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For the isotropic Heisenberg Hamiltonian with ferromagnetic nearest-, antiferromagnetic

next-nearest-neighbor interactions, and an external magnetic field: H = Jl „NN S„S„+&
+J2 NNNS„S„+s —h $ 5„*, Jt & 0, J2 & 0 necessary and sufficient conditions for a fer-

romagnetic ground state are obtained for some Bravais lattices with periodic boundaries and ar-

bitrary spin s. For the square and cubic lattices the sufficient conditions possess a nontrivial s

dependence. These conditions are compared with the thresholds for the Ising and classical

Heisenberg model. Threshold inequalities are generalized to the case h & 0. The zero-

temperature magnetization and susceptibility are discussed for the classical and quantum case.
For the square lattice with only 4 sites the magnetization as function of h shows a qualitatively

different behavior in the quantum case for
~ Jt ~/J2 & l and

~ Jt ~/J2 & l, respectively. Sufficient,

necessary, and threshold conditions are also derived for the nearest-neighbor antiferromagnet

and the Heisenberg model with arbitrary coupling constants (J&, . . . , J, ) in an external field.

I. INTRODUCTION

In three preceding papers' ' (refertted to as I—III)
we studied the Ising, classsical, and mainly the-
quantum-mechanical Heisenberg model with fer-
romagnetic nearest-neighbor (NN) and antiferromag-
netic next-nearest-neighbor (NNN) interactions.

In I and II we presented a method to derive suffi-
cient conditions (suff. cond. ) for a ferromagnetic
ground state (FGS) of the quantum Heisenberg
Hamiltonian for all Bravais lattices. The important
feature of the results was that the suff. cond. but also
the necessary conditions (nec. cond. ) depended on
the spin s for some lattices, e.g, , the square and the
cubic lattices.

The inequalities for the thresholds o. "', n,'~""',
and o.„~'",which were proved in III for arbitrary lat-
tices, allowed the prediction of an s dependence of
Aqm for lattices with a,~""' = n " . The results of II
were in full agreement with the prediction. In the
classical spin limit s ~ the quantum and classical
results became equal.

There are several reasons for extending the studies
of I—III to the Heisenberg Hamiltonian with an
external field:

H= QJ„S„S —h $S„'
(nm) n

where S„ is the spin operator at site n, J„ the cou-
pling constants, h = p, ~g8 & 0 and pairs are only
counted once in the sums.

(i) Even for antiferromagnetic NN interactions the
question for FGS gets nontrivial.

(ii) For ferromagnetic NN and antiferromagnetic
NNN interactions a magnetic field will reduce the
threshold condition for

~
Jt

~
/J2 derived in I and II. It

is of interest to investigate this reduction as function
of s, the dimension, and lattice type.

(iii) In particular the ground-state magnetization
and susceptibility are important.

(iv) Concerning the experimental investigation the
h dependence in constrast to the (Jt —J2) depen-
dence is easier to measure.

The zero-temperature magnetization and suscepti-
bility as functions of h follow from the ground-state
energy. This was investigated during the last 15
years for the corresponding classical Heisenberg-and-
Ising model. " Let us summarize some results of
these works. For the classical Heisenberg model with

energy E = Xt„ i J„S„S —h g„S„'and periodic
boundaries Broughton and Mullin4 calculated the
ground state and ground-state energy generalizing the
Luttinger-Tisza method. From their results follows
immediately the threshold condition for FGS:

—& J(0) —J(kQ)
S

J(ka) =mgn J(k)
k

(R. „—a ) .
where J ( k ) = g J„„e " is the Fourier
transform of the coupling constants. This condition
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is equal to the spin-wave stability condition (S%SC)
as shown in Sec. II. Therefore the SWSC in Tables I
and III are also the classical threshold conditions.
For the Ising model (spin s) with magnetic field,
conditions for FGS were studied up to second- or
higher-neighbor interactions. ' " The results for the
threshold conditions are presented in Tables I and III.
Actually they can also be derived as described in pa-

per II Sec. IV.
It is easily seen that the threshold conditions for

the Ising and the classical Heisenberg model are al-

ways of the form

—&f({J„.j),
$

where f is s independent. For the quantum case
there may be a nontrivial s dependence, i.e., f
depends on s.

