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We have made a first-principles study of the structural phase transition at T, =193 K in

RbCaF3, using interionic potentials derived by the Gordon-Kim approach, and a new extension

of the quasiharmonic approximation for the free energy. The transition is caused by instability

of a triply degenerate R-point vibration which leads to a coordinated rotation of the CaF6 oc-

tahedra. We find that, as the lattice contracts, the quasiharmonic frequency of the R-point vi-

brations becomes imaginary at approximately 1280 K: Below this temperature the static lattice

energy, as a unction of CaF6 rotation, has a double minimum. However, the quasiharmonic

free energy has no rninirnum for finite rotations until T & 125 K. Thus the present theory

predicts that T, =—125 K (cf T, =193 K, experimental). In the region between 125 and about

1280 K "nests" of modes about the zone edges have imaginary quasiharmonic frequencies. By

a simple extension of the quasiharmonic theory their contribution to the free energy has also

been included. We also predict that the melting temperature is approximately 1350 K, which

agrees very well with the measured value of 1382 K. However, the predicted thermal expansion

of the perovskite phase at room temperature is —17'/0 lower than the observed value. This leads

us to argue that the good agreement between theoretical and experimental melting temperatures

is, in part, due to a cancellation between neglected anharrnonic effects and certain deficiencies in

the interionic potentials. We also find that, for the tetragonal phase, the calculated c/a ratio and

rotation angle for the CaF6 octahedra which minimize the static energy are in good agreement

with measured values at low temperature. We also discuss certain more general implications of
the present work. Specifically, we suggest that our results indicate that it may be more natural

to regard the structural phase transition as arising from the "unfreezing" of the distortion asso-

ciated with the lower-symmetry phase. Our results also provide a natural explanation for the ap-

parently universal tendency of transition temperatures for zone-boundary instabilities to be

raised by hydrostatic stress.

I. INTRODUCTION

One of the most extensively studied structural
phase transitions is that which occurs in strontium ti-

tanate (SrTi03) at 110 K, produced by the instability
of a triply degenerate vibration at the zone corner or
R point. However, none of the theoretical work has
attempted to address seriously what appear to us to
be, in many respects, the two most fundamental
questions: Why dies this transition occur, and why

does it occur at 110 K~ A serious answer to both
these (interrelated) questions can only be provided

by a theory which involves no disposable parameters.
It cannot be provided by phenomenological ap-
proaches involving models whose parameters are
determined by fitting experimental data: e.g. ,
lattice-dynamical models whose parameters are deter-
mined by fitting the measured dispersion curves.

The ideal answer to these questions would be pro-
vided by a calculation which derives the free energy

from a first-principles quantum-mechanical calcula-
tion and predicts that the distorted structure has a

lower free energy below 110 K. Such a formidable
undertaking has not been attempted for two main
reasons: (a) The difficulty of allowing for anharmon-
ic effects in the free energy, and (b) the inability to
derive from first principles a reliable potential energy
function for the lattice. At present, the second prob-
lem presents major difficulties for SrTi03. However,
relatively recent experimental studies' have re-
vealed that the fluoperovskite, rubidium calcium tri-
fluoride (RbCaF3), shows the same type of lattice
instability at 193 K. Also, very recently, it has been
found that another isomorph, potassium calcium tri-
fluoride (KCaF3), shows two structural instabilities,
one of 560 K and the other at 551 K,7 both intimate-

ly related to zone-boundary lattice instabilities. For
these systems calculations are possible, and the pur-
pose of this paper is to present first principles calcula-
tions of the equation of state for RbCaF3, which is
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F(x, T) = U(x) + —,
' $ h u, (x)

+kT Xln l —exp-
/

h u, (x)
kT

where A and k are the Planck and Boltzmann con-
stants, respectively, and x represents a set of struc-
tural parameters (e.g. , volume) on which the static
lattice energy, U, and the frequencies, v;, depend.

the simpler of the two in its behavior.
The present work represents a major extension to

more complex systems and instabilities of an ap-
proach that was previously used to explain melting of
sodium-chloride-structure alkali halides and subse-
quently extended to explain the onset of superionic
conductivity in fluorite (CaF2). '0 This approach has
two essential elements: the construction of
parameter-free interionic potentials using the
Gordon-Kim" technique, and the treatment of
anharmonic effects using the quasiharmonic approxi-
rnation. In order to employ the Gordon-Kim ap-
proach it is necessary to have accurate knowledge of
the free-ion wave functions. This is available for
ions such as Rb+, Ca +, and F, but not for 0
which is unstable in the free state. Given this
knowledge, one assumes that the crystalline charge
density is given by a superposition of the constituent
free-ion charge densities. The effective interionic po-
tential is then computed from the resultant charge
density by treating it as though it is (locally) a free
electron gas. In the present work we assume that it
is adequate to consider only pairwise overlap: Thus
we assume that regions in which three, or more, ions
overlap significantly are either negligibly small or
nonexistent. We thus obtain a lattice energy that is
the sum of pairwise interactions: long-range
monopole-monopole interactions, that represent ex-
actly the interaction of the spherical free-ion charge
distributions, and short-range interactions between
close neighbors that include all the corrections due to
ionic overlap. This energy expression is valid for any
lattice configuration if we maintain the basic
Gordon-Kim premise that the ionic charge distribu-
tions are unaffected by their incorporation into a
solid, It thus follows that not merely the static lattice
energy, but also the free energy is completely deter-
mined. This is the case because the dependence of
the lattice energy on all degrees of freedom is known
exactly, hence all allowed eigenstates of the lattice
Hamiltonian are determined, and the system's free
energy is, in principle, known exactly. In practice the
actual determination of this quantity presents major
theoretical problems and approximations are neces-
sary. The simplest, which was employed previous-
ly, ' is the quasiharmonic approximation. In this
approximation the free energy is written as

These frequencies are those of small amplitude oscil-
lations about the lattice configuration specified by the
parameters X. The equilibrium values of these
parameters at any given temperature are those which
minimize the free energy. Within this quasiharmonic
approximation the dependence of F on x is treated
exactly. Moreover, as we shall see later, it is possible
to go beyond the quasiharmonic approximation when
the quasiharmonic frequencies become imaginary.

