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Random-energy model: An exactly solvable model of disordered systems
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A simple model of disordered systems —the random-energy model —is introduced and solved.

This model is the limit of a family of disordered models, when the correlations between the en-

ergy levels become negligible. The model exhibits a phase transition and the low-temperature

phase is completely frozen. The corrections to the thermodynamic limit are discussed in detail.

The magnetic properties are studied, and a constant susceptibility is found at low temperature.

The phase diagram in the presence of ferromagnetic pair interactions is described. Many results

are qualitatively the same as those of the Sherrington-Kirkpatrick model. The problem of using

the replica method is analyzed. Lastly, this random-energy model provides lower bounds for the

ground-state energy of a large class of spin-glass models.

I. INTRODUCTION

Recently, many authors have studied the Sher-
rington-Kirkpatrick model' (the SK model). The first
interest of the SK model was to try to understand
what kind of mean-field theory' should be valid for
spin-glass models. The second important interest
was to know why the replica method used by SK' was

incorrect. The SK model is simple enough to allow

the calculation of all the integer moments (Z") of
the partition function in the thermodynamic limit.
Because of the too rapid growth of these moments
(Z") (see Appendix A), the continuation to nonin-

teger va1ues of rI is not unique. 4 In order to justify
why the continuation n 0 used by SK did not pro-
vide (lnZ), a breaking of symmetry in the replica
space was proposed. ' Several works followed this
idea and tried to investigate whether calculations with

a broken symmetry in the replica space could lead to
the true expression of (lnZ). At present the situa-

tion is not yet clear and no simple analytic solution of
the SK model has yet been derived. Therefore, it is

interesting to study the random-energy model which

is simpler but contains most of the difficulties en-
countered in the SK model.

The random-energy model (RE) describes a system
whose energy levels are independent random vari-

ables. The model can be defined without specifying
any microscopic Hamiltonian. However one can find
a family of spin-glass models which generalize the SK
model and give in a certain limit the RE model. Be-
cause of its simplicity, the moments (Z") and the
average free energy (lnZ) are given by very simple
expressions. The first motivation to study this RE
model was that the behavior of the (Z") is the same
as in the SK model and that the impossibility of.using
replicas is even more evident here. Another motiva-
tion was to look at the approach to the thermo-

dynamic limit. Thouless, Anderson, and Palmer'
found that the transition temperature of the SK
model could be seen in the I/N correction of the free
energy. Moreover the approach to the thermo-
dynamic limit is always a difficulty of numerical
simulations. So it was interesting to compare the
finite-size corrections of the RE model with those
which are conjectured for the SK model. The main
result is that the system exhibits a phase transition
and that in the low-temperature phase the system is
completely frozen. Another conclusion is that the in-

finite temperature is an accumulation point of critical
temperatures where the corrections to the thermo-
dynamic limit change their behavior. So one has to
be very careful in the high-temperature expansion for
these random systems. The definition of the RE
model can be extended to cases where a magnetic
field is present or where there are ferromagnetic pair
interactions in addition to the random interactions.
The phase diagrams are qualitatively the same as in
the SK model. Finally, the RE model leads me to
consider an approximation to spin-glass models in

any dimension and gives lower bounds for the
ground-state energies.

The main purpose of this work is to present in a
detailed way the derivation of the results announced
in a previous Letter. ' The paper is organized as fol-
lows: in Sec. II, the SK model is generalized and the
RE model is obtained as a limit of a family of spin-
glass models. In Sec. III the definition and a simple
solution of the RE model are given. These two sec-
tions are just a recall of the arguments contained in
Ref. 8. In Sec. IV, the moments (Z") are calculated
and the problem of finding (lnZ) using these mo-
ments is discussed. In Sec. V, the approach to the
thermodynamic limit is studied. The replica method

- used for the RE model is described in Sec. VI and
surprisingly an unstable saddle point gives the low-
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temperature free energy. In Secs. VII and VIII, the
behavior of the RE model in a magnetic field and in
the presence of ferromagnetic pair interactions is stu-
died. In Sec. IX, a lower bound of the ground-state
energy of some spin-glass models in finite dimen-
sions is obtained. Lastly in Sec. X, an attempt of ex-
panding spin-glass models around the RE model is
presented.

II. RELATED MODELS

1 1 1/2

p(Js) = J;2Nexp-
2J2

(2)

The model is infinite ranged because there is an in-
teraction J& for any pair of spins in the system.

One can generalize the SK model by replacing the
random pair interactions in Eq. (1) by random p-spin
interactions. The Hamiltonian is then

p= X ~i, . . . . i iriK 1'''''p 1 P
l1J ~ ~ ~ ~ I

Here again, the spins are Ising spins and there is an
interaction A&; for any group of p spins in the

model. As in the SK model, the probability distribu-
tion of A;, ; has to be scaled with N in order to

ensure an extensive free energy

In this section, I consider a family of models which
generalize the SK model and I explain how the RE
model is related to these models. The SK model is
defined by the Hamiltonian

X= x JJQiTJi(
(ij )

where the spins a-; are Ising spins and where the J&
are random-quenched variables with probability dis-
tribution

(E, —E,)'
2NJ'[1 —(2x —1)i']

(6)

The parameter x is always between 0 and 1. There-
fore, when p becomes large, one gets~

Pt 2(Ei,E2) —P(Ei)P(E2)

One can consider also the probability distributions of
three or more levels and again when p is large these
probability distributions become factorized. So when

p is large, the energy levels become independent ran-
dom variables. The large-p limit must always be tak-
en after the thermodynamic limit N ~ and so p is
much smaller than N. The RE model is defined as a
system of 2~ independent random energy levels dis-
tributed according to P(E) given by Eq. (5). One
can notice that the SK model which corresponds to
p =2 lies between the case p = I which is a model of
free spins in a random magnetic field and p = ~
which is the RE model. So some of its properties
should be well approximated by an interpolation
between these two exactly solvable models.