For the quantum case, concerning the ground-state
properties, mainly the magnetization and susceptibili-

ty as functions of h, there are only few exact results.
The most important is the work by Griffiths'3 investi-

gating the infinite NN-antiferromagnetic Heisenberg
chain with s =

2
.

The purpose of this paper is to study the influence
of an external magnetic field on some ground-state
properties extending the results of I—III. We consid-
er only systems with periodic boundaries.

In Sec. II we begin with the simplest nontrivial
case, the NN antiferromagnet in a magnetic field,
called the (J,h) model. An extension to systems up
to rth-neighbor interactions [(J~, . . . , J„,h) model ]
is suggested. The conditions thus derived are not
stringent if one or more of the couplings are fer-
romagnetic. However, they can be improved. We
demonstrate this procedure in Sec. IV for the sim-
plest case, the (—

~
J~~,J2,h) model. In Sec. V. we

study the zero temperature magnetization and sus-
ceptibility for the same model. Section VI presents a

generalization of the threshold inequalities and the
study of the nontrivial spin dependence, which is
helpful for the discussion of the results.

II. NECESSARY AND SUFFICIENT CONDITIONS
FOR FGS OF THE (J,h) MODEL

In this section we drive conditions for FGS for the
following Hamiltonian:

H=J XS„S~s —h XS„*, J&0, h &0
gg, NN n

(3)

A. Necessary conditions

Using the one-magnon energies we get

—& J(0) —J(k), for all k %0
S

(4)

as nec. cond. , which coincides with condition (2).
Thus as in I and II the SWSC does not lead to a non-
trivial spin dependence. Discussion of (4) leads to
the nec. cond. presented in Table I.

8. Sufficient conditions

Decomposing Hamiltonian (3) into cell operators

0{m) J
1«»i & J~~m

m

S; %~
—h XS'

as described in I and II, we get for suff. cond. using
H(2)

h/s
z1

for all lattices. z~ is the number of NN. Using 8
with m & 2 for the hexagonal and fcc lattice, which

TABLE I. Threshold values for FGS for the (J,h) Ising, classical and quantum Heisenberg
model. The classical and quantum thresholds are valid for N; even (except for the hexagonal lat-

tice, where N, is a multiple of 3). N; is the number of sites in directions of the primitive vectors.
For other N; the classical thresholds (which are necessary in the quantum case) differ in order
(1/N, )2 from the above values.

Dimension Lattice

Classical and quantum

thresholds
h/s

Ising thresholds
h/s
J Zf

1

2

2

3
3
3

Linear
Square

Hexagonal
Cubic P
Cubic I
Cubic F

4
8

9
12
16
16

2
4
6
6
8

12
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are better adapted to the topology, the suff. cond. (5)
can be improved leading also to the agreement with
the nec. cond. The threshold conditions thus ob-
tained are presented in Table I, which also contains
those of the corresponding Ising model.

III. NECESSARY AND SUFFICIENT CONDITIONS
FOR FGS OF THE (Ji, . . . , J„h) MODEL

In this section we study the more general Hamil-
tonian:

H = X—XS S„+ii —h QS„'
I 1 nSI n

5I are the vectors to the Ith NN and JI the Ith NN
coupling constants.

(6)

A. Necessary condition

B. Sufficient condition

To apply the results of the last section, we decom-
pose the Hamiltonian (9) as follows:

H = X'H, (&,) + $"Hi(o),
where

H, (li.,) =—$S„S„+ii—li, ih XS„*

For r arbitrary, the discussion of the S%SC is too
laborious. But using a lower bound for the S%SC we
get for a nec. cond. :

—& J(o) = gzJ, ,
h

5 1~]

where zl is the number of lth NN.

linear chain with Ji = J/I, J & 0 (see below) condition
(7) is a good approximation to the threshold condi-
tion. Conditions (7) and (10) allow us to determine
nec. and suff. cond. for (6) with

Ji=J/IP, J &O, P &0

e.g. , for the simple-cubic lattice we get for r = N' '
»1

—, In(/i/) nec.

—ln(W)suff. for P =3
h

3—&4mJ &&,

nec.
p —3

2 suff. for p & 3
, p —3

If some Ji are negative, condition (10) is in general
too rough, because it does not depend on the fer-
romagnetic couplings. Therefore in the next section
we will improve the sufficient condition for the sim-
plest nontrivial model, the ( —

i Jii,J2, h) model.

