberg-
Ising spin chain (J„:J~:J,=I:I:b, ~4~ ) 1). For this
system, the elementary excitations are magnons, but
the magnon-magnon phase shift depends on both
momenta, not just the momentum difference. How-

ever, transforming to the variable o, defined in terms
of the momentum by

sin —,
' (u —iZ)

k = i ln, — , 4 = +cosh', (3.3)
sin-,

' (u+i Z)

the phase shift has a simple difference form

In this section we outline the derivation of the
equations describing the thermodynamics for several
BA systems, discussing in particular the nature of the
excitations appearing in the sum over states.

The first thermodynamic analysis of a BA system
was that given by Yang and Yang'" for the repulsive
S-function boson gas. The basic idea is as follows:
for any state of the system, the allowed k values are
given by the equation equivalent to (2.7). The
canonical ensemble can be represented by assuming
that in each small region Ak of momentum space, the
allowed k values are randomly filled, so that there is
a local density p(k) of filled states and p(k) of emp-
ty states, and a local entropy

k= —iln
sinh —,(u+ip),1

cos p, = —4, (3.6)
sinh

2 (u —i p, )

of complex eigenvalues, where 3 is real. However,
the criteria for normalizable wave functions, (2.12)
depend on the k —u relationship. When (2.5) is re-
placed by (3.3), it is easy to check that strings of any
length correspond to normalizable wave functions.
Hence a finite-temperature system will have strings
of all lengths present, and has to be described in
terms of particle and hole densities p„(u), p„(u) in
rapidity space for each n. The appropriate generaliza-
tion of (2.7) for a given string length, including
phase shifting by all the other strings of all lengths,
gives integral equations for the p„(u) + p„(u) s in
terms of densities of other strings throughout rapidity
space. Putting the obvious generalizations of (3.1)
and (3.2) into the free energy and minimizing with

respect to the p„'s gives another set of n equations,
so the thermodynamic behavior is formally deter-
mined.

We note here the relationship between these
strings and the elementary excitations of the spin
chain from its ground state. ' For the ferromagnetic
case, the ground state has all spins up, with no mag-
nons present. The sets of strings (3.5) correspond
directly to physical excitations, with energy and mo-
menta given simply by summing over the com-
ponents of the string. In the Ising (large 5) limit,
the n string corresponds to a state having n neighbor-
ing spins turned down. For the antiferromagnetic
case, the picture is quite different —the ground state
has zero total spin and is a Dirac sea of magnons.
The backflow in this sea completely compensates the
string energy and momentum, so the string does not
correspond to a physical excitation —although the
presence of a two string causes two holes to appear in
the Dirac sea, and these are the "dimer" excitations
from the antiferromagnetic ground state.

The next step, taken by Takahashi and Suzuki4 was
to go to the Heisenberg-Ising spin chain with

~
A~ ( 1.

This is closely related to Gaudin's work for ~A~ & 1,
but there are important differences. The formulas
analogous to (3.3) and (3.4) are

sin —(u —P —2i h, )
y(u, P) = i ln-

sin-(u —P+2ik)
(3.4)

(3.7)
sinh —,'.(u —P+2i p, )

@(u, P) = i ln-
sinh —,

' (u —P 2i p)— ,

It is necessary to go to the o, variables to solve the
various BA equations by Fourier methods. Compar-
ing (3.4) with (2.6), we notice that the phase shift for
this spin chain closely resembles that for the sine-
Gordon system. Therefore, by arguments analogous

We notice that the expression for the phase shift is
identical to the SG expression (2.6), so the strings
will have the same spacing. [Whether or not a minus
sign is included inside the logarithm depends on the
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~ ~ ~

f

sinh —,
'

[A —i (n —2Z) ] ) sinh —,
'

(A —in) )

(3.8)

Since the sinh function is periodic in the imaginary
direction with period 2n-, it is evident that these con-
ditions are exactly analogous to (2.15) and (2.16) and
hence the same lengths of strings (for a given spac-
ing) are allowed. In fact, these same criteria hold for
the general XYZ model, for in this case the hyperbol-
ic functions are replaced with q functions having the
same periodicity (and maxima, minima) in the ap-

propriate direction.
Thus, the thermodynamic equations for both the

Heisenberg-Ising chain with
~
A~ & 1 and the general

XYZ chain as written down by Takahashi and Suzuki
are straightforward extensions of Gaudin's work, the
only new feature being the restriction to strings with
normalizable bare wave functions.

It is interesting to note that Takahashi and Suzuki
(TS) arrived at the allowed string lengths by quite a

different route and appeared to be unaware of the
simple physical reasoning given above. They argue
[their Eq. (5.3)] that if all the magnons (that is, ,N—
for an ¹pin system) are bound in states of a partic-
ular size n, then there is no room to put in more n-

particle bound states. This seems reasonable, be-
cause if one could add another bound state, it would

appear to give a lowest-energy state in some sense for
the system having spin n —but that would also be the
state given by removing one bound state, and revers-
ing all spin, which clearly has a quite different wave
function. In any case, their argument leads eventual-
ly to their equation (A3) which is equivalent to our
Eqs. (2.14) and (2.15). They go on to give a very
elegant formulation of the condition for bound states
in terms of continued fractions.

