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We show that a type-II superconductor at low flux densities (B << H,,) is globally unstable
to formation of a two-phase state with some regions containing flux, and others containing no
flux. The basic source of the instability is the dependence of the vortex energy on the matter
density, which leads to an effective attractive interaction between vortices. The instability of a
uniform array of vortices discovered by P. H. Roberts is shown to signal the tendency of the
system to separate into these two phases. The phase separation is expected to occur only at very
low flux densities in laboratory superconductors; however, we estimate that the proton super-
conductor in neutron stars may be in the -two-phase state.

I. INTRODUCTION

In a neutron star the protons are likely to be super-
conducting, and calculations suggest they will be a
type-II superconductor.! Such a superconductor
displays a Meissner effect only for fields less than the
lower critical field H.,, and at higher fields flux
enters the superconductor in the form of quantized
flux iines. At the upper critical field, H,,, the system
becomes normal. For a review of properties of type-
II superconducters we refer to Ref. 2.

Jones® argued that under the conditions expected
in neutron stars the magnetic stresses associated with
a type-II superconductor would be much larger than
those in a normal metal. Subsequently Easson and
Pethick* showed that this was indeed the case, the
magnetic stresses being of order HB/4w, where B is
the magnetic induction. When B << H,;, which is
the case in neutron stars, H is approximately equal to
H,,. Hence the magnetic stress is of order H,;B/4m,
which is much larger than the stress in a normal met-
al, which is of order B*/8r.

In a neutron star the protons form a fluid, and so
have a vanishing shear modulus. Recently Roberts’
has investigated the hydrodynamic modes of such a
fluid type-II superconductor, and found that the state
with a uniform density of vortices is unstable for
small values of B. This instability originates in the
fact that H depends not only on B, but on the matter
density as well.

We shall investigate the properties of these un-
stable modes and will show that in them a variation
in magnetic induction is correlated with a variation in
density. If H,, increases with density, variations of
the magnetic induction and density have opposite
signs, while if H,, decreases with density they have
the same sign. Since for B << H,, the magnetic en-
ergy density is given by H, B/4m, it is energetically
favorable for flux to be present in regions of lower
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H_,. This suggests, and we indeed demonstrate,.that
it may be possible for the energy of the superconduc-
tor to be lowered by separating into two phases. In
this two-phase configuration, one phase contains
magnetic flux and the other is flux free. In addition
the two phases differ in density: if H,, increases with
density, the lower-density region will contain the
flux, while if H,, decreases with density the higher-
density region will.

Another way of describing this result is to note that
the coupling of vortex lines to density fluctuations
leads to an attractive induced interaction between the
vortex lines. This induced attraction is analogous to
that between *He atoms in *He-*He mixtures,® where
the attraction comes from coupling of *He atoms to
the “He density fluctuations. At higher values of B
the direct interactions between vortex lines, which
are primarily repulsive, suppress the instability. The
coupling between vortices and the particle density
results in the transition at H,,, when flux first enters
the superconductor, being a first-order transition.

We estimate that conditions in a neutron star are
such that the proton type-II superconductor could
well be in the two-phase configuration.

The analysis we present indicating the energetic
favorability of the two-phase equilibrium state at low
B applies equally well to the proton superconductor
and to laboratory type-II superconductors. A state in
which a superconductor has regions of different mag-
netic induction is already well known in laboratory
type-II superconductors, where it is usually referred
to as the intermediate mixed state.” However, the
mechanism believed to be responsible for this state is
different from the one we consider; the intermediate
mixed state has been observed only in superconduc-
tors with Ginzburg-Landau parameters close to 1/4/2,
and is thought to be brought about by particular
properties of the direct interaction between vortex
lines. The mechanism we consider in this paper leads
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to the occurrence of the intermediate mixed state
even for extreme type-II superconductors.

The intermediate mixed state is similar in some
respects to the intermediate state in type-I supercon-
ductors. In both cases the superconductor splits into
flux-carrying and flux-free regions. However, in the
type-I superconductor the flux-carrying regions are
normal, while in the type-II case the flux-carrying re-
gions are in the mixed state.

