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Using singular-perturbation techniques, we study the stability of modulated structures generat-

ed by driving Ginzburg-Landau systems far from equilibrium. We show that, far from equilibri-

um, the steady-state behavior is controlled by an effective Lagrangian which possesses the same

functional form as the original free energy but with renormalized coefficients. We study both

linear and nonlinear sources and determine their influence on the long-term stability of the bi-

furcating solutions.

I. INTRODUCTION

Condensed matter driven far from equilibrium can
display a variety of behaviors which are not usually
found in its equilibrium state. As the examples of
stressed fluids and supercooled alloys show, far from
equilibrium one can encounter regimes that can vary
from a totally chaotic pattern to highly organized
structures, characterized by temporal or spatial modu-
lations of their properties. In particular, the possibili-
ty of generating modulated structures has led to the
use of techniques such as spinodal decomposition to
produce alloys with spatial composition variations that
can be designed through rapid quenches.

In problems such as spinodal decomposition, a sys-
tem is rendered unstable via a rapid change in the
thermodynamic parameters, such as temperature or
pressure. ' The ensuring process then corresponds to
a growth of fluctuations for a range of wave vectors
that carry the system into the stable, equilibrium
phase. This process is characterized by the initial ap-
pearance of a periodic modulation in composition
which coarsens at later times. " The process of coar-
sening mathematically corresponds to the fact that
the range of positive wave vectors for which fluctua-
tions are unstable is bounded from above but not
from below. Therefore, although slow in their
growth, the unstable long-wavelength unstable modes
lead to phase separation for very long times.

A different type of behavior is encountered in
Ginzburg-Landau systems kept far from equilibrium
by an external continuous source. Such can be the
case in binary mixtures undergoing chemical reac-
tions, 4 superconducting films under a microwave
field or strong injection of quasiparticles, ' Peierls in-

sulators in the presence of electromagnetic radiation,
or semiconducting ferroelectrics. In these systems,
although one also observes a bifurcation away from a

spatially homogeneous state, the range of wave vec-
tors for which fluctuations become unstable is bound-
ed both from above and below. This constraint ef-
fectively quenches the growth of long-wavelength
modes, leading to a sharp modulated structure which
has been recently reported in superconductors. '

The analysis of all these phenomena usually
proceeds in two stages. In a first attempt at solving
the nonlinear equations describing the dynamics of
the order parameter, a linear stability analysis is per-
formed. This implies looking at the behavior of
small fluctuations away from the initial state and
studying their temporal evolution. For the case of
unstable modes one then identifies the fastest grow-
ing one as determining the basic period, which can in
general be computed from a knowledge of the eigen-
values for the linearized problem. The second stage,
which is mathematically more involved, tries to ascer-
tain the nonlinear interactions between various un-
stable modes at later stages and their role in deter-
mining the ultimate fate of the instability.

In this paper we present a general technique for
dealing with the long-time behavior of Ginzburg-
Landau systems far from equilibrium. Our theory,
which relies on singular-perturbation techniques,
leads to surprisingly simple results, which determine
not only the stability of the bifurcating solutions for
long times, but also their spatial structures, We also
show that the functional form of the source terms
responsible for keeping the system far from equilibri-
urn is crucial to the stability of the bifurcating solu-
tions. Such a result is not evident in any linearized
stability approach to the problem.

We have organized this paper as follows: In Sec. II
we study some basic models and their bifurcations as
a function of the intensity of the external sources,
which we assume are time independent. In particu-
lar, we explicitly solve problems containing linear and
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nonlinear source terms, and calculate the wavelength
of the fastest growing instabilities. Section III deals
with the nonlinear dynamics of the bifurcating solu-
tions. By using multiple-scale techniques in space
and time, we obtain an asymptotic power-series ex-
pansion for the unstable modes which leads to a com-
plicated functional relation for their space-time
dependence. Using a Laplace method in the resulting
integral we are then able to obtain the long-time
behavior of the solutions, which is determined by an
effective Lagrangian functional. This Lagrangian
possesses the same functional form as the original
Ginzburg-Landau free energy of the system, but its
coefficients now contain information on both the
source terms and kinetics of the system. In Sec. IV
we look at the stability of the long-time amplitudes
for specific source terms and show that linear sources
do not lead to stationary periodic patterns, whereas
nonlinear ones do stabilize the modulated structures.
We also point out that the mode which ultimately
gets selected strongly depends on the boundary con-
ditions of the problem.