The equilibrium values of x are determined from
the equation of state

(2)

where P„ is the thermodynamic "force",.conjugate to
the variable x'. e.g. , if x is the volume, then P is the
external pressure. However, in the present paper,
where we are concerned with the zone-corner insta-
bility in RbCaF3, we shall be using Eq. (2) in a more
general form. Specifically, we have to allow for the
dependence of F on three parameters in the low-
temperature phase: the volume, the tetragonal dis-
tortion, and the amplitude of the "frozen-in" zone-
corner distortion. The forces conjugate to the first
two of these present no conceptual problems: That
conjugate to the third is a little more difficult to con-
ceive. It is, in fact, a "staggered" force which alter-
nates in sign for different atomic sites. The reason
for this is that the R-point instability corresponds to
correlated small rotations of all the CaF6 octahedra,
and, to produce such rotations, there must be a
torque about the appropriate axis for each oc-
tahedron. Experimentally such a "force" would be
difficult, if not impossible, to apply but it is a perfect-
ly valid thermodynamic concept and closely analo-
gous to the corresponding "field" in the theory of
antiferromagnetism. Under normal conditions P„will
be zero and the equation of state, and thus the
equilibrium values of x, xp, will be determined by the
requirements that (BF/r)x) r„„——0 for all x.

In the remainder of this paper we will be describing
our theoretical studies in detail. However, before
commencing this account, it is appropriate to outline
the main qualitative features of our results which we
regard as extremely important.

What we find is that above -125 K the cubic
(perovskite) structure is the thermodynamically
stable phase. However, below -1280 K the
quasiharmonic frequencies at the R point become im-
aginary due to the thermal contraction of the lattice We.
shall elucidate this further later, but the crucial point
is that, below a critical volume, the CaF6 octahedra
are in metastable equilibrium at the perovskite sites
and can, by coordinated rotation, move to one or
other of two adjacent lower minima in the potential
energy surface. However, it is not until the tempera-
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ture drops belo~ —125 K that the quasiharmonic
free energy has a minimum for a finite static value of
the amplitude of this coordinated rotation. It is this
lower temperature that is the transition temperature:
Between 1280 and 125 K the system is executing
highly anharmonic motion between the two wells.
For the degrees of freedom involved in this motion,
special treatment, which we shall describe in due
course, is necessary.

Below 125 K the tetragonal structure is not abso-
lutely stable. This is because the soft R-point vibra-
tion of the cubic phase is triply degenerate and the
distortion stabilizes only one of these three modes:
that corresponding to rotations about one specific
axis of the CaF6 octahedron. Statically the lattice
would prefer to distort further by some combination
of rotations about the other two axes (as appears to
happen in KCaF3). However, this lower symmetry
phase may not be thermodynamically stable, at least
within the quasiharmonic approximation. This belief
is based on the wide temperature difference between
the point at which the cubic phase becomes mechani-

cally unstable and the point where the tetragonal
phase becomes thermodynamica0y stable. More
specifically, in the limit T 0, the "phonon pres-
sure, " due to the zero-point motion, may be suffi-
cient to disrupt the lower symmetry structure. Ex-
perimental results' '2' do reveal the existence of a

further transition at —44 K, but the structure of the
resultant low-temperature phase seems to be unclear
at present: It may be that the phonon pressure due
to zero point motion leads to the structure of this
phase being other than that which minimizes the stat-
ic lattice energy. The most definitive work indicates
that the 44 K transition involves equal rotations
about all three axes of the CaF6 octahedra. However,
it is a markedly first-order transition with large ther-
mal hysteresis. This appears to indicate the presence
of a significant barrier in the free-energy surface
between the tetragonal phase and this lower sym-

metry phase.
Finally, it is of interest to pbserve that the more

complex behavior of KCaF3 involves simultaneous
rotations of the CaF6 octahedron about two principle
axes at the upper transition and all three axes at the
lower transition. Whether it would be possible to ex-
plain this behavior using our present approach is an

open question. It would certainly present a much
more complicated problem, since one would need to
include additional x parameters and the calculations
would be correspondingly more complex. It seems to
us likely, indeed probable, that the present theory
would predict at least one transition to a lower sym-

metry structure. However, what this structure would

be is unclear. Moreover, whether two successive
transitions would be predicted is much less certain.

We shall now proceed to a detailed discussion of
the various stages of our calculations.

II. STATIC LATTICE ENERGY

o Rb
~ c

0

0 /—0
FIG. 1, Four unit cells of the perovskite structure with

arrows at corners of the CaF6 octahedra indicating the dis-

tortion produced by the transition to the low-temperature
phase.

In order to study the relative static stability of the
low-temperature tetragonal phase versus that of the
ideal perovskite structure, it is necessary to compute
the static energy of the lower symmetry phase as a
function of both volume and the parameters that
specify the distortion from the higher symmetry
structure. These variables together constitute the x
parameters, This study is necessary in order to
understand the interplay between all these parame--
ters, and the physical origins of the lattice distortion.
Once we have such an understanding it is then possi-
ble to proceed to a study of the free energy and its
minimization with respect to the x parameters. While
it would, in principle, be possible to proceed directly
to this minimization, in practice such computations
are very time consuming, and one thus wishes to
reduce the number of variables to be considered as
much as possible. A definitive knowledge of the po-
tential surfaces in the hyperspace of x parameters is a

great help in this respect, and can be obtained rela-
tively rapidly.