Although the equilibrium analysis of the two-phase
configuration applies equally well to the proton super-
conductor and solid laboratory type-II superconduc-
tors, there are a number of differences between the
two cases when one considers modes of oscillation.

In Roberts’s calculations it was assumed that the
magnetic flux lines were frozen to the matter. A
feature of the fluid superconductor which was crucial
to finding unstable modes was the absence of any
shear modulus for the fluid (in the absence of mag-
netic flux). In solid laboratory superconductors the
nonzero shear modulus will suppress the Roberts in-
stability, since it is impossible to construct motions of
the matter that cause bunching of flux without lead-
ing to increases in the elastic energy which will com-
pletely dominate any reduction in the magnetic ener-
gy. In the fluid superconductor motions in which the
flux is tied to the matter can reduce the energy, while
in a solid superconductor they cannot, and so in the
solid, motion of the vortex lines relative to the
matter is necessary to reach lower energy configura-
tions.

The plan of the paper is as follows. In Sec. II we
discuss the thermodynamics of the two-phase equili-
brium state. This discussion applies both to fluid and
solid type-II superconductors. In Sec. III we discuss
the instability found by Roberts in fluid type-II su-
perconductors; in particular we point out how the
density and field fluctuations in the unstable modes
are correlated. Section IV is a brief discussion.

II. TWO-PHASE EQUILIBRIUM

In this section we discuss the equilibrium state, and
show that at low flux densities the two-phase state is
energetically favorable compared to the uniform
state. Consider a volume V = AL, having a length L
in the Z direction and cross section 4 in the xy plane.
It is convenient to specify densities in terms of con-
served variables. In the case of laboratory supercon-
ductors we shall work in terms of the electron
number, and will denote the number of electrons in
volume V' by N. For the case of the proton super-
conductor in neutron stars, B-decay processes, which
change the number of protons, can take place and we
shall therefore specify the density in terms of the
number of baryons in the volume, which we shall
denote by N for that case. We divide the volume V

into two regions Vi=A4Land V,=V—-V,=4,L.
Volume V) contains N, particles and magnetic induc-
tion B,z while volume ¥, contains Ny=N — N, par-
ticles and no induction. Let Ny be the number of
flux quanta in Vi, so that Ny¢o= B4, where
¢o=hc/2eis the flux quantum. We denote the ener-
gy of N, particles in volume V; in the absence of
magnetic flux by U(N,,V;), and we express the ener-
gy due to flux lines as NyLE (n,ng), where E(n,ny)
is the energy per unit length of a flux line. The den-
sities n; and ng are defined by n;= N,/ V; and
ng=Ng4/Ay. Itis convenient to work in terms of the
density of flux lines per unit area, ng, rather than the
magnetic induction itself, since this brings out the
analogy between this problem and that of phase
separation in binary mixtures. The total energy Wis
then given by

W=U(N1,V1)+U(N2,V2) +N¢LE(H1,II¢) . (1)

(We work with the energy rather than the free energy
since we shall confine our discussion to the case of
zero temperature.)

The conditions for equilibrium are, first, that W be
unaltered when a particle is moved from region 1 to
region 2

(14

N, =0, 2

ALY V2

and, second, that W be unaltered if the volume V; is
slightly changed

L4

a7, =0 . ' (3)

NI'NZ'V

Conditions (2) and (3) express the fact that the parti-
cle chemical potentials and the pressures in the two
phases must be equal. :

We define the chemical potential and the pressure
in the absence of the field by

QU
(n) == 4)
RO =8N ],
and
poln) =— —g—% (%)
N

Note that pg and uo depend only on n. The equilibri-
um conditions (2) and (3) then become

po(ny) = polmy) +ng 2L ®)
6n1
and
po(ny) =P0(n1)+n¢nly—+nzﬂ— . @

6n1 ¢ 6n¢

The last term in Eq. (6) represents the magnetic con-
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tribution to the chemical potential, and the last two
terms in Eq. (7) are the magnetic contributions to the
pressure. From these equations one can find the
phase-separation line n4(n). When the system con-
sists of two phases, the average flux density per unit
area must be less than that in the phase containing
flux, ng(n). Thus one can see that for a given
n=N/V,if Ng/A > ng(n), the superconductor con-
sists of a single phase, while if Ng/4 < ng(n) it con-
sists of two phases.