III. DEFINITION OF THE RANDOM-ENERGY MODEL

same P(E). One can notice that P(E) does not
depend on the configuration of spins {o.;t'~]. One can
also define the probability distribution Pt 2(Ei,E2) as
the probability that two given configurations of spins
{a.;t"] and {o.;"~) have, respectively, energies Ei and
E2. It turns out that this probability distribution
depends only on the distance between the two confi-
gurations, namely, on the number Nx of identical
spins in the two configurations. One finds

(E, +E,)'
P, 2(Et E2) —exp—

2NJ'[1+ (2x —1)']

p(A;, ; )

1/2
NI'

mJ pt

(~.. . )'N~-'
exp ——

J2p t
(4)

The random-energy model is defined by the follow-
ing three properties.

(i) The system has 2~ energy levels E;.
(ii) These energy levels are distributed according to

the probability distribution

The relation between all these models can be seen
in the one-level probability distribution P(E). For a
given configuration of the spins {crt'~}, the energy E
depends on the interactions 3;, ; of the Hamil-

tonian X~. By definition P(E) is the probability that
this configuration has energy E. Using Eqs. (3) and
(4), one finds that

g2
P (E) —exp-

NJ2

This result justifies a posteriori the distribution chosen
in Eq. (4) because all the Hamiltonians X~ give the

P (E) = (N n J') '~ exp( —E'/NJ') (g)

(iii) The energy levels E; are independent random
variables.

The first two properties are actual features of some
spin-glass models like the models defined by the
Hamiltonians X~ in Eq. (3). The third property is
specific to this model. It simplifies the model enough
to allow us to solve it exactly. However it can be
seen as a crude approximation to more realistic
models since the correlations between the energy lev-
els are ignored.

One system is given by the choice of the 2~ energy
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and as usual for disordered systems, one ~ants to
calculate the average free energy.

F =-T(inZ)

T„—g [P ( E; ) dE, ] ln Z ( [E;))
I

(10)

The calculation of this average is done in the Appen-
dix B and the results are discussed in Sec. V. Here I
just recall the simple argument of Ref. 8 because it
will be useful in Secs. VII and VIII.

For one sample of the 2" energy levels, one can
define n (E) the number of energy levels belonging
to the interval (E,E+dE). This number fluctuates
from one sample to another. It can be calculated by

levels E;. For each system the partition function Z is

2N

Z([E;)) = X exp ——'

i 1

late the average free energy F using the relation
dS/dE =1/T. One finds

T l—n2 —J2/4T, if T ) T,
'

(16)
N 'F='

Eo/—N = —J (ln2)', if T & T, , (17)

~here

Tg = J/2 (ln2) '

Equation (16) follows directly from Eq. (15). When
the temperature decreases until T„ the energy E
reaches —Eo. For lower temperature than T„ the en-
ergy of the system remains Eo because there is no
level of lower energy.

The fact that the average free energy could be ob-
tained by calculating the average entropy is not
surprising. The entropy and the free energy are relat-
ed by a linear relation and so their averages are relat-
ed by the same linear relation.

n(E) = $y, IV. MOMENTS

E2
(n(E) ) =2N(y;) =2Nexp — AdE

t

(12)

where y;=1 if E (E; (E+dEandy;=0 otherwise.
The average (n(E) ) is easily obtained from the pro-
bability distribution of the energies E,:

The usual approach of disordered. problems by re-
plicas starts by calculating the moments (Z") of the
partition function. Because of the statistical indepen-
dence of the energies in the RE model, the expres-
sion of the moments (Z") is particularly simple. For
the first three moments, one finds

with A =(NTTJ ) '/2 In order .to have a well-defined

energy in the thermodynamic limit dE has to be small
enough (dE —N with 43. & I). On the other hand,
if one wants n(E) to be rather smooth, dE must be
large enough. It turns out that one can choose
dE —N for any a & 1. Then from Eq. (12) it is

clear that there exists a critical energy Eo defined by

(Z) 2N(e E/T) 2NeNX /4—

(Z2) 2NeN4 +2N(2N 1)eN)P/2

(Z3) 2Ne9Nx /4+ 3 [2N(2N I ) ]psN4 /4

+ 2N(2N I ) (2N —2) e3N & /4

(19)

Eo/N =J (ln2) ' ' (13)

n (E) —(n (E) ) (14)

If ~iE ~
) Eo, the average number (n (E) ) is much

smaller than 1. So for almost all the systems
n (E) =0 and with a very small probability which
vanishes exponentially with N, n(E) ~1.