Throughout this paper we deal with a one-
dimensional problem. Although there exist many
physical systems for which our results are of
relevance, a generalization of our results to higher
dimensions may lead to different stability conditions,
such as those encountered by Newell and Whitehead
in their study of the Rayleigh-Bernard problem.
Nevertheless we believe that our basic results can be
used as a general test of the behavior of condensed
matter systems far from equilibrium.

II. MODELS AND BIFURCATIONS

A. Linear source terms

Consider a quasi-one-dimensional Peierls insulator
driven far from equilibrium by dynamic photoproduc-
tion of electron-hole pairs. This state can be pro-
duced by laser pumping across the gap 5, in which
case an excess number of' electrons can be produced.
If the time scales involved are such that the electrons
in the upper band thermalize down to the bottom of
the band in times that are short compared with
recombination times, we can assume the existence of
a quasi-equilibrium situation. Under those cir-
cumstances, the rate equations for the excess elec-
tron density, 4n, can be written as

(2.1)

with I[n] the source term specifying the detailed
dynamics of photoproduction and recombination, and
J the excess electron current, which in terms of the
effective chemical potential p,

'
is given by

with D the diffusion coefficient and N(0) the density
of states per atom. We have previously shown that
as the number of excess electrons is increased, p,

'
first increases, until a critical density, 4n„ is reached
for which the system becomes unstable, i.e. ,
(Bp,'/Bhv), =0. Near the instability point, p' can be
written as

(2.3)

where C is a constant of order unity, N(0) the densi-
ty of states at the Fermi level, and 4p the value of
the gap at T =0.

The nonlocal contirbution to p, "(IJ.n) arises from
considering the extent to which spatial fluctuations in
the gap order parameter modify the free energy. If
the latter possesses a Ginzburg-Landau form the
correlation energy. can be written as

„N(0)(/VIE i'dx, with $0 the zero-temperature
coherence length, which is given by

(2.4)

In order to completely specify the kinetics as given by
Eq. (2.1) we need to write down the source term. If
I is the rate at which electrons are pumped across the
gap and r their recombination time, Eq. (2.5), to-
gether with Eq. (2.2) gives

"re n I /J, n CD 8'
(& & )2 D~2 rl hn

et 7' &p ex 9x

(2.6)

which completely determines the excess electron
population within the model. '

The stability of the solutions of Eq. (2.6), together
with their possible bifurcations, can be studied using
linear stability theory. We first notice that a possible
steady state solution of Eq. (2.6) can be written as

Anp =Is (2.7)

with no spatial dependence. In order to study the
stability of this solution against small fluctuations we
write

with v~ the Fermi velocity of the electrons, k~ the
Boltzmann constant, and T, the critical Peierls tem-
perature. Assuming that the gap is renormalized by
the excess electrons as 5 = hp(1 —, An) and —since

p, '(r) = 5F [/J, n]/8/J, n (r) we obtain, together with Eq.
(2.3)

2

p, '(IJ.n) = p'(Itn, ),
—(I).n —hn, )' "7'(hn)

2N(0)

(2.5)

J = —N(0)D V p,
' (2.2) Il.n =Ir+u(x, r) (2.8)
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with u « Iv. and behaving as

u(x, r) = ge. "'cosqr .
q

(2.9)

Replacing Eqs. (2.8) and (2.9) into (2.6) and keeping
only terms linear in u one obtains the following equa-
tion for n(q):

1

n(q) = ——= (4n, —lr)q + — q, (2.10)
1 2CD 2 D(o

b, p 2

1

I, = —hn, +1 4o~o

c J2Dr
(2.»)