In Fig. 1 we show four unit cells of the perovskite
structure which together define the primitive unit cell
of the low-temperature phase. The open circles
denote Rb+ ions and the four octahedra, with large
solid circles at their centers and small solid circles at
their corners, give the positions of the Ca'+ and F
ions, respectively. The arrows indicate the low-
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temperature distortion. In Table I we list the coordi-
nates of the 20 ions in the unit cell of the low-

temperature structure. The components in the x and

y directions are in units of J2a, where a is the cube
cell side of the perovskite structure, Along the z

direction the components are in units of 2c, where
c =a in the perovskite structure.

For the x parameters which specify the low-

temperature structure it is convenient to take
b = (a c)', f = c/a, and 5= u ——.If f = I and

5 =0 then we have the perovskite structure with

a = b = c. The distortion from the perovskite struc-
ture when 5 A 0 corresponds approximately to a
cooperative rotation of the CaF6 octahedra through
angles of +45.

The distinct bonds that we found necessary to con-

TABLE I. Positions of the 20 ions in one unit cell of the
low-temperature phase of RbCaF3. The x and y coordinates
are in units of J2 a and z coordinates in units of 2c: When

1
c = a and u = —the structure is perovskite with lattice con-

4
stant a.

rt=( ts +5 ) 2Q, nt =161

(2a)

ar2=, n2=8
2

'

Nearest-neighbor Rb —F

a
r3=, n3 =16

42

r, = [4(—,
' +5)'+ —,'f']t "a, n, =16,

r5 = [4(—' —5)'+ ' f']'~'a, —n, =16 .

(3a)

(3b)

(3c)

Nearest-neighbor F—F

rq=( —, +85 )'r a, n6=161
(4a)

sider for accurate computation of the short-range
component of the energy in the low-temperature
phase are listed below. In each case the bond length
r; is given together with the number of bonds n; hav-
ing that length:

Nearest-neighbor Ca —F

Ion

Coordinates
rq=( —+45 + —fz)trza, nq=32

Second neighbor F—F

(4b)

Ca

Ca

Ca

Rb

Rb

Rb

Rb

1

2

1

2

1

2

1

2

0

1

2

1

2

1M—
2

1

2
1

2

1

2
1

2

1

2
1

2
1M—
2

1 —
M

2

1

2

1

2
1

4
3

1

4
3

4
1

4
3

4
1

4
3

4

0

rs=fa, ns=4

r9=a, n9=8

rtp = (I +165z) trza, ntp = 8

rtt ——(I +45)a, ntt =4

r t, ——( I —45) a, n» =4

rt3 ——(f + Il{j5 ) ~ g, nt3 ——8

Third neighbor F—F

rt4 ——[2(—,
' +25) +f ]tata, nt4=16

rtq= [2(
2

—25)z+ fz]t 'a, ntq =16

rtq= [2(
4

+5) +2(4 +5) + —' fz]trza, n 3ts2

rt7 = [2(——5) +2(——5) + f ]' a, nt7 ——32—

(Sa)

(Sb)

(Sc)

(Sd)

(Se)

(Sf)

(6a)

(6b)

(6c)

F

1 —
M

2
1M—
2

1
M

2
1 —

M
2

1
0

2

1

2
1

2

1

2
1

2

(6d)

The component of the static lattice energy due to
the long-range Coulomb interaction can be written as
a(5,f)/b, where u(5,f) is an effective Madelung
constant, explicitly dependent on both 5 and f For.
values of 5 and fwithin the range of interest to our
studies, ( [5~ & 0.04, 0.99 & f & 1.01)n is given to
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TABLE II. Values obtained for c and P by fitting the exponential form, ce &', to calculated
values of the short-range Coulomb (SRC), kinetic (KE)„exchange (ex), and correlation (corr)
contributions to the indicated pair potentials in the range rI to r„. Results are in atomic units with

energy in hartree.

Ion
pair SRC KE ex corr

CaF
CaF
RbF
RbF
FF
FF

p

p
C

p,

—34.937 0
1.91088

—45.683 3
1.707 20

—17.738 7

1.556 12

98,648 8
1.780 84

96.569 3
1.597 77

25.105 5

1.403 05

—10.271 4
1.479 84

—10.221 4
1.305 91

—2.980 54
1.107 56

—0.224 891
1.11159

—0.288 258
1.005 48

—0.1178 1-5

0.846 702

3.8
3.8
5.6
5,6
5.4
5.4

4.6
4.6
6.0
6.0
6.4
6.4

seven-place accuracy by
/

n(5,f) = —49.509872+111.21852+1326.3854

—617.8952(1 —f ) +S49054(1 f)—
—13.65 (1 —J') 2 —4625'(1

—6o ooo5'(I -I)' .

U(b 5f) = +@CaF+dRbF+ PFF ~

(5,y)

where
2

C'c..= 1~;4c.F(r;) ~

I 1

5

+RbF $ i@RbF( "I)
I ~3

17

+FF $ lti@FF( "i)
i 6

and the $(r)'s represent the short-range parts of the
various potentials. For each interaction these were

(8b)

(8c)

(8d)

On combining both parts (Coulomb and short-
range) of the static lattice energy one obtains the en-

ergy per unit cell of the low-temperature phase:

determined for several values of r within the range of
interest using Green and Gordon's program
POTLSURF. Each contribution to a given potential
[electrostatic (SRC), kinetic (KE), exchange (ex),
and correlation (corr)] varies approximately exponen- .

tially with r over this range and it was thus possible
to "best-fit" exponentials to each separate contribu-
tion. The value of c and P in the exponential form
ce &', determined by fitting to results from program
PoTLsURF at several r values in the range of separa-
tions of interest here (r, to r„) are shown in Table II.
These values differ somewhat from those published
earlier ' due to the use of different ranges of
separations in the fitting procedure. Within the range
rI to r„ the fitted potentials agree with the true ones
to better than 0.2'/0. Slight modifications of this pro-
cedure were tested to be sure they produced only
minor quantitative changes in our results. The values
in Table II are given to six decimals to~enable the
reader to make a precise comparison with our results.