It is then clear that in the thermodynamic limit, if

~
E

~
& Eo, the entropy S(E) is given by

/ '1

S (E) = N ln2— E
NJ

(15)

and there is no energy level larger than Eo in abso-
lute value. From the function S(E), one can calcu-

If )E
~

& Eo, the average number (n (E) ) of levels is

much larger than 1. Because of the statistical in-

dependence of the energy levels, the fluctuations of
n (E) around its average are of order (n (E) ) '/2 and
are small compared with (n(E) ). Therefore

=J /T
To calculate any moment (Z"), one can develop

the n th power of Z and then average

= XO'(P& P2 . P2N)
tp, )

x exp—
T T

9 ~ ~ ~

I 2N 2N

T

where 43. (p~,p2, . . . ) is a combinatorial factor

n!
~(Pt,P2, . . . ) =

p, t)

After the average, one can group the terms which

and where the sum is performed over all the integer
partitions of n:

p(~0, Xp;=n
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(Z„) g (2n)! n!
'"' fJ (,)! Q (p!)"'

p~p p ~P

have the same (p;j through a permutation of index.
Each integer partition of n is characterized by the
numbers vp of p; which are equal to p. One finds at
the end

&z&" 4

4
~ ~

r4

z » & & z

r 'I

fl

&& exp N $ p' —v~
4 p (20)

X v, =2"
p~p

$ pv, =n (21)

From the exact expression (20), one can derive the
asymptotic behavior (N ~) of all these moments.
First it is easy to replace each term in the sum (20)
by its asymptotic behavior. Because of Eq. (21), all
the vp for P «1 are small and vP is of order 2~. One
finds that

(2n)! nx"

Vpt

and so

(z") —g
'"' ff (,)!g (p!) '

where the sum has to be done over all the different
choices of the integers vp which verify:

vp ~«0

I 1 I I I I I I

1 2 3 4 5 6 7 8 9

FIG. I. The critical temperatures T„=Jn T, of the mo-
ments (Z") of the partition function. In the high-
temperature region T & T„, (Z") —(Z) ". In the low-

temperature region T ( T„, (Z") is much larger than (Z)".

model the (Z") have also a transition temperature. s

The behavior of these moments are the same in the
RE model and in the SK model. For the SK model,
Eq. (24) is true whereas Eq. (23) is only valid for
large n and Eq. (25) is valid at very low temperature.

The simplest way to compute the average free en-
ergy would be to assume that the partition function Z
has small f!uctuations around its average (Z). At
infinite temperature, there is no fluctuation at all
(Z =2") and it seems reasonable that at high tem-
perature, the probability distribution of Z is concen-
trated around (Z). Then (lnZ) could be obtained
by

n

&&expN X v~ ln2+p-
p 1

(22)

r

(In Z ) = ln (Z ) + In 1 + —1
Z

(Z)

(zn)

J2
expNn ln2+ = (Z)", if T & T„, (24)

4T2
r

r

J2
expÃ ln2+n, if T & T„4T

At this stage, it is interesting to make a few remarks.
First, all the integer moments (Z") for n ~2 have

a transition temperature T„(see Fig. 1). For the SK

Now we can see what is the dominant term in the
sum (22). Because of the constraint (21), one finds
that (i) if n X2 & 4ln2, the set of v~ which gives the
dominant contribution is v„=1 and vp =0 for
1 ~p ~ n —1; and (ii) if nh. ' (41n2, the best choice
is vl =n and vp =0 for p «2. Therefore for each
moment (Z") there is a critical temperature

T„=Un — = JnT,J
24ln2

and the asymptotic behavior of (Z") is given by

=in(Z) + X—( )n +t

n

Z
(z)

'n

From Eq. (25), it is clear that even at very high tem-
perature, if n is large enough (n & 4T'In2/J'), (Z")
is given by its low-temperature expression and one
has

(z")» (z)"
This proves that Eq. (26) is a divergent series at any
temperature except T = ~ and cannot be used to cal-
culate (lnZ).

Expressions (24) and (25) give the behavior of all
the moments (Z"). At any finite temperature, these
moments for large n behave like the exponential of
n'. lt is known that when the growth of the mo-
ments is too rapid, there are many distributions
which have the same moments. ' An example where
the moments increase in the same way as the rno-
ments (Z") is given in the Appendix A. This exam-
ple shows that the exact knowledge of the moments
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E2
p, A exp — dE = (y), p; «1

(y; ')= NJ'

1, p;=0

The result is

([n(E)]') = X
'"' I'I(.)' I'I(p') '

((y)) ' ' '
~

is not sufficient in this case to calculate (lnZ ).
In the microcanonical ensemble, the quantity of in-

terest is the density n (E) defined by Eq. (11). The
moments of n (E) can be calculated as those of Z.
One develops the qth power of Eq. (11) and one
averages using the fact that

At low temperature, the average free energy is

—(F) = —Jdin2+ ' + ' In(4mln2)
1 Tc lnN Tc

N 2 N 2N

+(T, —T)—I"(1)— '
ln I' 1—1 Tc T

N N T.
t

+0 lnN
N

(31)

In the thermodynamic limit, the specific heat C per
spin vanishes below T, (Fig. 2). This means that the
system is completely frozen in the whole low-temp-
erature phase. From Eq. (31), one can compute the
1/N corrections to C:

p~Q p ~Q '2
(27)

where the integers vv verify Eq. (21). In the thermo-
dynamic limit, Eq. (27) becomes simpler:

1 TC=-
N Tc

err 1
T

Tc
t

1

T
I 1 ———

Tc

I 1
Tc

rl—T
Tc

(32)

([n (E) ]~) —X' rr(, ) II(')"
(n(E)) ~-' ~ .

(28)

By looking at the dominant term in Eq. (28), one
finds that the energy EQ =JJln2 is a critical energy
for all these moments.