Since we are mainly interested in low values of B
(B << H,y) it is convenient to write E(ny,ny) as

E(m.n.,)=ﬁHc1(n1)¢o+Ei(m,n¢) . (8)

The first term is the energy of an isolated vortex line,
and E;, the second term, represents the interaction
between vortex lines, which vanishes as ny —0.
Equations (6) and (7) become

= 0, OHe 3E, .
po(m) =polm) +Fong=i=(m) +neg ©
and

po(ny) =po(ny) +r_;”1"¢5%1“1‘151(n1)
3L, , OF;
+ning an, +ng By (10)
We can combine Egs. (9) and (10) to get
(ny) = )
polny) —uo(n1)=M_P0(_"1
ni
- o an
ny Ong

Since duo/dpo=1/nand dn/dpy > 0 if the matter is
stable, we see that if E;=0 there is no solution to Eq.
(11) except n;=n,. If we then try to use ny=nj as a
solution in Egs. (9) or (10) with E;=0, we see this
requires either n4=0 or dH,,/dn =0. Thus, the
direct interactions among the vortices represented by
E; are necessary to give a sensible equilibrium state;
this makes physical sense, since if E;=0 there is
nothing to prevent all the vortices from collapsing into
an infinitely small area. :

To derive the phase-separation line we eliminate n,
from Egs. (9) and (10), getting an equation relating
ny and ng. To do this we expand quantities in
powers of (#,—n;), which as we shall see, is a good
approximation in all cases of interest. Expanding
wo(ny) —uo(ny) and po(ny) —po(ny) to second order
in (n,— n;), and substituting these expressions into
Eq. (11) yields
6n1 BE,

— . (12)
61101 6n¢

(ny—n)?=2ngm

Next we expand po{nz) — wo(n1) in Eq. (9) to first

order in (n;—n;), square the result, and substitute
from Eq. (12) to get

) o OE, =[.¢1 BH, +9_§L]2 _

ony Ong 47 9n ony (13)

Equation (13) relates the density and flux in region
1, and is the desired phase-separation line.

We can make an estimate of the density of flux
lines at phase separation by using results for extreme
type-II superconductors at low flux densities. For
this case* '

o
47 )\?

A
3
where A is the penetration depth and ¢ is the coher-
ence length. To estimate the density dependence of

H,, we need the density dependence of A and £. For
A\ we take the London expression

H, = In|=|, A>>¢, (14)

Nt

= , 15
4mn e (13)

where n, is the number density of the superconduct-
ing charged carriers (the protons in a neutron star,
the conduction electrons in a laboratory superconduc-
tor) and m is the mass of a carrier.

In a neutron star 8 processes can convert protons
into neutrons, and so the composition of the matter
will depend on its density. However, inspection of
detailed calculations (see, e.g., Ref. 8) shows that it
is a reasonable approximation to take

on. _ ne
on n

(16)

(Recall that for neutron stars we are taking n to be
the baryon density.) Then, if we neglect variations of
the logarithmic terms in Eq. (14) we find
chl ~ }[Cl
on n

an

For a triangular lattice in the extreme type-II limit
the interaction energy for B << H,, is given by?

343 2

_ T A —ro/A
oY | ¢

El —2— ro

, ' (18)

where ro= (%)”“n.{”2 is the distance between flux
lines. For ro >> A the most rapid variation of E; with
ro comes from the exponential term, and we there-
fore make the approximation
E E ‘
BE _1nk (19)
9ng 2 N ng
Substituting Eqs. (17), (18), and (19) into Eq. (13),
and neglecting 9E;/dn as compared with (¢o/4)
x (8H,1/8n) on the right-hand side, we find the fol-
lowing equation for the equilibrium spacing of the
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vortex lattice

5/2
YENIV] K R Ly 0)
2 A “/ 9n

Let us now make some estimates. For the super-
conducting protons in a neutron star we take
H, =10" G (Ref. 4) and ndpo/dn =10* erg/cm’® .
This gives ro/A =15, or B =101/15=4 x 102 G.
The average B expected in a neutron star is of the or-
der of 10'2 G, so the star could well be in the two-
phase state.