whose behavior as a function of q, for several values
of the laser pumping power I, is shown in Fig, 1. As
can be seen, for values of I such that I7 & 4n„
n(q) ( 0 for all wave vectors, and fluctuations away

from the uniform solution An, die away exponentially
fast. However, for values of I ) 4n, /r, n(q) can
start increasing until a critical power is reached, I„
beyond which o, can become positive for a range of
wave vectors. Under those conditions fluctuations of
the form given by Eq. (2.9) will grow away from the
steady state solution and a spatially modulated gap
state will start to set in. The bifurcation point can be
obtained from the condition that Eq. (2.10) has a

double root. This leads to

whereas the maximum of n(q) at I, gives
1 1/2

1 1qc=
gp Dr

Within the limits of linear stability Eqs. (2.11) and
(2.12) specify the threshold power and the
wavelength of the most unstable mode. It is clear
however, that the linearized analysis is inadequate in
two respects: (1) it ignores all the interactions
between the modes within the range q~ ~ q ~ q2 that
become unstable, and (2) for long times the ex-
ponential growth of the bifurcating solution will

violate the assumption that u « An0. These are the
problems that the nonlinear analysis of Sec. III will
deal with.

(2.12)

B. Nonlinear source terms

We now turn our attention to systems where the
kinetic terms in the absence of mass currents are
nonlinear. Such a situation can be encountered in
Peierls insulators or ferroelectric semiconductors with

high excess electron densities, nonequilibrium super-
conductors under microwave fields, or certain chemi-
cal autocatalytic reactions. In what follows we will

deal explicitly with nonequilibrium superconductors
because of,their present experimental interest. "

Consider. a thin strip of superconducting metal
below its critical temperature in the presence of an
external source of quasiparticles. Since the BCS gap
equation is formally similar to the problem of a
Peierls insulator, the analysis of the previous section
allows us at once to write an equation for the excess
quasiparticle current. Adding the Rothwarth- Taylor
equations for the time rate of the quasiparticle densi-
ty to the kinetic terms of our previous case, we ob-
tain

Iqp 2rNp2p + 2PpNph 7 J
Bt

=I +rW —P N
N —N'

ph ~ qp 0 phot 7es

(2.13a)

(2.13b)

where I„represents a quasiparticle source,
(2RWp, ) is the quasiparticle recombination time rR
and Pp is the pairbreaking lifetime, rs, of the pho-
nons. N» is the nonequilibrium density of phonons
with energies greater than 2A, lph the phonon source,
v„ the phonon escape time to the thermal bath, and
N, h the bath equilibrium phonon density. The last
term of Eq. (2.13a) is identical to the last two of Eq.
(2.6). We can now study the bifurcation solutions
away from the uniform steady state in a form similar
to that of the previous section. Writing

FIG. l. The amplification factor as a function of
wave vector for a set of pumping levels.

IV'„p=1Vpp +5%op Xe 'cosqx

N„h = Wppo + SNph pe to~'cosqx
q

(2.14)

(2.15)
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1

Nph = (Iph +
~ Iqp) 7'es + Nph (2.17)

and keeping linear terms in SN, p and 5N» we obtain
the following secular equation for n(q):

[a(q)+2r, '+D(q)][n(q)+r, '+~ J]—2r, 'r '=0

(2.is)

with

D (q) Dq&[2(Ne NO )~N(0) ho+ ~ZqZ] (2 19

Equations (2.18) and (2.19) imply an instability for
fluctuations in a range of wave vectors, with the
fastest growing one corresponding to the maximum
of a(q). From the condition that Eq. (2.19) has a

double root we can obtain the value of the critical
wave vector q, for which the instability sets in. %e
obtain

~here the uniform steady state solutions, Nqp and

N, ]„are given by

p 1 1

Nqp ~ p [ PO~esIph +
g Iqp( + POres) + PONph ]

I

(2.i6)

qc
(3.1)

mode, fluctuations with a range of different length
scales will start to grow in time, with nonlinear in-
teractions among themselves which will affect the ul-
timate fate of the bifurcated state.