If
~
E

~
) Eo, the dominant contribution comes from

v~ = 1 and v~ =0 (for 1 «p «q —1), therefore

This shows that numerical studies which are always
done on finite systems would encounter difficulties in

predicting a zero specific heat because of the slow
convergence (1/N) to the thermodynamic limit. In
the low-temperature phase, one finds also that the
I/N correction is singular at T, because of the pres-
ence of In[I'(1 —T/7;) ] in the expression (31).

The average ground-state energy EGs is

([n (E)]') —(n (E) ) (29) ——(Eos) = +Jdln2 — — In(4n ln2)1 Tc lnN Tc

N 2 N 2N

if ~E
~
( Eo, the choice is vt = q and v~ =0 (for

p «2) and so
T-' r'(I) +O—

t

(33)

([n(E)]') —(n(E))' . (30)

So, for the RE model, the moments of the density
n (E) have a simpler behavior than those of Z. The
fact that all the moments of n (E) have the same crit-
ical energy indicates that this energy is the critical en-
ergy of the quenched system. The growth of the mo-
ments ([n (E) ]~) is at most an exponential of q be-
cause the maximum value of n (E) is always less
than 2". So there is in principle no problem about
the unicity of the distribution of n(E), once we know
its moments.

The corrections are of order N 'lnN and are compar-
able to the N ' (Ref. 1) and the N ' ' (Ref. 11)
corrections conjectured for the SK model.

c]'

V. FINITE-SIZE CORRECTIONS

The direct calculation of the average free energy is
given in the Appendix B. The purpose of this section
is only to discuss the results.

The first result is that there is a transition at tem-
perature T, = J/2Jln2. Of course, one recovers by
averaging lnZ, the extensive part of the free energy
given in Eqs. (16) and (17).

I

Tc

FIG. 2. The specific heat of the random-energy model as
a function of temperature.
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The ground-state energy depends on the choice of
the 2~ energy levels

Eos =min(E, , Eg, . . . , E rr)
I

p p ~ ~ ~ p

finds that (Z") is given by Eq. (25)

J2(Z") —expN ln2 + n'
4T~

By calculations similar to those given in the Appen-
dix B, one can find the fluctuations of this ground-
state energy

~2J2
(Eos ) —(Eos) = + O(1)

24 ln2
(34)

These fluctuations of the ground-state energy of the
.whole system are of order unity and so are rather
small. For the random-energy model, the difficulty
of finding the ground-state energy by studying finite
samples comes more from the slow convergence of
the average than from the fluctuations of the
ground-state energy.

In the high-temperature phase, the convergence to
the thermodynamic limit is more rapid because the
corrections decrease exponentially with N. One can
notice that at all the temperatures T„'(T„'
= J2n + I T„n =1,2, . . . , ) these corrections are
singular. These temperatures are probably the tem-
peratures where the number of terms that one can
use in the asymptotic expansion (26) to calculate
(lnZ ) changes.

/pe, =n

If one forgets the fact that the p and the vp are in-
teger one can find using a Lagrange parameter that
any extremum corresponds to all the vp =0 except
one.

This nonzero v~ has to be equal to n/p We. can
now find the value of p for which (n/p)(ln2
+p~k'/4) is extremum. The result is

2Jln2p= 7 ~c

T,
vp =n (36)

The corresponding contribution in sum (22) is

It is then impossible to use Eq. (35) because the
n 0 limit of (Z") is not 1.

Surprisingly it is possible to recover the low-
temperature expression of (lnZ) by looking at
another extremum in the sum (22) which is in fact a
minimum. The sum (22) has to be done over all the
choices of integers v such that

VI. REPLICA METHOD
exp Nn —din2J

T
(37)

The replica method consists in calculating (lnZ )
by the formula

We have seen in Sec. IV [Eq. (22)] that (Z") could
be written as

1 'I

fl

&exp N X v~ In2+p~-p,

At high temperature, the dominant term in the sum
was v~ = n and vp =0 for 2 ~p ~ n. This leads to the
expression (24) for (Z"). Then by using Eq. (35)
one finds

r

J2
(lnZ) =N ln2+

4T~

which is the good expression in the high-temperature
phase. At low temperature, the dominant term cor-
responds to v„= I and vp =0 for 1 ~p ~ n —1. One

So by applying the replica formula (35) to the expres-
sion (37), one recovers the true expression (17) of
(lnZ) below T, .

This calculation needs two comments: First, the
term (37) is not present in the sum (22) below T,
In Eq. (22) the p and the v~ are integers verifying
1 ~p ~ n and 0 ~ vp ~ n and obviously the choice
[Eq. (36)] does not satisfy these conditions. Second-
ly, even if Eq. (37) were present in Eq. (22), it would
be negligible compared with the dominant contribu-
tion found in Eq. (25). So for this RE model, a blind
calculation where all the constraints are forgotten can
lead to the good expression of (lnZ ). It would be
interesting to justify this calculation and to find an ar-
gument which shows that one has to take the n 0
limit of Eq. (37) below T, .

The replica method can also be applied in the mi-
crocanonical ensemble. It becomes

(38)

where (S(E) ) is the average entropy at energy E and
n (E) is the density defined in Sec. III. In Eqs. (29)
and (30) we have found the behavior of all the mo-
ments ([n (E)]').

If ~E[ )Eo, then (n (E) ) is very small compared
with I and one has ([n (E)]') —(n(E) ). By apply-
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ing Eq. (38), one finds

(S(E)) = lim
(n(E)) -I

OO
q~0 q

so, we find again that there is no level at these ener-
gies.

If
~
E

~
( Eo, then ( [ n (E) ]') —( n (E) ) r and Eq.