For a laboratory type-II superconductor we take
H,1 =100 G, and ndp,/dn =10 erg/cm’. This
gives ro/A =26 or a B value at phase separation of
B =100/262=0.1 G. If a metal with a large value of
9H.1/9n could be found, the effect would be
enhanced.

We now examine the two-phase state in a slightly
different way. This study will make clear that at low
enough flux densities the two-phase state does indeed
have a lower energy than the one-phase state. We
define AW to be the energy of the two-phase config-
uration minus the energy of the one-phase config-
uration. The strategy is to minimize A W.

The one-phase state has N particles and Ny flux
quanta uniformly distributed in a volume V. The
two-phase state is the same as that considered at the
beginning of this section: N particles and the Ny
flux quanta in volume V;=A4,L and N, particles and
no flux quanta in V,=A4,L =V — V. We define
n=N/V, nj=Ni/V1, and n,=N,/V,. So far, V| is
arbitrary, and we will select it to minimize A W.

Consider expanding A W in powers of (n, —n,),
which we expect to be small in the optimum config-
uration:

AW =ag+a;(n —ny) +ar(n —ny)? . 1

The coefficients ay, a1, a; depend on V), and have
the following significance:

(1) g is positive and takes into account the in-
crease in magnetic energy caused by bunching the
flux lines into V. It is given by

(2) a; can have either sign. It allows for the densi-
ty dependence of the magnetic energy. It is given by

b0 OHa , OE [ N
L41-r n +6n [n’A]]]

a0=N¢L Ei —E,-

P
n—*
A,

Vs
ay = N¢—V

(3) a; is positive, and is mainly due to the non-
magnetic compressional energy. We thus ignore the

magnetic contribution to this coefficient, and take

0= L V2V1 30
2" vV on

By differentiating Eq. (21) we find the optimum
value of ny —n, to be

ny—hny= ::l (22)
2o
Substituting this back, we find
2
AW =ap— —L (23)
4(12

The key point to notice is that ag decreases rapidly as
N4 becomes small, because of the exponential fall of
the vortex-vortex interaction. Hence, at low enough
values of N, the quantity «g will become small
enough so that the A W given by Eq. (23) is negative.

If we use in Eq. (23) the expressions for ay, aj,
and «; given above, and minimize A W with respect
to Vi, we find an equation like Eq. (13), except that
all the derivatives are evaluated at a particle density
of n, rather than n;. However to the order to which
we are working this difference is negligible.

III. SMALL OSCILLATIONS

In this section we review the modes that Roberts®
found to be unstable, and show how the changes in
flux density are associated with changes in particle
density. Consider a fluid type-II superconductor. We
denote the energy per particle, as a function of the
number density » and the magnetic induction B by
e(n,B). Asin Sec. I, n represents the baryon densi-
ty for the case of the proton fluid superconductor in
a neutron star. The pressure of the matter is given
by

p=n’

de .
—a‘;L ; (24)

note that p has magnetic contributions, and therefore
differs from the po used in the last section. The
magnetic field is given by

A=dmnde | @5)
oB
and the total energy is given by
w=fenar . (26)

We want to check the stability of the uniform state
n=n;, B=B,= B2, where n; and B; are the initial
equilibrium values. To do this we imagine that the
fluid elements are given a slowly varying displace-
ment (), where T denotes the original position
of the element. This displacement can cause a densi-
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ty change, so that the density of the element initially
at T becomes

|detD|

where D;=38;+8u;/dr;. Since the fluid is perfectly
conducting, and therefore flux lines are frozen to the
matter, we can relate the new magnetic induction to
the initial value by’

_ DyBi
|detD]|

This equation implies that the flux through any fluid
element is conserved.

