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Monte Carlo study of liquid 3He-4He solutions

Wing-Kee Lee' and Bernard Goodman
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The ground state of liquid He- He solution was represented by a Jastrow wave function times
Slater determinants for the He atoms, and a Monte Carlo calculation was performed for He
concentrations of 6.5, 12, and 44 at. /o. The average binding energy per atom, the radial distri-
bution functions, the structure functions, - the momentum distribution of the 4He atoms, and the
"He condensate fraction no were calculated. In the above concentrations, the values of no were
found to be 13.1+ 1'/0, 13.7+ 1'/0, and 19.0+ 1'/0, respectively, compared to 11'/0 for bulk liquid
He. This, enhancement of no is due mainly to the decreasing density of the solution as the He

concentration increases. Similar calculations were done for mass-3 —mass-4 boson solutions.
The radial distribution function of the He-4He solution are different from those of the mass-
3—mass-4 boson solutions due to the difference in statistics.

I. INTRODUCTION

The static properties of liquid He- He solutions in
the limit of zero He concentration have been calcu-
lated by many researchers. ' The calculated values of
the binding energy of 'He atoms to the 'He medium
is in agreement with experiment and, until very re-
cently, this was considered to be the case also for
the effective mass of 'He quasiparticles. On the oth-
er hand, static properties like the radial distribution
functions and the condensate fraction have not been
calculated for finite 3He concentrations. Here we re-
port a calculation of the ground-state radial distribu-
tion functions and the condensate fraction no of the
He atoms in liquid 'He- He solutions with He con-

centrations x equal 6.5, 12, and 44 at. '/0.

The theory of condensate fraction of pure liquid
He was advanced by Penrose and Onsager' who have

shown that no can be deduced from the asymptotic
value of the single-particle density matrix p4(r) at
large r. They estimated for no a value of 8 lo. A11

the calculations listed below, except that of Whitlock
et al. , make use of the idea of Penrose and Onsager
and represent liquid 4He by the Jastrow wave func-
tion.

where N is the number of 4He atoms and u(r) is an
optimized function. The Monte Carlo calculations of
McMillan, 4 the molecular dynamics calculation of
Schiff and Verlet, ' and the integral equation method
of Francis et at. all give a no of about 11'/0 at 0 K.
McMillan calculated no for the zero-pressure equili-
brium density while Schiff and Verlet calculated it as
a function of density for densities higher than the
equilibrium value. The result of Francis et al. indi-

no( T) = no(0) [1 —( T/T), ) (2)

where no(0) =0.024+0.004, T„=2.29+0.12 K, and
m = 5.6 + 4. All the above-mentioned experiments
are based on the idea of Hohenberg and Platzman.

cates that the zero-point phonons lower the conden-
sate fraction by 2%. On the other hand, Lam and
Chang' did a calculation using a diagrammatic cluster
approach which indicates that an optimized Jastrow
correlation function u(r) of Eq. (1) with an inter-
mediate and long-range structure gives a larger no
than short range u(r) alone, in conflict with the
findings of Francis et at. Lam and Chang also found
that no is sensitive to the potential used. Reatto has
shown generally that calculations using Jastrow wave
functions should give a nonzero condensate fraction. '
The calculation of Whitlock et a/. which solves the
Schrodinger equation for hard spheres numer'ically by
a Green's-function Monte Carlo method gives a con-
densate fraction of about 11'/0. A more complete list
of references on the condensate fraction and its rela-
tion to superfluidity is given in the review article of
Chester. '

It was suggested by Hohenberg and Platzman" that
the condensate fraction of liquid 4He can be deduced
from the dynamic structure factor S(g, cu) of inelas-
tic neutron scattering at high momentum transfer Q.
The analyses of neutron scattering data by Mook
et aI. , Rodriguez et al. , Mook, and Aleksandrov
et aI."all give a condensate fraction of about 2'/0 at
about 1.1 K. The analyses of neutron scattering data
by Harling' and Woods and Sears'" give larger
values of the condensate fraction, namely, 8.8'/o (at
1.27 K) and 6.9'/0 (at 1.1 K), respectively. Dokukin
et al."have measured the condensate fraction as
function of temperature no(T) by using neutron
scattering and fit their data to
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On the other hand, the most recent experimental
analysis of Sears and Svensson, ' which is based on
the static radial distribution function, ""inferred
values for no(0) and m in Eq. (2) of 0.133 +0.012
and 6.2 + 1.6, respectively.

