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hatched area. Figure 1(a) shows n(u) at constant
temperature. o. is 1 at v=0, decreases monotonically
with a positive curvature up to u = 25( T) the energy
gap at T, where it jumps discontinuously to a nega-
tive value, and thereafter approaches zero asymptoti-
cally as v is increased. The arrow indicates the in-

creasing direction of temperature. Figure 1(b) shows
u(T) at constant voltage. For u (25(0), n starts
from somewhere between —0.3 and 1 at T =0,
determined from the zero-temperature curve in Fig.
1(a), and decreases gradually with increasing T but
remains positive until such a temperature is reached
that u =2k( T). It makes a discontinuous jump to a
negative value at this temperature, and approaches
zero as T is further increased toward T„ the transi-
tion temperature. For v )25(0), a starts from a

negative value at T =0 and approaches zero mono-
tonically as T is increased toward T, . The arrows in-
dicate the increasing direction of voltages. In all

cases, a is bounded by in' ~ 1.
The Josephson plasma oscillation seems to have

been the only available experimental method to mea-
sure the interference conductance term in the tunnel
junctions. All the reported experimental works6 '
have used the plasma resonance. In this method a
junction is biased with a dc current below i„so that a

definite phase difference is maintained across the
junction at zero dc voltage. A weak rf signal is then
applied to the junction to excite a small-amplitude
phase oscillation, and the junction rf responses are
measured. Only a very narrow region around zero
voltage can be accessed by this method. The hatched
areas in Figs. 1(a) and 1(b) denote the region where
the experimental data points are scattered. Only in

an extremely narrow temperature region just below
T„ typically 0.98 ~ T/T, ~ 1, is there an agreement
between theory and experiment. In other regions,
they are completely opposite, theory predicting o. = 1

and experiment finding n = —1. Even in the pa-
pers" that reported good agreement in this narrow
temperature range, there is a significant difference in

the method they used to analyze the data. One used
a constant G, ~ while the others used a rapidly varying
G ( T) near T, .s Since all these experiments6 8 were
done in the zero dc voltage limit, there is an intrinsic
difficulty in defining G, because of its logarithmic
singularity at e =0. Consequently it is desirable to do
the measurements at finite voltage. In addition,
there are yractical difficulties in rf experiments in ac-
counting for parasitic or spurious impedance contri-
butions. In the nontunneling type of weak links, it
has also been shown experimentally that n ———1.9

Theoretical justifications have been made to show
that o, = —1 in these weak links, ' but these theories
are essentially different from the microscopic tunnel-
ing theory, and, therefore, have no impact on the
tunnel junctions. The discrepancy in the sign of a
between theory and experiment in tunnel junctions

2 GV

where the subscript denotes each arm of the SQUID.
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FIG. 2. Equivalent circuit of a symmetric dc SQUID with
interference conductance terms.

throughout most of the temperature range is interest-
ing and has to be resolved.

%e propose a new experimental method to mea-
sure this interference conductance in tunnel junctions
at finite voltage. This method used the inductance-
capacitance (LC) resonance phenomenon in the dc
superconducting quantum interference device
(SQUID), whose equivalent circuit in the resistively
shunted Josephson-junction (RSJ) model is shown in
Fig. 2. The loop inductance L and the junction capa-
citance C can be brought into resonance under ap-
propriate conditions. It has been observed experi-
mentally"" that this LC resonance induces the
current steps in the dc I-V characteristics of SQUIDs
in much the same manner as in the Fiske steps" in
tunnel junctions. These steps occur at integer multi-
ples of the resonance voltage V„defined by the
Josephson frequency-voltage relation V, = ($0/2vr) v„
where v, = (LC) '~' is the LC resonance frequency.
The previous theoretical analysis of the circuit in Fig.
2, excluding the interference conductance G'cosH,
showed that the location, height, and width of the
resonance-current steps are completely determined in
the RSJ model by the circuit parameters L, C, G, and
I'„at the resonance voltage and, conversely, these
parameters can be deduced from the experimental dc
I- V curves. ' In this paper, we include explicitly in
the analysis the phase-dependent interference current
term, G' cosH v, as a current component in the junc-
tion, and study the resonance dc I- V characteristics.