Using these fitted potentials it was then possible to
find the values of b, f, and 5 (bo, fp, 5o) which
minimize the total static energy. The results are
sho~n in Table III for several models which

TABLE III. Comparison of the structure parameters (bp, fp, and Bp), which minimize the static energy (U) of the low-

temperature phase of RbCaF3 and the double-well depth [U(bp, 1, 0) U(bp, fo, Sp)] for various models which differ in the
number of neighboring ions included in the sum over the short-range interactions.

Model Number of shells'
number CaF RbF FF bp (bohr)

Structure parameters that
minimize U

fp 5O

Energy (hartree)
U(bo fo ho) U(bo 1 0) U(bofo So)

1

2

3
4
5

6
7b

1

1

1

2

1

1

1

8.257 634
8.244 963
8.234 084
8.230914
8.229 262
8.232 220
8.245 002

1.006 316
1.007 708
1.009 027
1.009 387
1.009 286
1.009 105
1.007 804

0.028 833 7

0.031 344 0
0.033 789 1

0.034 275 2

0.034 156 5

0.033 891 1

0.031 226 2

—5.390 779
—5.399 708
—5.404 778
—5.406 168
—5.406 984
—5.405 632
—5.399 675

0.000 831
0.001 206
0.001 631
0.001 724
0.001 705
0.001 651
0.001 173

'A shell is defined in the perovskite structure (f=1, 8=0). Same as 3 but with CaF6 rotations in phase along the z direction.
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b —8.234

—0.06 —0.03 0.00
I

0.03 0.06

FIG. 5. Potential energy as a function of 5 for various
selected values of b and f.

8 is plotted for a sequence of f values with b =8.234
and 8.4. Finally, in Fig. 6, we show the various indi-

vidual contributions to U: the Coulomb part, and the
short-range components; shown separately for first-
neighbor calcium-fluorine interactions, first-neighbor
rubidium-fluorine interactions, and for all the
fluorine-fluorine interactions considered in model 3.
The plots in Fig. 6 show the four terms in Eq. (8a) as
a function of 5 for selected 6's, using equal energy
scales for each plot to facilitate the comparison of
their relative strengths.

From these plots we can draw a number of specific
conclusions.

(a) Figures 2 —5 reveal that the dependence of U

on f is relatively insignificant compared to its depen-
dence on b and 8.

(b) Figures 2 and 4 show clearly that, as the lattice
contracts, a double minimum develops in U as a

function of 8 when b ~8.555 (bohr). This signifies
that certain of the quasiharmonic normal-mode fre-
quencies for the perovskite structure become ima-

ginary when the crystal volui»e shrinks below

(8.555)3 (bohr). 3 However, as we shall see later, this

does not signify an immediate transition to the low-

temperature structure.
(c) Figure 6 demonstrates that the basic cause of

the static instability of the perovskite structure is a
competition between the short-range part of the Ca-F
interactions and that of the Rb-F interactions. Both
the total Coulomb potential and Rb-F short-range in-

teractions tend to maintain the perovskite structure,
but the short-range Ca-F interactions are always re-
duced by a finite value of 5. Thus, as b is reduced,
there comes a point when the Ca-F interactions dom-
inate and produce the CaF6 rotations. However, this

causes r5 for the Rb-F bonds to decrease and the ro-
tation is stabilized at some finite value of 8. On the
other hand, Fig. 6(d) indicates that the F-F interac-
tions are nearly independent of 5: However, they do
have quantitative effects on the magnitude of the ro-
tation and. the depth of the double well, as can be
seen from the results in Table III. This results from
the fact that CFF is negative, which lowers the equili-
brium value of b, causing the double well to deepen.
However, from Fig. 7, we see that the double-well
structure in the potential surface is still present, even
when the F-F short-range interactions are completely
omitted.

The present calculation is for one specific material,
but it appears highly plausible to argue that the pres-
ence or absence of a zone-boundary instability of the
present type in any AMx3 system is likely to be deter-
mined by the type of balance between M-X and 3-X
short-range forces that we have found in RbCaF3.
Thus, as the "size" of the 3 ions increases relative
to that of the M ions, the perovskite phase will be
stabilized. This concept is very close to the semiem-
pirical approach of Rousseau et al. ' based on the idea
of close packing of hard spherical ions showing
characteristic radii. The difference is that our general
prediction stems from a first principles calculation of
the potential for a given AMx3 structure, This calcu-
lation is, to the best of our knowledge, the first of its
kind for such a system.

At this point a note of caution should be intro-
duced regarding predictions as to the low-temperature
structure. We have studied the static lattice energy
of a particular low-temperature phase in which the
CaF6 octahedra are allowed to rotate about the one
axis only. However, like the perovskite structure,
this too is statically metastable since the unstable R-
point vibrations of the perovskite phase are triply de-
generate and-only one of these vibrations is stabilized
by rotations about a single axis'. the other two
remain unstable. Thus the absolute minimum of U

presumably corresponds to some superposition of ro-
tations about all three axes. This will presumably
hold true for any AMx3 system for which the
perovskite structure is metastable. However, there is

little point in searching for this absolute minimum, at
least for RbCaF3, since the actual structure is that
which minimizes the free energy. Thus, once the
first instability has developed, as the structure is

cooled, its subsequent transitions (if any) will result
from a change in the balance between competing con-
tributions to its free energy. Here we have made the
implicit assumption that, for RbCaF3, the primary en-

ergy decrease is due the CaF6 octahedra rotations
about the single preferred axis: The other two possi-
ble rotations are assumed to have only secondary ef-
fects. If this is the case, the free energy surface will

follow the potential surface at the first transition.
. Subsequently this may well not be the case. In other
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systems, e.g. , KCaF3, the effects of the remaining
two rotations may be of primary importance leading
to very significant changes in the static energy. In
these circumstances we would expect more complex
transition behavior and the free-energy surface may
not follow the potential-energy surface even at the
first transition. Examples of this general type of
behavior are provided by "quantum ferroelectrics, "
which are systems where the distorted ferroelectric
phase, although of lower static energy, is never
achieved, since it is destabilized by zero-point motion.