(38) gives

(S(E))= lim ) =ln[(n(E))]
0

which was also established in Sec. III.
We can conclude that although the replica method

was rather unsatisfactory for the partition function, it
works very well here in the microcanonical ensemble.

VII. EFFECT OF A UNIFORM MAGNETIC FIELD

One can calculate again the probability distributions
P(E) and P(Et, E2). As before, P(E~,E2) is factor-
ized and the energy becomes independent when

p ~. The difference is that now, P(E) depends
on the magnetization M of the configuration of spins

P(E) =(NrrJ2) '~ exp[ —(E+MH)2/NJ ) (40)

So the random-energy model is a system of 2 in-

dependent random-energy levels among which
N

( tn+M&&, ~) have a magnetization M and are distri-

buted according to Eq. {40).
Like in Sec. III, we can calculate the average of the

level density n (E):

+w

X„(N +M)/2 (

The definition of the random-energy model given
at the beginning of Sec. III is not sufficient to
describe its magnetic properties. To define the model
in a uniform magnetic field, one has to come back to
the Hamiltonians X~ of Sec. II. In presence of a field
0, these Hamiltonians become

N

3C,'=DC, —H g ~; .

(E+MH)'
NJ2 (41)

where the sum is done over all the possible magneti-
zations of the system: M = —N +2p with 0 ~ p ~ N.

In the thermodynamic limit N ~, the behavior
of (n (E) ) can be obtained by looking for the dom-
inant term in the sum (41). One finds

—ln(n (E) ) = max
1 1+m 1+mln—
N —1 ~m~1 2 2

1 —m 1 —m'
ln —(e+ mh)'

2 2
(42)

where e=E/NJ, m =M/N, and h =H/J.
The value of m which gives the maximum is the

solution of

m = —tanh[2h (e+ mh)]

Because of the statistical independence of the energy
levels, we can use again the argument of Sec. III.

If (I/N) ln (n (E) ) is positive, the average number
of levels at energy E is very large. The fluctuations
of n(E) are small compared with (n(E)) and then
the average entropy is

S(E) =in(n(E)) . (44)

If (I/N)ln(n(E)) is negative, the average (n(E) )
is much smaller than 1. So with probability 1, there
is no level at this energy.

So in a uniform magnetic field H, there is a critical
energy Eo(H) If ~E~ (Eo(H), the en.tropy is posi-
tive and given by Eq. (44) whereas there is no energy
level at energies E larger than Ep(H) in absolute
value. Using the relation (1/T) = dS/dE, one can
find the temperature dependence of the physical
quantities.

In the high-temperature phase T & T, (H) the

I

magnetization, the energy and the entropy are given
by

0
m =tanh-

T

E J2—= —mH
N 2T

S m 1+m—= ln2 ——ln
N 2 1 —m

and the critical temperature T, (H) is the temperature
where the entropy vanishes (see Fig. 3).

frozen

phase Paramagnetic
phase

Tc

FIG. 3. The phase diagram of the random-energy model
in a Uniform magnetic field.
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netic pair interactions Jp. The Hamiltonians 3C~ be-
come

X rr(try
Jp

&~J &

Like in the SK model, we have here an interaction
Jo/N for any pair of spina in the system. The pres-
ence of N ' in the interaction is necessary to ensure
an extensive free energy. Here again in the limit

p ~, the energy levels become independent ran-
dom variables. The RE model becomes a system of
2 energy levels among which ( ) have a

magnetization M and are distributed according to
r

'Jo
P(E) —exp —E +

2N
(49)

FIG. 4. The magnetic susceptibility in zero magnetic field
of the random-energy model.

Below T, (H), the system is completely frozen in
its ground state: for T ( T, (H)

0
m = tanh

t

E J2
NH

N 2T, (H)

—=0S
N

This gives for the magnetic susceptibility:

for T ) T, (H)
X=

1

, T, H
for T ( T, (H)

To obtain the temperature dependence of the free
energy F and the magnetization m, the procedure is
exactly the same as in Sec. VII. The results are sum-
marized (in Fig 5).

One finds four phases: (i) in the paramagnetic
phase

m=0

J2
F/N = —Tln2-

4T

(ii) in the ferromagnetic phase
r

Jpm
m =tanh

,
T

J2 Jpm
E/N = —T ln2 — + + —ln(1 —m')

4T 2 2

(iii) in the frozen phase I

m=0

F/N = —Jdln2
The susceptibility is constant (Fig. 4) in the whole
low-temperature phase. A similar result was also
predicted by Parisi" for the SK model. We can also
notice that the magnetization (46) in the low-
temperature phase depends only on the magnetic
field and not on the temperature. A similar behavior
was also proposed as a hypothesis for the SK model"
and seems to be a good approximation. ' The impor-
tant point is that in spite of its simplicity, the RE
model gives for the magnetic susceptibility a cusp at
the transition and a constant susceptibility at low
temperature.

Parama

Frozen I
fn= 0

Frozen g
rnid 0

VIII. EFFECT OF FERROMAGNETIC
PAIR INTERACTIONS

It is also interesting to study the case where in ad-
dition to the random interactions, there are ferrornag-

I

Jo
J

FIG. 5. The phase diagram of the random-energy model
in the presence of ferromagnetic pair interactions. At low
temperature, the magnetization m in the frozen phase is
zero if Jo ( J/2Jln2 and is a function of Ja if Jo) J/2 Jln2.
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and (iv) in the frozen phase II the system is com-
pletely frozen

m =m(T, (ip))

F/lV = F(T, (Jp))/N

where T, (Jp) is the transition temperature from the
ferromagnetic phase to the frozen phase II.