We now expand W to second order in du;/dr;.
Since we are interested in the intrinsic stability of the
fluid, we take the fluid to be in a large box of
volume ¥V and impose periodic boundary conditions
on W(T). This means that all surface terms vanish;
in particular the first-order piece in the expansion of
W is zero, and the second-order piece is

@n

(28)

W =2 34y (D) () (%) (29)
K
where we have introduced the Fourier transform of

the displacement

GRS (G (30)
. k

and the symmetric matrix 4; is given by
Ay=(a®+2f +s?) kik;
— (f + 5Dk, (kiz; + Zik;)
+ 62k (8;— 2:3) +5°k2z3 €}))
where

eftt], ot

s

and s’=-— [ ]
i

One can check that 4 has no negative energy
eigenvalue only if

s/

The result (32) has a simple physical interpreta-
tion, as may be seen if we introduce the chemical po-
tential per unit length of flux line, wg= doH/4m.
Equation (32) then becomes

fE

mB (o8
47 | 9n

18p

n on (32)

2
e

MQ&.;
on

T (33)

This is just the condition that a binary mixture of two

components (in this case magnetic flux and matter)
be stable with respect to density fluctuations. It is in-
teresting that this is precisely the same criterion as
one would obtain from thermodynamic considera-
tions without invoking the flux-freezing condition,
and not allowing for bending of the field lines. We
therefore see that relaxation of the flux freezing con-
straint employed in our calculations above does not
make lower-energy configurations accessible to the
system. In addition, the fact that the calculations in
this section allow for bending of field lines [which is
not allowed for in the simple thermodynamic deriva-
tion of Eq. (33)], and lead to the same stability con-
dition as when bending is neglected, shows that
bending of field lines does not play an essential role
in bringing about the instability.

Now, in a type-II superconductor with a uniform
array of vortices 0 /9B =0 when flux first enters,
and then gradually increases as B increases. So un-
less H is independent of n, for small enough B the
uniform state is always unstable. It is energetically
favorable for the fluid to separate into two phases of
differing densities and fluxes, within the constraints
imposed by flux conversation, Eq. (28). To see this
explicitly, we will consider in detail the case of low
flux densities for the rest of this section. We will
take B to be small enough so that it is a good approx-
imation to set H(n,B) = H, (n), and so §H /3B =0.
The rotational symmetry about the z axis implies that
without loss of generality we can take

K = k(cosfZ +sindx) , (34)
with
sind, cosf >0 .

Before considering the case of a general H,(n) we
consider the more specialized situation of H,| « n.
This is the case considered in detail by Roberts, and
is a reasonable approximation for cases of interest.
In all cases of interest magnetic energies are small
compared with the energy of the matter, and so
b*= H;B;/47 is much less than a>=n;(dp/dn),. It
is therefore convenient to introduce the ratio ~
B=b%/a’ and expand in powers of 8. Then the k
value with the lowest eigenvalue has

cos’d =58~ —,82 (35)
and an eigenvalue A of
A=—1Ba%K . (36)
The displacement vector i§
T=ulz(1-18) =21 -3p)]e/* T
(37

Using Egs. (27) and (28) we can compute the density
and field oscillations this-displacement leads to. We



2538 PAUL MUZIKAR AND C. J. PETHICK 24

get

z—:' ~—iukB(+B)" e/ T (38)
and

a—l_fziukz"(-;—ﬁ)‘/ze‘?‘ T (39

There is therefore an oscillation between regions of
higher B—lower n and lower B—higher n. This is
what we would expect, since when H,| « n,

9H,,/9n > 0. Notice that this is an almost purely
transverse disturbance; the density change is very
small, of order B2 This reflects the fact that mag-
netic energies are small compared with compressional
energies. In order to produce a distortion which
lowers the total energy one must lower the magnetic
energy without causing large changes in the compres-
sional energy (which is always positive, assuming the
matter to be stable). The compressional energy is
proportional to (¥ - )2, and for this to be small the
wave must be essentially transverse.