06 III. LATTICE DYNAMICS OF RbCaF3

FIG. 7. Potential energy surface for f = I with the short-
range part of the F-F interactions excluded.

Before we proceed to an examination of the free
energy of RbCaF3 and to predictions of its behavior
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FIG. 8. Quasiharmonic frequency dispersion curves and frequency spectrum for RbCaF3 in the perovskite structure at the
critical volume (b =8.555 bohr) belo~ which the R2~ frequency is imaginary.

using the quasiharmonic approximation, it is impor-
tant to examine the quasiharmonic frequencies ob-
tained from the dynamical matrix generated from the
second derivatives of our potential. It is also impor-
tant to stress that these "frequencies" are not neces-
sarily comparable with those measured by experimen-
tal probes. They are the product of a variational fit
to the free energy involving a limited number of
parameters; namely, those that define the crystal
structure. At this, the simplest level which can pro-
vide meaningful results, the frequencies themselves
are not variational parameters.

In Fig. 8 we show plots of the dispersion curves
and the associated density of states for RbCaF3.
These plots have a common energy axis (we chose to
plot he rather than v for reasons of convenience)

and have been made for h =8.555 (bohr) which is

the critical b below which the double well in U versus
8 appears. It can be seen that the energy of the triply
degenerate R2q modes is essentially zero, signifying
that these modes are about to become unstable. The
symmetry designations for the various branches were
made by comparing their eigenvectors with those
published by Cowley", however, the labels have been
changed to follow the convention set by Bouckaert
et at. ' Differences exist for the X, S, M, and Xsym-
metries and these are listed in Table IV.

The phonon dispersion curves were plotted using
symmetrized Fourier (SF) interpolation'7 from an
L =8 mesh of eact values (L/2 is the number of
partitions of a given symmetry line). The density of
states was computed by applying the tetrahedron

TABLE IV. Relation between the symmetry notation used by Cowley (Ref. 15) and that originally established in Ref. 16
(BSW). Differences exist for X, S, M, and X symmetries.

X and S M and X

Cowley
BSW

2'
4I

3I
2'

4I
3I

5I
51
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method' to an L =16 mesh of values obtained by SF
interpolation from the L =8 mesh. Occasionally,
when there is a sharp kink in the dispersion curves,
such as that produced when two branches of like
symmetry nearly cross, a ripple effect can be seen in
the SF interpolated values unless a sufficiently fine
mesh is used. This is the case f'or the two lowest T5

branches, whose near crossing at about
4

of the dis-

tance from A' to M produces the slight wiggle seen in
the upper of these two branches as M is approached.
The third T5 branch appears to have a similar wiggle,
but in this case it is a genuine effect: It does in fact
cross the lowest T2 branch in two places.

The nonzero eigenvector components of the A'25

modes are given by'

e, (F,) = —e, (F„), mode 1,
e„(F,) = —e, (FI), mode 2

e„(Fn) = —ey(Fat), mode 3

(10)

where the F,, Fu, and Ftt~ ions are at a( —,, —,0),j 1

a( —, , 0,—), and a(0,—,—), respectively. The third
1 1 1 1

eigenvector [Eq. (11)1 corresponds to CaF6 rotations
about the z axis (see Fig. 1) in the same sense as
those associated with a nonzero value of 5. The first
and second eigenvector are equivalent, except that
they describe rotations about the x and y axes.

It should also be noted that the entire T2 branch
(from Rz5 to Mz) is soft. Moreover, the eigenvec-
tors for the Mz modes at q = (0, rr/a, 7r/a ),
(n/a, 0, m/a), and (7r/a, rr/a, 0) are identical with
those for the Rz5(1) [Eq. (9)], R»(2) [Eq. (10)],
and Rz5(3) [Eq. (11)] modes, respectively. Each of
these identities extends also to all modes connecting
Rz5 to Mz, namely the Tz branches, T,(1), Tz(2),
and T3(3). Physically this means that the only
difference between the displacement patterns of the
various modes along, and at the ends of, a given T2

, branch is in the relative phase of the CaF6 octahedra
rotations in adjacent planes. For example, the
Rz5(3) mode produces a displacement pattern that
reproduces the low-temperature structure (Table I)
with f =1. In this mode the octahedral rotations are
m out of phase in adjacent units parallel to the z axis.
On the other hand, the Mz mode at q = (n/a, m/a, 0)
[to which Rz5(3) is connected by the Tz branch
parallel to the z axis of reciprocal space] gives almost
the same structure, except that the corresponding ro-
tations about the z axis are all in phase. Between the
two extremes the relative phases of these rotations
are determined by q, . Interestingly, if one of these
modes were the first to become unstable, the low-
temperature phase would have an incommensurate
structure. However, this is unlikely for the perfect
crystal, since the coupling between rotations about
the z axis for octahedra in different planes (perpen-
dicular to that axis) is likely to be dominated by

R~(3)

Mz(3)

R~(1,P)

M,(1,Z)

D
I

0.00 0.01
I I I

0.02 0.03 0.04 0.05

I

FIG. 9. Plot of the square the "frequencies" of the low-

lying R25 and M2 modes as a function of the low-

temperature distortion parameter, 6, with b = bo and f =1.

first-neighbor interactions. If this is the case a
monotonic variation of frequency with q, is to be ex-
pected.