IV. NECESSARY AND SUFFICIENT CONDITIONS
FOR FGS OF THE (—

i Ji i,J2, h) MODEL

In this section we study the simplest case of a
model with both ferromagnetic and antiferromagnetic
interactions, the ( —

i Jii, J2, h) model, described by the
Hamiltonian:

H =-iJii g s„s„„+J,g s„s„„-hgs„* .
n, NN n, NNN n

A discussion of the function J( k ) for this model
leads to the nec. cond. for FGS presented in Table

and X Xi= 1. X and $ restrict the sum to all /

with JI & 0 and JI ( 0, respectively. Taking into ac-
count that the ground state of g, Hi(0) is always

ferromagnetic, we get for a suff. cond.
Cell Quantum threshold Ising threshold

TABLE II. Quantum and Ising thresholds for the "m,"
A, B, and C cell.

(Heis) (9)

where nit"'"~ is the threshold condition of the (Ji,h)
model. Using (5) we get an upper bound of condi-
tion (9):

—&2 X'Jiz, .h (10)

Thus the suff. cond. is different from the necessary
one (7). Whether condition (10) or the lower bound
(7) is rough, depends on the lattice and the interac-
tions. For some cases, e,g. , the linear chain with N
even, JI =0 for I even and JI & 0 for I odd, condition
(10) is also necessary (SWSC!). In contrast, for the

h/s &m

h/s+ &2
2 2

I
'

/i/s
2 ——+ &2, ~1

J2 2s J2 J2

h/s 1+ &1+— «1
2 2 2s J2

h/s-+ &3
2 2

h/s
J &m —1

//s+ &1
2 2

I /s+ &1
2 2

h/s+ &2
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III. Suff. cond. can be derived with the following two
methods:

A. Ce11 method

The Hamiltonian (11) is decomposed into the same
cells as in II, of course with a magnetic field. The
threshold conditions for these cells are presented in
Table II and lead to the sufficient conditions shown
in Table III.

0.5

0,4

0,2

g ' (h)

JL

Ising

B. (X&, A2) method

Oil

To use the known results we decompose the Ham-
iltonian (11) as follows:

0 =H, (z, ) +B(z,),
Hi(&»=-IJil X s. s.+8,

n, NN

+ kt J2 $ S„S„~~
n, NNN

&,(lt, )=it,J, X s„s„+,—h Xs„,
n, NNN 5

with

A. ) + A.2=1

This decomposition leads to the suff. cond. :

(12)

(12a)

(13)

FIG. 1. Magnetization for the quantum ( -), classical
(———), and Ising (——) NN antiferromagnetic linear

1
chain with s = 2.

For more than (NN) interactions there are to our
knowledge no results for the magnetization for the
quantum case. %e have solved the eigenvalue prob-
lem for the 3 cell (linear chain, N =3, open boun-
dary) and the B cell (square lattice, N =4, open or
periodic boundaries). For notation see Paper II. The
ground-state magnetization is presented in Figs. 2

and 3, respectively. For an illustration, the ferromag-
netic region GF for the B cell, defined in the next
section, is presented in Fig. 4. The 8 cell shows the
interesting feature that the behavior of the magneti-
zation depends strongly on

l J~l/J2.

h/s
O'J, g + Jr J2 J)J2 J,h

~z (h)

where o;J~J2 and O'J2I are the thresholds of the

(Jt,J2) model and (J2,h) model, respectively. Tak-
ing uJ J or if not known exactly the upper bounds

1 2

given in Table III of paper (II) and nj I, of Table I of
this paper we obtain the suff. cond. presented in
Table III.

U. MAGNETIZATION AT 0 K

S
8-—I

3
2S-—
3

S IJi Il+-
J2

l

j

r

The zero-temperature magnetization for some Ising
systems were already discussed. ' " For the NN-

antiferromagnetic chain with s = —, the magnetization

is presented in Fig. 1. For more than NN interaction
there can be more than one step. The magnetization
for the classica14 and the s = —, quantum (NN) anti-

ferromagnet'3 are also presented in Fig. 1.