In order to study the long-time evolution of the bi-
furcat1ons we will first concentrate on the case of
linear sources. Although perhaps not very realistic
when compared to the high levels of excitation need-
ed to drive a Peierls system of a ferroelectric semi-
conductor unstable, this simple case will illustrate the
method of calculation in a clearer fashion than using
a nonlinear source as an example. The details of the
nonlinear analysis for the superconducting case will
be worked out in Appendix A. Those results will be
directly applicable to more complicated kinetics.

In order to set up a convenient scheme for a per-
turbation theory it is convenient to introduce new
space and time scales. These scales are naturally sug-
gested by the functional form of the amplification
factor for pumping levels above the threshold value.
If we denote by e the dimensionless small parameter
(see Fig. 2)

2 2rNqp
q, =—

gP D(1+Pox„)

1(2

(2.20)
we can introduce a new length x and a rescaled time t

defined as

where the critical density Nqp is given by

N' = N, + p, + (p, +2N, Is, )' (2.21)

X=IX

t=~t
(3.2a)

(3.»)

and
so that the partial derivatives entering Eq. (2.4) be-

No ~odor

D(1+P,r.,)
(2.22)

This completes our linear stability analysis of
Ginzburg-Landau systems far from equilibrium. In
what follows we will study the nonlinear effects that
become important at the bifurcation point.

III. NONLINEAR DYNAMICS

The results of the previous section allowed us to
determine the critical pumping power for which fluc-
tuations centered around a critical wave vector would
become unstable. Regardless of the linear or non-
linear character of the source terms, the linearized
stability analysis was able to predict that a modulated
structure would start growing exponentially fast as
the external driving source exceeded a certain thresh-
old. It is clear however, that those results are of va-
lidity only for extremely short times. As the instabil-
ity sets in, two effects conspire so as to render the
predictions of the linear theory unreliable: (1) for
long times the approximation of small fluctuations
breaks down; and (2) instead of a single unstable

I

l

qc

FIG. 2. The range of wave vectors that become unstable
near threshold.
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come and

~x = ~x+~~x (3.3) N&(tip, u]) = 26 -up +20~upu~ (3.i3b)

and

(3.4)

Equating the coefficients of the power-series expan-
sion in Eq. (3.6) we then obtain the following system
of equations:

Writing the bifurcation control parameter as

I =I, +sr~

with s = +1 indicating whether one is below or above
the critical value, we can express Eq. (2.7) in opera-
tor form as

and

Lpup=0

Lpu) = L&up+Npup

Loup = —Loup —L ] u~ + N ~ (u p, u~)

(3.14)

(3.15)

(3.16)

L(e)u =N(u)

where the linear operator L (e) is given by

L( )e= e8;+ —+TDgp(B„+&0„-)

(3.6) which, once solved, will determine the space-time
dependence of the modulation, u, to order e' away
from the bifurcation point.

First, we note that Eq. (3.14) is a restatement of
our linear stability analysis, so that up is given by

+2CD(l, r —An, +se )(0„+eB„-) (3.7)

and the nonlinear operator N(u) can be written as

N(u) = (8„+e8„-)'u' (3.g)

In order to solve Eq. (3.6) we assume the existence
of an asymptotic power-series expansion in e for the
bifurcating amplitude u and write

r
uo= [3 (x, t, q) cosqx+8(x, t q) sinqx]e p 'dq

(3.17)

This is the full solution, valid for short times as well,
but it leads to expressions of unmanageable complex-
ity. The picture simplifies somewhat if one considers
the long-time behavior of the equation. Since n(q)
has a maximum at q, we can approximate the integral
by Laplace's method and obtain

u =eup+e u)+p up+0(e ) (3.9)

L (e) =Lp+eL& +p Lp+0(e ) (3.10)

with

so that in the limit e 0, u 0, in agreement with
the linear stability analysis of the previous section.
Replacing the expansion given by Eq (3.9) in Eq.
(3.6) we obtain

up=A (x, t) cosq, x+8(x, t) sinq, x (3.1g)

with the functions A (x, t) and 8 (x, t) as yet undeter-
mined and q, given by Eq. (2.10). Moreover, since

q, is a double root at the bifurcation point it follows
that Ltup=0. Equation (3.15) can be then solved for
u~ yielding