For a clear insight into the situation in the low-

temperature phase it is important to examine the
behavior of the three soft T2 branches of the
perovskite phase in the low-temperature structure.
In the Brillouin zone of the latter structure the Tz(3)
branch starts and ends at the zone center, since it is
folded back at q =(0,0, zr/2c). Tz(1) and Tz(2) be-
come equivalent in the low-temperature phase
translating. into branches that originate at the zone
center (the new location of their Rz5 origin) and
end at q =(vr/J2a, rr/82a, 0) and q = ( 7r/—J2a,
rr/ J2a, 0) .

In Fig. 9 we show the behavior of these three
branches as a function of 8 for b =8.234084 (bohr)
(the value which minimizes the static energy) and

f =1. It can be seen that the Tz(3) branch hardens
rapidly as 8 is increased: This is not the case for the
Tz(1) and Tz(2) branches. Specifically, a calculation
of the M2(1, 2) frequency, for b, f, and 8 all set at
the values which minimize the static energy, gives
(hv)'= —0.65 (meV)z for this frequency. Thus a
static distortion having the displacement pattern of
either mode would further lower the potential energy.
However, it may not lower the free energy and may
thus not occur. The basic origin of this residual in-
stability is that the tendency of the CaF6 octahedra to
rotate about both x and y axes, in addition to the z

axis, is still present in the low-temperature structure.
However, it would appear from Fig. 9 that it is signi-
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ficantly inhibited by the built-in rotations about the z

axis associated with finite S.
The principal result of these quasiharmonic lattice-

dynamical studies is the demonstration of the ex-
istence of groups of imaginary frequencies in both
the high-temperature phase for b (8.555 (bohr) and
in the low-temperature phase. This presents a prob-
lem which has to be addressed during the free-energy
studies which are the subject of the next section.

IV. FREE-ENERGY CALCULATIONS AND
PREDICTION OF THE TRANSITION

TEMPERATURE

We are now in a position to examine the oc-
currence of the phase transition in RbCaF3. We
thus, in principle, have to carry out a minimization of
the quasiharmonic free energy F, defined by Eq. (I),
with respect to all three x parameters (b, f, and
u =0.25 —8) at a sequence of temperatures. Howev-
er, the low-temperature structure will only be stable
if there exists a minimum in F for u ~0.25. Other-
wise the only minimum in F occurs when u =0.25
and f = I, and we have the perovskite structure as
the stable phase: In this phase the only variational
parameter is b =a the lattice constant. Since we had
already established that the static energy is most
strongly dependent on 5 we have only made a de-
tailed study of the dependence of F on this parameter
and then checked that the predicted transition tem-
perature was relatively insensitive to variations in b
and f. In this way we were able to avoid the much
more computationally expensive triple minimization.

In Fig. 10 we show the free energy of the low-
temperature phase as a function of u, for b = bo and
f = I, at a sequence of temperatures between 0

-5.376-

(L)
(U

~ -5.378-
L
(0

-5.380-
&X3

w -5.382-

75K

100K

125K

- 150K

0.215 0.220 0.225 0.230
(0.2S-6)

FKJ. 10. Free energy of the low-temperature phase as a
function of 5 at selected temperatures with b = bo and f'=1.

and 150 K. The problem of the unstable modes asso-
ciated with the Tq(1) and T,(2) branches was dealt
with by excluding from the sum over modes in F all
those unstable for the smallest finite value of
8(u =0.23) considered [for u &0.23 the Tq(3)
branch is unstable in the quasiharmonic approxima-
tion]. The justification for this procedure will be
given later in our discussion of the perovskite phase.
It can be seen that these curves have broad minima
away from u =0.25 for T & 125 K: Above this tem-
perature the only minimum is at u =0.25. Thus the
present quasiharmonic theory predicts that the transi-
tion temperature is between 125 and 150 K. As the
Tq(3) branch is unstable for u & 0.23, we expect the
transition to be mildly first order. The predicted
transition temperature is much below the temperature
(—1280 K) where our studies of the perovskite
phase show that the R-point vibrations become un-
stable, signifying the onset of a double minimum in
the static energy.

The use of a larger b, to account for thermal ex-
pansion, tends to lower the transition temperature by
10—20 K, while the use of f = fo raises the transition
temperature by a similar amount. Thus the transition
temperature is not very sensitive to reasonable
changes in b and f. The crucial point is that the
quasiharmonic theory predicts that thermodynamic sta-
bility of the low-temperature phase does not occur
until the temperature has been reduced by an order
of magnitude below the value at which mechanical
instability develops in the high-temperature structure.
Why this should be is best explained by examining
the origin of the instability of the low-temperature
phase. The key factor here is that the frequency of
the Rqs(3) mode in this phase is strongiy dependent
on 5. As the temperature is raised, thermal excur-
sions about the static value of 5 increase; this tends
to decrease 8; the Rq5(3) frequency is thus reduced,
favoring larger thermal fluctuations, and the low-
temperature structure thus "bootstraps" itself into
instability by reducing 5 below the critical value
necessary for the frequency of Rqs(3) to be real.
Further, we would argue that the stability of any
lower symmetry phase would be determined by simi-
lar considerations. In this regard we note that zero-
point motion alone may be sufficient to destabilize
any further lower symmetry phases, in spite of their
potential to lower the static energy.

In the high-temperature perovskite phase, since
there is only one variational parameter to be ex-
plored, it is relatively inexpensive to obtain the
theoretical equation of state and thus to compute the
variation of lattice constant with temperature. The
only problem is that presented by the unstable
quasiharmonic frequencies. We dealt with this in
three ways.

(a) We simply omitted from the sum over modes
in F all modes for which the frequencies are ima-
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ginary at the smallest volume considered (a = 8.2
bohr).

(b) We did the same thing but "renormalized" the
free energy, i.e., we multiplied the vibrational contri-
bution by A'/(A' —n), where N is the total number
of modes per unit volume and n is the number which
have imaginary frequencies at a = 8.2 bohr.