The lines of transition are between the paramag-
netic phase and the frozen phase I T, = J/241n2;
between the paramagnetic phase and the ferromag-
netic phase T, = Jo', between the ferromagnetic phase
and the frozen phase II. The transition temperature
T, (Jp) is the temperature where the entropy of the
ferromagnetic phase vanishes:

Jom 2—S(T,(Jp)) =ln2 — ——ln(1 —m )2

N ' T (Jp)

J2 =0
4T,'(J,)

where m is solution of

Jpm
m = tanh

it is easy to calculate the average level density

(n(E)) =2'Jl Jl g p(Ji)dJ»
&tj&

xSE —QJ» dE
&ij&

(52)

p(i,, ) = —,
' [s(J» —J)+g(J,, +J)] .

In the thermodynamic limit, one finds

N 'ln(n(E)) —ln2+dlnd ——ln d'—
l

2 NJ

(53)

' 2'I

In Eq. (52), we have used the fact that

p(J») = p(J»o, ai).
If Ep is the lowest energy where N 'ln(n(E)) van-
ishes [N ln(n(E)) is negative if iEi )—Epl, one
knows that with probability 1, there is no level of en-
ergy E smaller than Eo. This implies that Eo is a
lower bound for the ground-state energy EGs. Let us
look at two examples: the symmetric +J model and
the symmetric Gaussian model.

For the symmetric +J model, the density p(i») is

between the frozen phase I and the frozen phase II

'I

E
1

dNJ+E
2NJ dNJ —E

(54)

Jp ——J/(241n2)

The phase diagram found here is qualitatively the
same as the one predicted for the SK model. ' The
properties of the RE model in presence of ferromag-
netic pair interactions are closely related to its proper-
ties in a uniform magnetic field. " So all the results
of this section could have been obtained directly from
those of Sec. VII.

where the lattice is a d-dimensional cubic lattice. In
dimension 2, '6 ' the ground-state energy has been
calculated by numerical studies Eos/lVJ = —1.40
+0.01. The value of Ep calculated from Eq. (54) is
Ep/lVJ = —1.560. In dimension 3, Kirkpatrick" es-
timated Eos/M = —1.75 whereas Eq. (54) gives
:Ep/NJ = —1.956. In the high-dimension limit d
one can also find the analytic expansion of Eo'.

IX. INDEPENDENT ENERGY APPROXIMATION

Ep= NJ42dln2 1 —— +ln2

6d
(55)

The main idea of the present paper is that when
the average level density (n(E)) is much smaller
than 1, then, with probability 1, there is no level at
this energy. This remains true for any spin glass model-.

In this section, we are going to show that this argu-
ment provides a lower bound for the ground-state en-
ergy of some spin-glass models.

Consider now a more usual spin-glass model

For the symmetric Gaussian model, the distribu-
tion p(J») is by definition

J2
p(J ) = (2m.J )' exp-lj 2J2

The expression of N 'ln(n (E) ) is very simple:

E2
N 'ln (n (E) ) —ln2-

2dN2 J2

3C = $ J»triat
&ij)

(50) Here again the spins are on a d-dimensional cubic lat-
tice, one finds for Eo.

p(i») = p( —J») (51)

where the spin o-; are Ising spins on a lattice and the
J]j are random nearest-neighbor interactions distribut-
ed according to a probability distribution p(J»).
%hen this distribution p is symmetric

Ep/NJ = —42dln2 (56)

In dimension 2, Ep/NJ = —1.665 whereas the result
of numerical studies' for the ground-state energy is
Eos/M = —1.31 +0.01. In infinite dimension, Ep is
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the ground-state energy of the RE model Eo/M
= —Vln2 = —0.8326 and it is a lower bound for the
ground-state energy of the SK model Eos/M =
—9.765. It is also a lower bound for the ground-state
energy of the models defined by the Hamiltonians

Xp e

So we see that for a large class of models, Eo is
very easy to calculate. Eo provides a lower bound of
the ground-state energy EGS and is a rather good ap-
proximation of EGs. For the RE model, it was possi-
ble to say that n(E) —(n(E)) when (n(E)) is
large. This was justified by the statistical indepen-
dence of the energy levels. This cannot be generalized
to other spin-glass models. Because of the correlations
between the energy levels, it is always possible that,
when (n (E) ) is large, the probability that n (E) is
not zero vanishes exponentially with N. For exam-
ple, if n (E) could only take two values:

1

0, with probability 1 —e b~

je'n, with probability e

then (n(E) ) =et' ~~" which can be very large.
However in this example n (E) =0 with probability 1

in the thermodynamic limit. This is the reason why
Eo is only a lower bound of E~s.

X. ATTEMPTS OF EXPANSION AROUND
THE RE MODEL

If one changes the sign of all the spins of site i, H
remains unchanged: {a-; } {e;o.; } with e; = +1 for
any i. %hen n is even, there is another gauge sym-
metry {a.; I {e o.; } with e =+1 for any n. One
can make a low-temperature expansion of Eq. (57)
for any p:

J2
ln(Z") —W ln2+n2

4T2

J2+ g(n) exp ——(n —1)p +
T2

(58)

n, for n ~~3

g(n) = 1, for n =2
'0, for n =1

In the expansion (58), it is clear that all the Hamil-
tonians Xp give the same behavior of the moments
(Z") at very low temperature. As the continuation
of Eq. (25) could not provide (lnZ), it seems diffi-
cult to extract the first correction of the free energy
from Eq. (58). There is some hope to calculate also
the moments ([n (E) }r) for the Hamiltonians X~ but
this requires more complicated calculations.