It is easy to show that our conditions for bound
'states (2.13) and (2.14) are equivalent to TS equation
(A3), which reads in our notation

jQ) . QJ Ql ~

+ (n —j)—= (n —1)—

for j = I, . . . , n —1 (3.9)

Since co & m-, this equation is trivially true for j=1.
Taking [coj /7r] as a function of a continuous variable

j, it increases stepwise by unity each time coj /rr is an
integer, that is, each time sin j~ changes sign. Simi-

convention defining the phase shift in the nonin-
teracting (d =0) case. ] To find string lengths corre-
sponding to normalizable wave functions, we must
construct conditions analogous to (2.12). This is par-

ticularly simple with the logarithmic form of k above,
using (3.6),

sinh —'[3 +i (n —2Z) ] ) sinh —,
' (2 —in Z)

sinh
2

[A + i ( n 4—h)] .) sinh —, (A —in h. )

larly, [(n —j)cu/7r] decreases by unity each time
sin(n —j) co changes sign. Thus for our (3.9) to be
true for j=2, . . . , n —1 it must be that between
each jj,+1 both sinjcu, sin(n j)r—u change sign, or
neither does. This immediately leads to our condi-
tions (2.13) and (2.14).

IV. DISCUSSIQN

%e have sho~n that the criteria of Takahashi and
Suzuki for allowed strings correspond simply to those
having normalizable wave functions. Little purpose
would be served by reproducing here the thermo-
dynamic equations from Takahashi and Suzuki —they
are of standard Bethe ansatz type, and are rather
cumbersome simply because of the variety of allowed
strings. The limiting process giving the sine-Gordon
system from the XYZ chain has been analyzed by
Bergknoff and Thacker. It can be shown that the
bare and dressed excitation spectra, and thermo-
dynamic properties such as the specific heat gap, go
to the correct sine-Gordon values.

One minor puzzle connected with the limiting pro-
cess is perhaps worth mentioning —the MTM expres-
sion for the phase shift (2.6) goes from —2p, at —~
to +2p, at +~, a total change of 4p, . For the cutoff
theory, this change takes place between —A and +A
(cutoffs) with exponential accuracy. Yet if the model
is regarded as a limit of the XYZ chain, +A are
equivalent points in P space, so the total change in
phase over 2A must be zero (modulo 2m). The reso-
lution of this problem is given in the Appendix,
where it is shown that in a careful derivation of the
MTM phase shift from the XYZ chain, there is an ad-
ditional small linear term.

Note added in proof The thermod. ynamic analysis
presented here has to be modified for the strongly
repulsive quantum sine-Gordon system (p, & —,m).
As noted by Bergknoff and Thacker, the equivalence
to the XYZ chain breaks down in this region. How-
ever, Korepin has given an elegant BA analysis of the
ground-state and elementary excitations for p, & —m,

and it appears that a thermodynamic analysis analo-
gous to that above is feasible. %e should like to
thank V. Korepin for sending us copies of his recent
work [Commun. Math. Phys. 76, 165 (1980)].

APPENDIX

In this appendix, we derive the massive Thirring-
model phase shift as a limit of the XYZ phase shift,
and show that it is of the form (2.6) but with a small
linear term added, which goes to zero as the cutoff
goes to infinity.

From Takahashi and Suzuki, changing notation to
correspond to that used in this paper (that is, 2g rr
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—
y, , fx

2 p, a minus sign inside the log, which

adds m to $)
The MTM limit is K ~, q =e ~ 1 so the
usual q expansion is not useful —we need to invert
the modulus, using the imaginary transformation

H[ —,
' (p —2ip)]

H[ ,
' (p—+2ip)],

(Al) ir8—i(z) = ie—,xp(i r'z /rr) 8i(zr'i r'), (A3)

where 0 is the elliptic q function. These q functions
have modulus I', that is, real period 4K, and ima-

ginary quasiperiod 2KI. For convenience we shall
denote K by K, KI by K' so that formulas from

Whittaker and Watson, ' and Abramowitz and
Stegun's can be used directly. Using H(u)
= 8, (n u/2K),

f

@xyz(P) = i ln —8i (P—2i p, ), 8t (P+2ip,
(A2)

where r =iK'/K, r' = —1/r =iK/K'. The exponential
multiplier then contributes to the phase-shift function
a term

'2

m 4K [(P 2i p—)' —
,(P+2ilz)'] =, + +, P .

2KK'

(A4)

For K ~, K' —,m, this phase contribution be-

comes +p p/K and changes by +4@, from p = —2K to
+2K, that is, between the two cutoffs. Thus the
phase shift is

1 (

@xyz(P) = —i ln 8t, (i P+2y) 8t, (IP —2p)
K 4K' 4K'

where the 8i's have r'=iK/K'
In the K ~ limit, we have

(As)

(p) = +~p
K

sinh
z (P —2i p, )

sinh —,(P+2i p, )
(A6)

from which the total phase change between the cutoffs —2K, 2K is zero (or 2m, depending on the sheet
convention for the logarithm).
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