(c) We made a classical approximation to the free-
energy contribution of the excluded degrees of free-
dom which goes beyond the quasiharmonic approxi-
mation.

The first two approximations are self-explanatory:
The third requires elaboration. First we examined
the manner in which the static energy U varies with
the finite amplitude distortion associated with the M-

point instability: This exactly paralleled the static-
energy studies of the 8-point instability described in

Sec. II of the present paper. %e found, not too
surprisingly, that the two were very similar (see Table
III). We thus argued that the dependence on ampli-
tude is the same for all the harmonically unstable de-
grees of freedom. This is based on the fact (see Sec.
III) that all these degrees of freedom are basically
composed of rotations of the CaF6 octahedra about
the z axis: The only difference between them is in
the relative phases of these rotations in adjacent
planes. Since the 8- and M-point motions, which
represent the two extremes in these relative phases,
have very similar static energy versus amplitude
curves, the same should be true for all the unstable
modes. Thus we added to the free energy a term

U(b, 1, g) —U(b, 1, 0)
OO 4kT

(12)

This corresponds to the classical contribution to the
potential-energy part of F from these degrees of free-
dom if we assume that 5 now represents the ampli-
tude of any of the unstable motions and make the ap-
proximation of treating these modes as independent
anharmonic oscillators. The factor of

4
in the ex-

ponential normalizes U to the perovskite unit cell.
Since the classical kinetic-energy contribution to F
does not depend on volume, it does not influence the
lattice constant and we did not include it.

In Fig. 11 we show curves of the negative of the
vibrational pressure and the static pressure versus lat-
tice constant for the perovskite phase of RbCaF3, cal-
culated for a sequence of temperatures: Approxima-
tion (3) was used for the unstable modes. The tem-
perature dependence of the lattice constant is given
by the intersections of the family of vibrational pres-
sure curves with the static pressure. Thermal expan-
sion data for RbCaF3 show the lattice constant in-
creasing by 0.18% from 200 to 300 K while the

100-
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100K
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FIG. 11. Vibrational pressure, P„, at selected tempera-
tures and the static pressure„RP, as a function of lattice
constant, for RbCaF3 in the perovskite structure.

theoretical result is 0.15%.
From Fig. 11 two things are apparent: (a) Above

-1350 K the phonon and static pressure curves have
no intersection; this implies ' that 1350 K is the
melting temperature. (b) The lattice parameter does
not exceed the value for which the double well in U-

versus-5 curves disappears until T & 1280 K.
For comparison, the measured melting tempera-

ture' is 1383 K. Such good agreement between the
measured and calculated melting temperatures is
partly accidental, due to the neglect of anharmonic
corrections. If the potential were perfectly accurate,
then the thermal expansion would be accurately
predicted at low temperature and the neglect of
anharmonic corrections at high temperature would
produce a too low theoretical melting temperature by
(from an analogy with trends in the alkali-halide
results') about 20%. As it happens, however, the
present theory for RbCaF3 gives a too low value for
thermal expansion at low temperatures (by -17%)
and consequently the predicted melting temperature
is only 2% too low.

Similar calculations made using approximations (1)
and (2) for the unstable modes show very little
difference in the results. For example, values for the
room-temperature lattice constant are 4.3927 and

0
4.3945 A, respectively, for approximations (2) and
(3). The results for thermal expansion and melting
temperature using the three approximations are also
nearly identical. This neither proves nor disproves
the assumptions of approximation (3): What it does
show, is that the difference between making a plausi-
ble allowance for the unstable modes, and simply dis-
carding them is negligible; principally because they
constitute only 2.7% of the total. This would appear
to validate discarding the unstable T2 modes in ou'r

studies of the thermodynamic stability of the low-
~emperature phase.
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V. CONCLUSIONS

We have presented a first-principles study of the
equation of state and stability of the fluoperovskite,
RbCaF3, using the Gordon-Kim approach to derive
the interionic potentials and an extended quasihar-
monic treatment of the free energy. Our results ex-
plain why the measured displacive phase transition in
this material occurs. The explanation does not in-
volve any subtle anharmonic or polarization effects:
The phenomenon is predicted, ab initio, within the
rigid-ion pair-potential approximation. The reason the
system prefers the lower symmetry structure at low
temperatures is simply that it allows a more efficient
packing of the ions, given the particular pair poten-
tials involved. This aspect of our work (Sec. II) in-

volved relatively simple static energy calculations.
With regard to dynamic effects, our most important
finding is the demonstration that the mechanical in-

stability of the perovskite phase occurs at a tempera-
ture an order of magnitude greater than the tempera-
ture below which the distorted low-temperature phase
becomes stable. We have thus provided rigorous
proof of the hypothesis advanced by a number of au-
thors ' that, over a range of temperature, in the
perovskite phase the "ideal" locations of the CaF6
octahedra are, in fact, metastable. What is surprising
about our results is the extent of this temperature
range (-1000 K). Our calculations, made in the
context of approximation (3) for the free energy, also
demonstrate that interplanar correlations between the
rotations of CaF6 octahedra in planes perpendicular to
the preferred axis are significantly weaker than intra-
planar correlations. This again provides quantitative
confirmation of a qualitative hypothesis made by ear-
lier workers.

One particular aspect of our approach which should
be stressed is that it is the reverse of that usually
adopted when discussing structural phase transitions.
In the conventional approaches, which derive from
the Cochran "soft-mode" theory and Landau's
phenomenological free-energy expansion, '4 such tran-
sitions are regarded as arising from the "condensa-
tion, " or "freezing-in, "of some symmetry-breaking
distortion associated with a soft mode in the high-
temperature higher-symmetry phase. In our approach
the transition can clearly be seen to be dictated by the
"unfreezing" of the distortion which produces the
(o~er-symmetry low-temperature phase. The struc-
ture then transforms to a state which, on average,
has the cubic perovskite structure. However, it
would appear that there must be some dynamical dis-
order, involving correlated thermally activated rota-
tions, between the double minima in the lattice po-
tential. Our studies would appear to support the
idea ' that these will be strongly correlated within
planes and weakly correlated between planes.