(Z") = $ exp
4T PP '

(j
I

'2'

0 a e ~ ~

lg I

a 1

(57)

Equation (57) shows that the moments (Z") are
very similar to the partition function of a lattice
gauge theory. ' There is a local symmetry in the ef-
fective Hamiltonian H:

J20=-
4T N~ '

(;
g 0 ~ ~ (7

1 pa
i

At the end of this paper, the open question is to
find how to take into account the correlations
between the energy levels in realistic spin-glass
models. The simplest approach is to study the Ham-
iltonians3C~ defined by Eqs. (3) and (4) because
these correlations are known, and to try a large p ex-
pansion; I could not find how to expand for large p
the quantities of interest like the average free energy
(InZ ) or the average entropy (inn (E) ). I could
only expand the moments (Z") which are of course
less interesting quantities. For the Hamiltonians 3Cp,
the calculations of the moments (Z") can be done
using replicas. After the average, one finds

XI. CONCLUSION

The random-energy model is obviously an extreme
simplification of spin-glass problems. Its properties
are certainly different from those of real materials
and it is hard to expect more than qualitative agree-
ment with experimental data. From a theoretical
point of view, it has the advantage to be exactly solv-
able. It shows the limitations of the replica method.
The freezing of the system below its transition can be
well understood by looking at the energy-level densi-
ty. The phase diagrams of the RE model are qualita-
tively the same as in the SK model. The magnetic
susceptibility is constant in the whole low-temp-
erature phase. So the simplification of considering
independent random energies has not suppressed the
physical interest of the model,

The RE model provides also lower bounds for the
ground-state energies of a large class of spin-glass
models. It would be interesting to go further than
the independent energy approximation by including
the correlations between the energy levels. To do so,
the simplest models seem to be the Hamiltonians Xp
in the limit p ~. It would also be interesting to
understand the reason why a blind calculation by the
replica method leads to the true free energy. Maybe
this calculation has connections with the broken sym-
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metry of replicas introduced by Parisi' for the SK
model.
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APPENDIX A

The question of calculating the average free energy
(lnZ) from the expression of the moments (Z") is
not exactly a problem of analytic continuation. The
fact that the (Z") are the moments of a distribution
and not only numbers imposes constraints on the
continuation to noninteger values of n.

In this appendix, I give an example which illus-
trates that when the moments (x") increase too rap-

idly, the measure is not determined uniquely. Note
that the growth of the moments (expXnz) is the
same as for the moments (Z") of the partition func-
tion of the RE model. Consider the family of mea-
sures d p, (x) defined by

APPENDIX B

In this appendix, we obtain the free energy of the
random-energy model.

In order to calculate the average of lnz, one can
use an integral representation of the logarithm:

After a partial integration, one finds

(lnz) = J lnt e 'dt —
J~~ lnt e &dg

0 0

where @ is defined by

e ~= (e 'z)

(B2)

2N

z= Xe (B4)

and the energy levels are random variables with pro-
bability distribution

one has

(r«NJ )'/ NJ

The only question, now, is to find an explicit expres-
sion of t as a function of $, where t and @ are related
by Eq. (B3).

As the partition function is

+oo

b n /2 —n —
«5( x bn+v)

dp, (x) ="
b

—n /2 —nv2

dx . (Al)

or

1

f++oo E2 2

dEexp — —te i

(~NJ')'/' "-- NJ
/

(xn) bn /2 (A2)

One can also calculate (lnx)

These measures depend on two parameters (b and

v). Each value of v( —
2
( v ~ —) defines a new

1 1

measure. It is easy to calculate the moments (x").
One finds that for any integer n the moments (x")
do not depend on v'.

a+oo

exp- dy exp( —y2 —te "«)
2" Jn "=

with

) =~NPJ (86)

Notice that the definition of X in this appendix is not
the same as in the body of the paper.

We are now going to obtain the asymptotic
behavior (when X is large) of the integral in the
right-hand side of Eq. (B5).

If we call

(lnx) —vlnb, for large b (A3) f+oo
f(t) = 'I dy exp( —y2 —te "«)

So two different measures corresponding to different
values of v give different answers for (lnx ) even if
all their moments are exactly the same.

we shall prove that: if —p X2/2 ( lnt (—(p —I) k2/2,

where p is an integer then

g2 p —1f(t)=l —te" 4+ —e" + +(—)« ' e« ' ~/ + e '"'"
1 t

p 1 11 2lnt 1+0—
Z4

(Bg)
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Proof:

In Eq, (87), we can make the change of variable:

te "~=u

It follows that:
f f

f(t) = exp — exp —1 lnu — —u du
1 ln2t 2lnt ln2u

f f

The convergence of the integral is ensured by the presence of the term —ln'u in the exponential. Nevertheless,
when lnt is positive, this term is not necessary and one can expand exp( —In2u/h2) and obtain: If lnt )0:

f 1 p f 1 f

1 )„2,/„2 F 21nt 1 &„21nt + + 1 1 &(2p) 21nt +O 1

)2 ))2 )2 )2 p) )2 )t2p+2
(810)

This proves the formula (88) when p =0.
Let us now consider the case p ~ 1. By deriving p times Eq. (87) with respect to t, it is easy to prove that

f(P)(t) ( )PeP2)2/4f (t P)12/2)