We now drop the assumption that H,; « », and al-
low for a general H,;(n). We will assume that both
B=b*/a* and y = f/a? are small, and are of compar-
able magnitude. Note that y can have either sign,
depending on whether dH,;/9n is positive or nega-
tive. It is straightforward to check that 4; has a neg-
ative eigenvalue when the K vector has cot?§
< y(y/B). Since we are assuming that y and 8 are
comparable, we will take cot?d (or, equivalently,
cos?8) to be small and of order 8 or y. Then, to the
order to which we are working, we can take the ma-
trix 4 to be

Ay =~a*l (1 +2y) kikj— vk, (kiz; + 2k)1 . (40)

Then, for K vectors which have cos?8 of order v, wWe
find the corresponding displacement eigenvectors to
be

X

T=ue' < T[5(1 —%cotzﬁ?)
—icot0(1~y)(1—%cot20)] . (41)
We can then compute the changes in density and
field, and we get
8n/n1=——iku'ycosﬂe"r' v (42)
and )
8B/B; = iuk cos@el K T35 . 43)
So we see that a positive value for y (or dH,;/9n)
means that regions of increased B are associated with
regions of decreased n; conversely, a negative value

for y means that regions of increased B are correlated
with regions of increased n.

Throughout this section we have assumed that the
energy density depended only on B and n Then, the
strain Dj; affected the energy only in so far as it
changed B or n. This is equivalent to assuming that
the time scales of interest are long compared with the
characteristic time 7 for a distorted vortex lattice to
relax locally back to its triangular form. It is difficult
to estimate 7, since it depends on dissipative motion
of flux lines relative to the matter and on motion of
dislocations in vortex lattices, processes which are
difficult to describe quantitatively. For the modes we
consider in this section, as long as |k is small
enough, the frequency will satisfy w7 << 1, and our
neglect of the lattice distortion is justified. We note
that the energies associated with distortions of a flux
line lattice from its equilibrium form have been con-
sidered by Fetter, Hohenberg, and Pincus® in their
studies of the oscillations of a vortex lattice.

We should perhaps point out that there is no in-
consistency between (i) allowing for dissipative
processes to cause the vortex lattice always to relax to
a locally triangular form and (ii) assuming in the
evaluation of the energy that the average magnetic
induction B is frozen to the matter. In the latter case
all that is required is that the average density of flux
lines (over a region containing many flux lines)
should be frozen into the matter, and this is not in-
consistent with local rearrangements of vortex lines
on a scale of order the spacing between flux lines.

IV. DISCUSSION

We have shown that for B << H,; a type-II super-
conductor is globally unstable to the formation of a
two-phase state due to the attraction between vor-
tex lines induced by coupling to the density of the
medium. We have estimated some effects of the
phase separation for laboratory superconductors and
conclude that it is important at very low flux densi-
ties. On the other hand, our estimates suggest that
the proton superconductor in neutron stars may well
be in the two-phase region.

Our numerical estimates have been based on
results for extreme type-II superconductors. For the
protons in a neutron star one finds k =A/¢ ~70A/¢,
at nuclear matter density, where A is the proton en-
ergy gap and ¢, is the proton Fermi kinetic energy.!
A is estimated to be be ~¢,/10, and therefore xk ~7.
The extreme type-II results are not quantitatively ac-
curate for such low values of «, but should give a re-
liable order-of-magnitude estimate of the effects.

Let us now discuss the sizes of domains with flux
and without flux. In thermodynamic equilibrium
these will be determined by the same sorts of con-
siderations as in the intermediate state of type-I
superconductors. The surface energy between the
flux-free and flux containing regions tends to in-
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crease the thickness of the domains, and the extra
magnetic field energy due to splaying of the field at
the boundaries of the material tends to decrease the
domain size. In practice, however, it is likely that the
domains will not be able to reach the equilibrium
state, and that the previous history of the material
will be decisive in determining the domain size.

We have not yet considered in detail the stability of
the two-phase state, or the possibility of more com-
plicated equilibrium structures. However, at least

for the extreme type-II limit, no other possibility
seems feasible.
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