In the RSJ model, the current through each arm of
the SQUID consists of the following four terms,

r 1
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The flux quantization around the SQUID loop re-
quires that

1

(8, -8,)+ [@„+L(i,-i,)]=2m~, (4)2m

where P„ is the externally applied flux in the loop
and m is an integer. '4 Equation (3) for the current-
biased junctions is good only in the adiabatic regime,
where the related voltages are much smaller than the
gap voltage, and the voltage changes are much slower
than the gap frequency. If these conditions are not
saisfied, the junction currents should be described by
Werthamer's equation. " In that case, we have a

complicated integrodifferential equation'6 instead of
Eq. (3), and the following analysis of LC resonance
will not be possible. This effectively imposes the
upper bound for the frequency (or voltage) range of
our proposed experiment. In order to study the cir-
culating current it is convenient to write equations in

terms of the sum and difference of currents, I
&

and

il, using the average phase difference o [—=
2

(81

+8&)] and the relative phase difference 1[1[=——,(81
—81)] as variables. By adding and subtracting two
currents, il and il, in Eq. (3) we obtain the following
equations

a + qo. + a7i( & COSa. COS1[1 —
1]1Sino. Sin1[1)

+
2

pcos1[1 sino. = o.„(5)1

and

1' + 'q 1[1 + cx'q ( 1|1cos o cost[I —a sin (T sin lI1 )

+/+ —pCOSo Sin1[1= 1[1„. (6)

Here ll(—= G/v„C) is a normalized dissipation param-
eter. It is the inverse of the Q of the circuit. P
[=21r(2L)i,/@p] is the usual SQUID hysteresis
parameter. Time is measured in the unit of v, .
o„[=mL (i, .+ il)/Pp] and 1[1„(=mP„/@p) are the nor-
malized bias current and flux, respectively. These
are coupled, second-order, nonlinear differential
equations, for which no general solutions are avail-

able. When )cr„[ ~ (
—pcos1[1) in Eq. (5), i.e., the

bias current exceeds the critical current, a- will have a
runaway solution, however, since there is no strong
restoring force in Eq. (5). This situation corresponds
to the finite-voltage state of the SQUID. Substituting
such a linear solution for a. in Eq. (6), leads to a
solution for 1[1 very similar to that of a forced, simple
harmonic oscillator. It has a restoring force term 1',
and a forcing term —,Iscosa sin1[1. A difference from

the simple harmonic oscillator is the phase-modulated
dissipation, the third term in Eq. (6). We will as-
sume that 1[1 oscillates in harmonics of the forcing
frequency. This corresponds to the existence of an
oscillating, circulating current in the SQUID at finite

1' = 1C1p+ 1[11cos(vr + g)

We substitute these expressions for o and 1[1 into
Eq. (6), expand the terms into trigonometric series
using Bessel-function identities, and linearize the
equation in the small oscillation approximation, i.e.,
~1]1, ~

&& 1, ignoring all the higher order terms of 1[11.

Grouping dc, sin vt and cosvt terms, respectively, and
equating each group to zero, we obtain the following
relations:

S Il

, (1 —1')'+ ll'1

1 2

1 2gl [—P —u(I —v )]
5 = —tan

—,'P(I —v ) +all'v'

1/2

voltages, a result of the flux quantization of Eq. (4).
In the following, we restrict the proposed experi-

mental situation to a regime where P &( q &( 1. In
this limit, a smail oscillation approximation is valid,
and the analysis is simplified. When a dc volatge V is
maintained across the SQUID, the junction phase ad-
vances on the average at the rate v = (2n/@p) V. Su-
perimposed on this quasiconstant translation, each
junction phase executes an oscillatory motion, so that
we can write 0~ 2

= vt + 48~, 2+ 8~, 2. Here 40 is the
oscillatory part and 8 is the flux bias angle. Bars
denote that the frequency and time are measured in
units of v, and v, , respectively. This combination
of translation and oscillation can be easily seen from
the mechanical analog of the dc SQUID, which con-
sists of two identical rigid pendulums connected by a
torsion bar driven by a constant torque. " When the
torque exceeds a certain critical value, the pendulums
flip over the vertical axis and start to rotate, This
motion is generally not uniform because an oscilla-
tion is generated by the energy exchange between
pendulums and the torsion bar. Small P in the
SQUID corresponds to a small moment arm of the
pendulums and a large stiffness of the torsion bar.
In this case the effect of gravity becomes insignifi-
cant, and an individual pendulum motion becomes in-
dependent of its angular position. The oscillatory
part, 48, can be expanded into a Fourier series with
the fundamental frequency v. Since the pendulums
are identical, but oscillate 180' out of phase, the odd
harmonics cancel each other and the even harmonics
add up in the average phase difference a-. If we re-
tain only the first harmonics in 48, then 8 = vt ab-
sorbing the flux bias angle —,(81+81) with an ap-

propriate initial condition. %hen q is small, i.e., the
resonance is sharp, the first harmonic is the dom-
inant part in the circulating current, i ~