If t is chosen such that: —p))2/2 & lnt & —[(p —I) /2l/(2 then, In(tep~ / ) is positive and one can replace
f(tep" /') in Eq. (Bll) by its expansion Eq. (810). So Eq. (811) becomes

(811)

f 1 1 1

f'p'(t) =(—)'e' " 'exp[ —ln'(tep' 2)/Z2j I
" +p ——I" " +p +0—

1 f )

(812)

One can now find the general solution of the differential equation (812).
1 1

!
1 f

f(t) = no+ n)t+ ofp )tp + exp—1 ln t 21nt l, l 21nt 1pll +0—
f ) f 1 )

(813)

where no, n~, . . . , np ~ are a priori the unknown constants of integration of the differential equation.
We can determine these constants using the Taylor expansion of f(t) around t =0. From Eqs. (87) and

(811),one has

f(P)(0) ( )PeP x /4

So the Taylor expansion of f(t) is

tpf(t) =1 —te~ "+ +(—) ' e'p " " +Rp(t)
(p —I )! (814)

where Rp(t) = (tp/p!) f(p)(ttt) with 0 ~ () ~ 1. One can easily find a majoration for this rest using the fact that

If("«t)
I
—If") «) I

= e"" .

In Eq. (814), the rest is smaller than any term of the sum when t & e p" /'+" /4. This means that if
Int/)(2 & —p/2+ —,', then

2 4
~2(p —&)2/4

2 2 4f(t) =1 —e""t+ +(—)p ' t' '+O(e" p'4t')
(p —I ) .'

By comparing the two expansions (813) and (815) for —p/2 & Int/X2 & —p/2+
4

one gets:

f"'(0)
iI

and so the expansion (88) is proved as the u; are necessarily constant for —p/2 & Int/k2 & (—p +1)/2.

(815)
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From Eqs. (85) and (BS), we can now write t as an explicit function of $:

If ——& lnt &0
2

r r

exp — =1+I exp, +2lnt I In t

2 A. n A.

(816)

Therefore one can find Inr as a function of rtr for large N

r r 1

lnt = — Jln2+ ' —lnN + Inrt —ln —I' — + In—vr —In — + 0 (I )
M T, T 1 T
T T 2 T. 2 J' (817)

where

T- J
24ln2

Using Eq. (817), one can verify that condition (816) can be written T & T, and from Eq. (82), one gets

(lnZ) = Jln2 — ' lnN+ I — ' I"(I)—
—,

'
In(42rln2) + '

In I I — +O(1)gJ- — T T, i T T T

2
C

(818)

—p )r2/2 & lnt & —(p —I ) X2/2 with p ~ 2

I r r r

exp — = I —re~ +—e" + + ( —)~ e " + exp—24 r2 2
1 2g&4 1 ln~t 21nt + ~ ~ ~

2N (p —I) I

(819)

We can again calculate lnt as a function of rt

r

lnt = —Nln2 ——+lnrt +Q, e i24
2N

'
/

r r r r

1 1 g' 2 1 2)V ln2+ exp ——Nln2 ——+—Nln2 ——Inrtr I' ——— + ~ ~ ~

4 4 2
2 / / r

N a~/4 N ~~/&where Q (rtr/2~, e" /4) is a polynomial of its two variables rtr/2", e" . For example:

(820)

1 I

Q
0 &X/4 =0

r

r 2/4

2N'

1

Q
4 ~d/4

4

(&r /2 I)
2N

2

(e~ ' —I) — (4e2" 2 —9e" +6e ' —I)
24 22+

Using Eq. (820), one sees that condition (819) becomes 42p —3T, & T & 42p —I T, We can now calcu. late
(lnZ) using Eqs. (82) and (86)

r

(lnZ) =Nln2+ —Jl dPe 4'Q ~,e"
4T~ 0

T2
'

~
'

T21,+I MN sin —,+I
2 Tg

NT~J~ 1 1

16 T~ T~
+ ~ ~ ~ (821)
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The term sin (m/2[( T'/T, z) + I]) comes from the
product of two I functions

[I'(z)F(—z) = —m/z sinn z ]

The integral of the polynomial 0 gives a polynomi-

al of two variables (2 "and e"J ~"r ). The important

fact is that this term is exponentially small in N and
is regular at all the temperatures T„'= T,42n + l. On
the other hand the last term given in the asymptotic
expansion (821) of (lnZ) is singular at these tem-
peratures even if it decreases also exponentially with
N. For n =1,2 and 3, I could express Eq. (821) as:
for J2n —1T, ( T & J2n +1T,

1 13
J2 i Z 1 )N+t

(lnZ) = N ln2+ —1 +— —1 + +-
4T2 z (Z) ' (Z) 71

Z

,
(Z)

2' T 1

T ~ 'p TJ +1 MN sin—,+1
Tq

)
2 T

NTJ 1 1
, exp— + ~ ~ ~

j6 T2 T2

by adding to Eq. (821) terms which are smaller than
the terms neglected. This formula is probably true
for any n «1 but I did not succeed in proving it.

%'hen one approaches T, from above, the integral
of 0 in Eq. (821) is zero and one sees that the first
correction to the thermodynamic limit is singular at

I

T, as it is in the case of the SK model. It is rather
striking that all the temperatures T„'=J2n +1T, ap-
pear as singular temperatures for the corrections to
the thermodynamic limit. Therefore high-
temperature expansions for this random-energy
model are expected to be very singular.
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