I,,= —+ 0„+ (I,. tt, n, )0„, (3-.i la)1 DCo 4 2CD
4zqc~ CD g~ B~

9 dp 2
cos2q, x +AB sin2q, x

and

Lt =2DgpB -+ (I,r —An, ) 0 -, (3.11b)
hp

(3.19)
In order to determine the long space-and-time depen-
dences of the coefficients A and 8 we now need to
consider Eq. (3.16). To O(e') it reads

L& = t);+ (I,r —An, ) 9
2CD

p

't

+ 0 +3Dgo6
p

(3.11c)

2CDL go=uLp p+u9~(uput)
p

Since Eqs. (3.18) and (3.19) imply that

(3.20)

whereas Eqs (3.8) and (3.9) become

N(u) =e No(up) +e Nt(up, ut) +O(e ), (3.12)

with
and

upu& = 4~q CD A'+B'
18 Ap 2

up (3.21)

No(uo) = 0 uo
CD
hp

(3.13a)
2CD 0 ( „) 4C'D (~P+8P) up
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Equation (3.1lc) allows us to write Eq. (3.20) as

Lpuq= B—;+ (I,r —hn, )B--+ B~
2 CD 2SDC

~o
' '

~o

4C2D+3DJ~B -- + (A~+B~) u, (3.22)
q tokyo

and

2c AD.
4p~o

2 2DC2

~oto

2D
T

(3.27)

(3.28)

(3.29)

which determines the behavior of u2 in terms of uo.
We first notice that since the right-hand side of this
equation acts as a forcing term at a resonance, it
would cause u2 to become unbounded, in contradic-
tion to the assumption that there exists an asymptotic
series expansion for the bifurcating solution u, as
given by Eq (3.9). Therefore, in order to avoid the
divergence in u2 we choose 3 and B such that the
resonant terms vanish. Setting the expression in

. large parenthesis in Eq. (3.22) equal to zero yields

We have therefore shown that the long-time
behavior of the modulated state is governed by a new
"Lagrangian" which has the same functional form as
the original Ginzburg-Landau free energy but with
renormalized coefficients. These coefficients contain
the detailed kinetics of the source term.

IV. RESULTS

4 2CD7
~guO 2 ()~uO gc uO

Qc 0

+—,, (W'+a')u, (3.23)
~o(o

or, using Eq. (3.18)
1/2

2D
BiA —2(p B-A

2CS42D7 ~ + 2 2C D (~g+RP)~
4o~o &, ~o4o

(3.24a)

B-B —2gp
2D

The lengthy calculations of Sec. III enabled us to
derive an equation of motion for the slowly varying
amplitude of the modulated structure as the system is
driven far from equilibrium by a steady state source.
Since formally this equation resembles the dynamics
of a complex order parameter near a phase transi-
tion, "we can use the considerable amount of work
that has been devoted in that field in order to obtain
concrete analytic results.

We start by looking at the stability of the bifurcat-
ing solutions. Writing q=Re'&=A +iB, the func-
tional L given by Eq. (3.26) becomes

r

—~[(B R)~+(RB @)~]
r

t

(4.1)

2CSv2Dr R + 2 2C D (~p ~Rg)R
tokyo q ~p'gp'

(3.24b)

so that Eq. (3.25) can be expressed as

B;R =SnR +PR3 —yR (B„@)~—yB R

and

(4.2)

Equations (3.24), together with Eq. (3.18), deter-
mine the nonlinear behavior of the bifurcating solu-
tion away from the uniform state. Their meaning be-
comes more transparent when expressed in functional
form. Introducing a complex parameter q = (A +i8)
they can be rewritten as

R~B-P= yB„(R~B @)- (4.3)

Demanding 8, —=0 we can find all the possible
steady-state structures of the bifurcating state. Set-
ting $, =0 in Eq (4.3) implies that B„o=vR with v

a constant. We then obtain for the real part of q the
following equation:

a~ sz
Bt

(3.25) yB--R +SnR +PR3 — y =0 (4.4)

where the new functional L is given by

2'