—i2, near the
resonance frequency, v =1. Since the time-
dependent part of 1[1 is given by i, —i, from Eq. (4),
we write



2548 Y. SONG 24

and

0 x
0.3

To obtain the l Vch-aracteristic, we turn to Eq. (5).
Using the same approximations for P and a., expand-
ing in the small oscillation limit, and taking the time
average, we have

»Iv+ »p-( f—
~ sing) sing„= a-„1 1 (10)

OCb 0.2
Substituting the expressions of P~ and 8 from Eqs.

(7) and (8) into Eq. (10), we obtain

1 —2

1 1 . 2 27Iv[ —P —n(I —v )]
»Iv+ —,( —,P)(sin P„)» =-- a.„.(11)

(1 —v )'+ 'v

This is the dc I- V characteristic of a symmetric
SQUID near the LC resonance voltage in the small
oscillation limit in terms of the normal'zed current
a.,(=—rrLl/Pp) and the normalized voltage
v(—= V/V, ). The current consists of an Ohmic part,
which is linear in v, and a resonance part, which has
a simple-harmonic-oscillator response. The first term
in the resonance current is a symmetric peak about
the resonance voltage, 2 = 1, and originates from the
phase-independent-quasiparticle conductance G. The
second term gives an antisymmetric dispersion shape
and originates from the phase dependent pair-
quasiparticle interference conductance O'. In Fig.
3(a), we show theoretical a„—v curves of Eq. (11) at
a half flux quantum bias (sin&„=1) for a few values
of n, ranging from —1 to 1, in the vicinity of the res-
onance voltage v =1. The set of parameters, q =0.2
and P =0.2, chosen for the convenience of illustra-

tion, may not be in the extreme limit of small oscilla-
tion, but reasonably well within the limit of linear re-
gime, wliere ~Qt~ ~ P/27I with n =0.'» As n changes
from positive to negative, the sign of the antisym-.
metric component is seen to reverse. The first
derivative, da„/dv, is more interesting because the
Ohmic-current part becomes a constant plateau and

only the resonance related features remain as shown
in Fig. 3(b). The sign of u becomes readily apparent
being identical to the polarity of derivative peaks. A

quantitative determination of device parameters, in-

cluding o., however, has to rely on fitting experimen-
tal data to theoretical curves, because at least four
parameters, n, p, V„and rl, should be determined
simultaneously and self-consistently, even though G
can be determined independently from the asymptotic
part of the I-V curves. The step plocedure which en-
ables us in the previous work" to determine these
parameters sequentially from experimental data is ap-
plicable if the resonance voltage V, (or L and C) can
be determined independently. To do so, we use the
following measurements: The inductance L can be
determined from the interference pattern 1,($„) of
the SQUID critical current with the applied flux. "

0.1
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FIG. 3. {a) Theoretical o-~-P{l-V) curves showing LC
resonance phenomena for various values of o., and {b) simi-
lar derivative, d cr„/td v-P curves.

The junction capacitance C can be calculated from
the Fiske step voltages'3 and the period of modula-
tion of junction critical current with magnetic fields.
Incidentally if the applied magentic field is so large
tnat the flux, P„;, linking individual junctions is not
negligible, the phase difference across the junction is
not uniform and the junction critical current is modu-
lated by the Fraunhofer diffraction factor
y =

~
sin(»r$„;/$o)/(»rP~, /Po) [. All previous equa-

tions and expressions in this work are still valid if we
simply replace i„a, and P by yi„yn, and yP,
respectively. The proposed experimental regime



24 ASYMMETRY IN THE LC RESONANCE CHARACTERISTIC IN. . . 2S49

p « g « 1 changes to yp « g « 1. The reso-
nance currents are proportional to y2. Although in-

ductances and capacitances determined by these
methods do not give the values at the LC resonance
frequency, the differences should be smail enough to
permit us to calculate V, in the first approximation as
long as all related frequencies are much smaller than
the energy gap frequency.