As the temperature is raised the mean fluorine po-

sitions move ever closer to their "ideal" locations
and their thermal motion will be described more and
more accurately by anharmonic vibrations about
those locations. As this happens an external probe
(e.g. , neutron scattering) will see damped plane wave
normal modes; i.e., phonons with definite wave vec-
tor but finite lifetime. This situation will be achieved
much below 1280 K: Specifically, at 300 K the well

depth is —
2

kT and one should probably expect a
damped oscillator response in such circumstances.
However, it should be stressed that there is no sharp
demarcation temperature between "damped-
oscillator" and "double-weil hopping" responses.
Above 1280 K, there are no unstable harmonic fre-
quencies; but, we predict shortly thereafter (—1350
K), the crystal melts as the "vibrational pressure"
overwhelms the static attraction.

As the temperature is lowered from 1280 K the
basic origin of the transition to the low-temperature
structure is the lattice contraction, which in fact pro-
duces the double well in the potential-energy surface.
Further, lowering the temperature simultaneously (a)
deepens the double well, through volume contrac-
tion, and (b) reduces the mean kinetic energy, thus
producing a stronger tendency for the system to lock
in to one or the other of the double-well minima.
Both of these factors have a critical influence on the
transition temperature.

In the low-temperature phase the present theory
does appear to predict that soft-mode behavior
should be observed. However, one should remember
that intrinsic anharmonicity (intermode coupling)
must be present and will produce both finite phonon
lifetimes and some effect on the transition tempera-
ture. Interestingly, for those alkali halides for which
the present approach best describes the static energy,
the quasiharmonic melting temperature is too low

(see discussion above). A similar effect in the
present case would improve the agreement between
theory and experiment.

These various features of the present approach can
be summarized by saying that there is a natural
"asymmetry" of the transition, depending on wheth-
er it is approached from above or below. We believe
that this is a genuine effect, inherent in the form of
the static energy, and not an artifact of the quasihar-
monic approximation. It is tempting to speculate as
to whether or not similar effects may be present for
other structural transformations.

A much less speculative conclusion can be drawn:
The present work provides an obvious explanation ~

for the observation by Samara et al. " that the transi-
tion temperatures of almost all known zone-boundary
instabilities are raised by hydrostatic stress. That this
should be the case for RbCaF3 is obvious from the
plots of U versus 5 for different b values in Fig. 4.
One can see that reducing b (i.e. , applying hydrostatic
stress) increases the depth of the double well. It im-
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mediately follows that application of the present
theory to the compressed lattice would yield a higher
transition temperature. However, this qualitative
behavior is likely to be present for the rotations asso-
ciated with any zone boundary instability in any
perovskite structure. Thus all such instabilities
should have their transition temperatures raised by
hydrostatic stress. This conclusion thus applies to the
large majority of all known zone-boundary instabili-
ties. Moreover, in other systems, such instabilities
generally involve rotations of molecular units (oc-
tahedra, tetrahedra, etc.): If their situation is qualita-
tively similar to that of the perovskite octahedra, as
seems very possible, then the same conclusions may
be drawn regarding transition-temperature depen-
dence on hydrostatic stress.

The quantitative results of the present investigation
are principally confined to predicting the transition
temperature, the melting temperature, and the value
and temperature variation of the lattice constant in
the perovskite phase (see Table V). We could, in

principle, make further quantitative predictions of the
temperature variation of f and 5 in the low-

temperature phase, but these would involve the
much more computationally expensive triple minimi-
zation of I'. However, if one compares fo and So, 'the

values that minimize the static energy, with the
lowest-temperature experimental values, it can be
seen (Table V) that there is very satisfactory agree-
ment: A fact which is further evidence for the relia-
bility of the potentials we used.

The dispersion curves and density of states are also
meaningful, if interpreted with caution. Specifically,
it should not be expected that the former will provide
a fit to the measured dispersion curves comparable
with that obtained by other workers'6 who have used
rigid-ion models, with ionic charges and short-range
forces adjusted to fit the experimental results. In so
doing they have absorbed at least some intrinsic
anharmonicity into their "harmonic" force constants.
Also, one cannot expect a very good fit to the fre-
quencies of polar vibrations. For these, the effects of
charge distortion (polarization) must be significant.
However, based on experience with the alkali
halides, ' we would argue that frequencies that experi-

TABLE V. Comparison of various properties of RbCaF3
predicted by the calculation with experimental results.

Property Expt. Calc.

Low-temperature
structure parameters

I

Room-temperature
lattice constant

Change in lattice constant
from 200 to 300 K

Displacive transition

Melting temperature

2b

f
8.85 A

1.0085
0.037

4.45 A

0 18%

193 K

1383 K

8.71 A'
1.0090'
0 034a

4.39 A

0.15%

-125 K

1350 K

'Obtained by minimization of the static lattice energy.
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ence strong polarization effects have a relatively weak
volume dependence and therefore do not play a signi-
ficant role in the determination of the equation of
state,

In conclusion, we point out that the application of
pair potentials calculated by the Gordon-Kim
prescription to equation-of-state calculations for alkali
halides, s alkaline-earth halides, ' and now, fluo-
perovskites, has provided a unified picture for the
causes of, respectively, melting, superionicity, and
displacive-type transitions in these materials. The
fact that a single, parameter-free, theory can account
for these very different types of phase transitions
lends credence to the separate account for each
phenomenon. In all cases the phase transition is re-
lated to an instability in the lower-temperature phase.
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