I

hv hr +I

ah= J2

S J2 2- Io~ I

J2

FIG. 2. Magnetization for the quantum and classical
( ———) open linear chain (N =3). The reason for
0'(0) & 0 is the odd nu~ber of spins.
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cr' {h) cr' {h)
Ii

S
IS-—
2

s-I

I
I

I

I I

I

h

0.J ~~~~ ah= J -"i 2S(J2-IJ, I)+IJ(l0 2 I -2-i
2 2

S (J2- I Jl I)+J2
2

are lattice (& =4) for the cases: (a): ( Jl!/Jp (1 and (b): !Jl!/J2 ) 1.FIG. 3. Magnetization for the quantum square lattice = or

VI. THRESHOLD INEQUALITIES

Let gF —= ((J), . . . , J„h)/( Ji, . . . , J„h) model
has only FGSj, then the inequalities in III are

14, 15replaced for h =0 by

(l) g)is) ~ g/Heis)

(ll) g)ls) ~ g/Heis)
cl

("') g)Heis) Z g/Heis)
1 qm

For h WO (i) and (iii) remain true. However ine-
quality (ii) must be replaced by

("')g/Is) ~ g/Heis)

The equality is excluded because a nonferromagnetic
ground-state spin configuration of the Ising model is

FIG. 4. Ferromagnetic region GF for the square lattice
with 4 sites (B ce11).

never a groun -sd-state spin configuration of the corre-
sponding classical Heisenberg model for h ~0. T e
exclusion of the equality sign in (ii') makes a predic-
tion of a nontrivial s dependence as described in III
impossible. However, because of the continuity o
the t res oh h ld" g)I""' has a nontrivial s dependence

for h small compared to JI's if it possesses such a one
for h =0.

VII. DISCUSSION

Generalizing the ideas of papers I and II, nec. and
suff. cond. for FGS of the (J,h), (Ji, . . . , J„h and

( —
) J)~,J2, h) model were derived for some lattices.

U
'

the SWSC we obtained nec. cond. which aresing e
del.also sufficient for the corresponding classical mode .

L t ke some comments on the results.et us ma e
(') F deriving suff. cond. , besides the ce

method, the (h. ;) method was used, leading to su
cond. which, because of the linearity in the coup ings,
are the convex uh x hull of the known sufficient sectors in

the two-dimensional 2D subspaces (J,, J&)i & jan
(J;,h), respectively. In fact the convex hull of some
regions, eac conh ontained in GF, is itself containe in

GF ecause F ib g 's always(!) a convex (simple connect-
'4" see eed) cone in the (Ji, . . . , J„h) space' (see, e.g. ,

Fig. 4).
(ii) For some lattices the cell method works better

than the (Xi) method and vice versa. This can be
understood by the convexity property.

(iii) As for h =0 the suff. cond. for FGS of the
—

~ J„i J, h) model possess a nontrivial s dependenceI ~ 2 ~

for the square and cubic lattices in agreement with

the prediction in Sec. V.
(iv) Rescaling the coupling constants and the field:

J; ~ J;/s', h ~ h/s the quantum conditions converge
for s ~ to the classical threshold conditions (ex-
cluding the linear and hexagonal lattices, which can
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be understood), in agreement with the classical spin
limit.

(v) It is easily checked that the conditions in

Tables I—III are consistent with the threshold ine-
qualities in Sec. VI.

(vi) Last but not least the special behavior of the
ground-state magnetization of the 8 cell should be
mentioned. For

~
Jt ~/J2 & n~tP"'~ =1 the magnetiza-

tion shown in Fig. 3 is similar to that of the (NN)-
antiferromagnetic chain in Fig. 1, except for the
smoothness. However, for ntP"'~ &

~
Jt~/J2 & ~q'~"'

= 1+1/2s there exists a critical field h, = s (Jq —
J~ )

+ J2/2 for which the susceptibility is singular. It may
be that this behavior is not an artifact of the finite
cell for two reasons. First, finite cells normally
behave like the 1D chain (A, C cell and many others,
not considered here) and second it seems plausible
that for lattices with s-dependent thresholds for h =0

the quantum system for
~ J~~/J2 & u„"'"' behaves

more like a NN antiferromagnet. This means that
with variable h the ground state runs through all~2
eigenspaces of S the square of the total spin.

For at('"~ &
~ J~~/J2 & uqt"'"~(s) however the sys-

tem may switch directly from S = 0 (antiferromagnet-
ic) to S = Xs (ferromagnetic) at a critical field h, .
Thus with an external field, the classical threshold
value would play an important role also for the quan-
tum system.

The application of the methods is not restrictive to
periodic boundaries, but can also be done for open
boundaries. "4'6
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