Once the resonance voltage V, is identified, we
proceed as follows to determine the remaining
parameters sequentially. In Fig. 4(a), an idealized,
experimental I-V curve is shown. It has an asym-
metric current peak centered near V„superimposed
on an Ohmic line I =2G V. The asymptotic slope
should yield the quasiparticle conductance G, A
steep load line should be employed to trace out a
possible negative conductance reigon of the peak at
V & V, . The net resonance current I, is obtained by
subtracting the nonresonance current, which is Ohm-
ic in our case (p « g (& 1), from the total current
as shown in Fig. 4 (b). Then we take halves of the
sum and differences of resonance currents at
V, +AV, i.e.,

—,'[/, (v„+av)+/, (v„—sv)] .

1 ~~ra
4 fp Dy /1$

r
(12)

The pair-quasiparticle interference conductance G'

has been given in terms of all experimentally measur-
able quantities from a few simple measurements in-
cluding I V, /, (@„)of SQUID-'s, i, (@„;)and the
Fiske step voltages of individual junctions in the
well-prepared experimental regime. Equation (12)
remains same when i, is modulated by $„, since both
n and P should be modulated by the same factor y.

Let us find out the sample design parameters
which satisfy this regime for Pb junctions with similar

geometry as our previous samples. " Using the rela-

These yield the symmetric part l„and antisymmetric
part I„of the resonance current, respectively, as
shown in Fig. 4(c). The full width at half maximum
of /„ is given by q(= G/v, C) from Eq. (11). Substi-
tuting the known values of G from Fig. 4(a) and v„
into g, we then find C. The relation v„= (LC) 'i2,

in turn, yields L. These L and C values have to be
compared with initial trial values used in determining
V„and adjusted in a self-consistent way. Again from
Eq. (11), we derive the relation

/„,„=(47rL/@0) (i 2/r)) sin2&„

which enables us to determine i, at the resonance
voltage. Finally, taking the ratio of the symmetric
current and the derivative of the antisymmetric
current at V, we arrive at an expression for
a(= G'/G) from Eq. (11)
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FIG. 4. Graphical illustration of determining o. from 1-V
characteristics. (a) is the total l-&characteristic, (b) shows
the net resonance current after subtracting the Ohmic
current, and (c) shows decomposition of the resonance
current into a symmetric and antisymmetric part.

tion i, (0) = mh(0) G„/2, where G„ is the normal-
state conductance, a typical capacitance value of
5 x 10 6 (F/cm') for Pb junctions, and scaling up the
resonance frequency-dimension relation from our
previous data, '2 we can rewrite r) = (G/v, C) as
r) =0.63i,v, /f. Here i, is in amperes, v, is in
radians/sec, and f is the conductivity ratio G„/G.
The low-dissipation condition q && 1 yields
v, « 1.58 x 109f/i, In practice. , 7) & 0.2 is suffi-
cient to satisfy the low-dissipation condition and,
therefore, v, & 0.31 x10' f/i, The small oscillat. ion
condition, yp (( r), imposes another restriction
v, )) 1.34 x 10'3yf. A weaker condition, yp (q, is
actually good enough for this condition. %e have a
new combined condition, 1.34 x 10" & v, /yf & 0.31
& 10 yi„ for Pb junctions, which requires yi, & 23
(p,A). Let us assume a reasonable value of
yf =0.1. This sets the resonance frequency and vol-
tage at around 200 6Hz and 400 pV, respectively.
At (Qp/2m) v, /6 = 0.15 and (@0/2m) G/LLC =0.03



for these samples, the adiabatic approximation of RSJ
model is expected to be good withi~ a few percent
limit. '6 Scaling from our previous data, "this reso-
nance frequency requires 3 ~ 3 p,m' junctions with
16-p, m separation. The corresponding, magnetic-
field-modulated critical current density, yj„would be—250 (A/cm'). If we take f =2 for small voltages,
for example, then y =0.05 and j, =5 & 103 (A/cm2).
These dimensions and current densities are achiev-
able with current lithographic and oxidation tech-
niques, although not trivial. ' If we relax the small
signal requirement, we can enjoy much less stringent
conditions on the experimental design at the expense
of numerical computations.

The cos8 term is virtually the last, unresolved fun-
damental issue in the physics of the Josephson junc-
tion. Aside from this fundamental issue, it should
also play an imporant role in some applications. For

instance, the ultimate performance of Josephson logic
devices with respect to the power-delay product will
come from the SQUID devices operating at single
flux quantum levels. The cos8.term is one of the
contributing factors to the switching dynamics of
these devices. The LC resonance phenomenon in "dc

SQUID's provides a new approach to experimentally
observe the cos8 term. Furthermore, this method
offers significant advantages over others in that the
cos8 term can be measured as a function of voltage
from simple dc I- V characteristics of SQUID's and
junctions.
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