(~['+&[~['+~ 't dx, (3.26)
2 4 2

whose stability depends on the relative signs of n and

P, as we show below. For linear sources we found in

the previous section [Eqs. (3.27) and (3.28)] that
n & 0 and p & 0. In this case we find that the system
displays an inverted bifurcation. For values of the
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pumping power, I, smaller than the critical value I,
(which corresponds to s = —1) large enough fluctua-
tions can make the uniform-state solution unstable
and a modulated structure will grow in time. Its ulti-

mate fate, however, cannot be determined within the
limits [O(q3)] of our perturbation theory.

For nonlinear sources, such as nonequilibrium su-
perconductors, it is shown in Appendix A that the
coefficients entering the functional L are given by

4r (no —1)
0I +por„+ rNqp ppr„

(4.5)

4r (no 1)—(no ——)
19
4

Nqop (1 +Ppv„+ 4rNq~p Pox„)

4g [(2rNOD)(1+ p, „)]'t'
1+Por„+4rNq~p Por„

(4.6)

(4.7)

so that since n )0 and y )0, a negative p will lead
to a stable nonuniform state to the right (s =+1) of
the critical point I„while for I & l, (s = —1) the uni-
form state is stable.

We should point out that none of these results
could have been anticipated from linear stability
theory. As shown in Sec. II, both the systems with
linear and nonlinear sources displayed an instability
towards a modulated state characterized by an ampli-
fication factor of the same functional form. It is only
for longer times that the presence or absence of non-
linearities in the source term act so as to stabilize or
destabilize the nonuniform state.

We now study Eq. (4.4) in detail to determine the
possible steady-state structures of the stable modulat-
ed state. Introducing rescaled variables such that
T = nt, X = (n/y) ' ~x, and R = (p/n) 't2R, the steady
state solutions of Eq. (4.4), for the case s =+1,
p & 0 become

Depending on the behavior of the function
f(p) = p32—p2+ I'p —v2 Eq. (4.11) will give rise to
several possible patterns of the modulated state.
Since which one is ultimately chosen will depend on
the initial conditions, we will not list them all. It is
worth noting however, that besides a uniform modu-
lation Eq. (4.11) has a particular solution given by

JR =tanh
V2

(4.12)

which implies that the steady state full bifurcating
solution, as given by Eq. (3.18), will behave as

uo(x) = tanh cosq, xX
2

(4.13)

&(p) (a)

which corresponds to the existence of two uniform
domains of the same wave number q, but out of
phase by 180', with their amplitude vanishing out
smoothly at their interface (Fig. 3). It is easy to see
that for all pairs of values of I' and v for which the
minimum of the cubic in (4.11) is on the p axis,
there exist steady-state solutions that are stable to
one-dimensional perturbations (Fig. 4). At x +~
these solutions approach a uniform state with

Q = +( I —R ') 't', I / J3 ~ R ~ I (two domains out of
phase but joined smoothly). A straightforward

R= —R+R +XX'

R
(4.8)

Q/
/

which corresponds to the motion of a particle of unit
mass in an effective potential given by

V,tt(R) = .2 +R —R (4.9)

i.e., an anharmonic problem with a centrifugal term
proportional to v. This problem is analogous to the
one encountered in fluctuating one-dimensional su-
perconductors' and finite amplitude convection. 9

Equation (4.8) can be integrated to yield

~4

(B„R)'= -R'- '. , +1.
2 R

(4.10)

2 tt02 (p3/2 —p2+I p —v2)it2
(4.11)

with I a constant; so that if we set R = p, we obtain

FIG. 3. The ease of two uniform domains with the same
characteristic wave vector, q„but out of phase. (a) The
function f(p). (b) The amplitude of the modulated state as
a function of position. Solid line: full solution with continu-
ous interphase. Dashed line: continuation of full solution
illustrating the phase shift.
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f (p) (a) f (p) (a)

(b)

FIG, 4. Two uniform regions with q +q, joined by an in-

terface. (a) The function f(p) for that particular case. (b)
The amplitude as a function of position. Solid line: full
solution with different wavelengths in each region. Dashed
line: the uniformly modulated pattern.

FIG. 5. Uniformly modulated state. (d) The function
f(p) for this case. (b) The uniform, but unstable, solution
corresponding to the maximum of the cubic with
0 ~R a 1/E3.

& (p) (a)

analysis shows that small perturbations in these uni-
form states obey a diffusion equation and therefore
they decay eventually to a uniform state (but not
necessarily the initially perturbed one, if the pertur-
bation is not square integrable).

Uniform states with 0 ~ R «1/W3 correspond to
the maximum of the cubic and are unstable (Fig. 5).
Solutions periodic in R are also easily seen to be un-
stable (Fig. 6).

Another interesting class of solutions is found
when we look for traveling waves that satisfy Eqs.
(4.2) and (4.3). Writing R =R (x —ct) and setting

@=constant we obtain

R"+cR'+R —R3 =0 (4.14)

which corresponds to a phase plane system with criti-
cal points at 0, 1, with the trajectory joining the
points 0 and +1 giving a bounded traveling solution.
For 0 ~ c «2 the origin is a stable spiral and the
corresponding wave is unstable, whereas for c ~ 2, 0
is a stable node and the wave monotonic and stable
(for c (0 the origin is unstable and the waves move
to the left). Therefore for ~c

~
~2 one finds shock-

like solutions propagating from regions where the
uniform modulated state is fully developed to regions
where the amplitude is zero (Fig. 7).

FIG. 6. Solution periodic in R. {a)f(p). (b) The ampli-
tude versus position. Linear stability analysis shows this
case to be unstable.
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u(x, t) (a) V. CONCLUSION

VJ

R' (b)

Using singular perturbation techniques, we have
studied the long-time behavior of the bifurcating
solutions of Ginzburg-Landau systems kept far from
equilibrium by the action of external sources. This
problem is of importance in a variety of situations
where external constraints can keep a given system
(such as a superconductor) always away from the ab-

solute minimum of its thermodynamic free energy.
What we have shown is that the steady-state behavior
of such a system is governed by an effective Lagran-
gian with the same functional form as the original
equilibrium free energy, but with coefficients which
contain the detailed kinetics of the problem.

Since our methods are quite general, they should
be applicable to a variety of stiuations in which con-
densed matter exhibits cooperative critical behavior
which can be modeled by similar free-energy expan-
sions. Also, they point to a possible formulation of a

thermodynamics far from equilibrium in which gen-
eralized forces can be defined in the same fashion as
in the equilibrium problem. On a more concrete lev-

el, our analysis indicates that modulated structures
can indeed be produced in a stable fashion by driving

a wide variety of solids far from equilibrium

FIG. 7. (a) Nucleation front p, =R (x —ct)cos(q, x) con-

verting the zero-amplitude state into a uniformly modulated

one. (b) Phase plane trajections corresponding to Eq. (4.14)
for 2 & c & ~. The trajectories connecting 1 to the origin

correspond to a front in R traveling to the right. If c & 0,
the directions of all arrows are reversed and the front travels

towards the left.
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APPENDIX A

In closing we must stress the fact that all our
results are one dimensional. For two-dimensional
systems, the process of wave-vector selection in-

volves other factors not included in our analysis,
such as the ones considered by Pomeau and Manne-
ville' in their study of the Rayleigh-Bernard problem
or Langer" in the case of dendritic growth.

L(e) (Al)

where the linear operator L (p) is given by

In this section we provide the details of the non-
linear analysis for the bifurcating solutions of the
nonequilibrium superconductor. '

Equation (2.6), which determines the nonequilibri-
um dynamics of quasiparticles can be written as

1 0
L(p)= E B(0 1 r

4rNpp 2Pp — 4r 0—
—$6

2rNqp, —pp+1/r„2r 0

(N, —
NpPp —so') (B„+eB„)'— ' (B„+eB„)' (A2)

and the nonlinear operator N(u) can be written as

N(u)=r u' — [(B„+pB )'u']
%050 0 (A3)
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u = pup+ p u~ + p ug + O(t )

8 = Clip + p U
&
+ p tpg + 0 ( p )

(A3a)

(Ajb)

In order to solve Eq. (Al) we follow the steps of Sec.
III. Assuming the existence of an asymptotic po~er-
series expansion in e for u and u, we write

and

u2
0 L2 — —L1 +Nl(uo, u]) . (A10)

up u1
UP U1

Since Eq. (AS) is a restatement of the linear stability
analysis, we can ~rite for up and vp

where v, the modulation of the uniform phonon con-
centration, is important insofar as it affects the con-
centration of quasiparticles. In what follows we will

only use it as an auxiliary variable for determining u.

Expanding Eq. (A2) in powers of p, we obtain

uo ——A (x, t) cosq,x+8(x, t) sinq, x

2rNqPp

Po+ I/r„ (A12)

L ( p ) = L p + pL t + p L 2 + 0 (E). (A4) with q, given by Eq. (2.20). Furthermore, since q, is
a double root at the bifurcation point, it follows that

4rN pop 2Po

2rNP„-(P, + I/.„)
f

1 0—
I) () (N, —

Nqp ) ri~—
0 0

Dfo
~xux

(ASa)

up
L1 =0

Up

To next order in ~ [Eq. (A9)] we then have

u1
Lp ——Np(uo)

81
t

(A9a)

1
L1=—

0 0 0

(Asb)

which gives for v1 the following solution:

2rNqp r
0

Pp + I/r„Pp + I /r„ (A13)

1 1 r 't

10 —4r0 10
01 & 2r 0 00 writing cr —=(1 +Por„)/4RN pop we can now exPress

Eq. (A9a) as

1 1 2
Lpu1 4 ~xxxrul +

2 ~xru1+ u1
qc qc

whereas Eq. (A3) can be written as
(ASc) —2r 2 D

up ~xrup1+/3pr„Np/s. p

(A14)

N(u) = —p Np(up) t Nt(up, ut) +0( )p (A6)

with

and

—2 2 D 1
p(up) =r

I up 0 0 up
0 0

(A7a)

whose solution is

u& =—
p

(A'+ 8') + —— q, a—1 2 2 1 4D 2 1

2Nqp g Nplal 0 2Nqp

—2N)(up, u&) =r
I (2upu])

() [—2i) -up +28 (upu, )]D
p p

A2 —B
cos 2q, x +AB sin2q, x

2
(Al s)

(A7b)
Proceeding as in Sec. III, we equate the coefficients
of the power-series expansion in ~ and obtain the fol-
lowing system of operator equations:

In order to determine the space-time dependences of
. the coefficients A and B we need to consider Eq.

(A10). After determining from the second equation
in the pair, that v2 is given by

L =0
Up

L p
= L i +Np(up)—u1 up

lf1 UP

(Ag)

(A9)

2 rNqp 2 rNqp
2 ~(up

Po +I/r„(Pp+ I/r„)'
2 ruo+ (s+u, )

Pp+I r„ (A16)
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we obtain for u2 Choosing the amplitudes 3' and B such that the
resonant terms of Eq. (A17) vanish gives

Lp{{2=' 1 +
2

{) +4/p
(P, +1/~„)' ' 1+{Bp~„

{);3—y{) A =~A +P(A'+B')g (A19)

+ S+
p

(np —
4 )(A +B2)(ap —1)4r

1+Ppr„
4r (np —1)

1 +Pps„+ 4rNq~„ppg „ (A2O)

where

x (A c oqs, x +B sinq, x ) (A17) 4r (up —1) (up ——)
19
4

Nqp (1+Pp~„+4rNqp Ppg „) (A21)

1Ap=
Np~ptp,

2D (1 +Ppv„)
Nqpp

1/2

4$p[(2rNq~pD) (1 +ppg„) ]'~2
'y =

1 +Ppr„+4rNq~p Pp7„
(A22)
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