The present calculations for He-4He solutions are
based on the Slater-Jastrow wave function which
represents the ground state and therefore zero tem-
perature. The multidimensional integrals are per-
formed by using the Monte Carlo method of McMil-
lan as extended to fermions by Ceperley et al. ' For
real solutions phase separation occurs for x & 6.5% at
0 K.' However, in our Monte Carlo simulation we
found no evidence of phase separation in the study
of the spatial distribution of the He and He atoms
even for considerably larger values of x. This is

presumably due to the fact that our runs are too
short to simulate phase separation. Furthermore, the
small number of particles (at most 38 'He atoms and
49 4He atoms) in the period cell and the use of
periodic boundary conditions probably also inhibit
phase separation. As will be discussed later, some

features of the zero-temperature calculation should
still be relevant for nonzero temperatures at which
the real solutions with the above He concentrations
are stable.

II. METHOD OF CALCULATION

The Hamiltonian of the solution is

N3 N~N3+N4 N

0 =- gV,' — $ V,'+ $ V(r),
m3i 1 2m4 i N +1 i&j3

where N3 and N4 are the number of He and He
atoms, respectively, and V(r) is taken to be the
Lennard- Jones potential

V(r) =4m
r

with a=10.22 K and o-=2.556 A.
The ground state of the solution is described by a

Slater- Jastrow wave function,

4( r I ~ r N r N +l ~ ~ ~ r IV)
3 3

=exp —, $ u""(rj) ——, X u""(r~) ——,
1 (3 3) 34 1

i &J~«N-3 3N +1«j«N N3+1@i %JAN
i «~N3

u (rj) dtdt (3)

where dt and d~ are Slater determinants for up-spin
He and down-spin He atoms, respectively. The or-

bitals used in the determinants are cos[(2'/L)
x (n x)] and sin[(2m/L)(n x)], where n are in-

teger vectors satisfying 2m~ n ~/L ( kr, kr being the
Fermi momentum of the 'He atoms and L is the size
of the cubic period cell.

For a given He fraction, x, L is determined by the
relation

L3 = N u4(1 + nx ) (4)

where v4=2.75cr is the measured volume per atom
in liquid He at its 0-K equilibrium density, and 0.,
the excess volume fraction, is taken to be 0.284 as
measured by Edwards et al. ' Appropriate numbers
of He and He atoms are put into this box to give
the desired concentration, and periodic boundary
conditions are used. The number of He atoms are
chosen such that the Fermi sphere is occupied cubi-
cally symmetrically for each spin orientation. The
Jastrow factors are all chosen to be the same,

u "(r) =u' ' (r) =u ' (r)=u(r) =(blr/r)'

Z=x(T, + V, )+(1 x)(T, + V,)-, (6)

where

V =
r XX V(r ))rr

T =2T —I'

T' =- T„+—8 3(KD+Fg~))

1 2Tua $ X 7I u(rlj)
a a

N3 Nt

D
2m N

DklVI' k r-l
I 1k 1

N3 Nt—X XD„',V,y„(r-,)2m3n3, , k,
l

h2 N

X —,
' X"7,u(r~&)

a a

tonian which is obtained by direct differentiation of
Q, can be written as

where b is a variational parameter. This form of
u(r) has been extensively used for pure 4He and
pure He calculations. 4 '

The expectation value (per atom) of the Hamil- n=3 or 4

N) 2

3 X Dkl yllilk( r I)



24 MONTE CARLO STUDY OF LIQUID He- He SOLUTIONS 2517

T and V are just the average kinetic energy and the
average potential energy of a He atom, respectively.
A simple integration by parts gives

T' =F2

and hence T' = T =F ."
By using the explicit form

cos(k& r;) or sin(kj r;),
N3 Nt

Kp D~fk~ )2m3N

(8)

of QJ(r&), namely,
Kp can be simplified to

g2

3 3J1 ()

The sum $, is taken over the n species only, while

the sum g is over al! the j 's not equal to I. Here

@q( r1) are the occupied orbitals in the Slater deter-
minants and the superscript s denotes the spin state
( 1 or f). Dq1 are the elements of the inverse of the
transpose of the matrix of d, whose elements are
Dk/ $k ( r 1); that is,

N

QDyDk1 = 5(k

The dimension of each of these matrices is N t

=/V3/2. We note here that the first subscript of Dk1

is the label of an orbital while the second subscript is

the label of a 3He atom. In Eq. (7), (f ) is the ex-
pectation value

fp'd r1 d rn/ 1[1 d'r1 d'rn

where the property $,. D&', P&( r;) = 1 has been used.
That is, Kp gives the ideal gas kinetic energy per
atom, independent of the trial wave function. It is
clear that Eq. (9) holds for every configuration not
just as an average. Notice that for an idea/Fermi
gas, which can be described by the wave function 1[1

in Eq. (3) with all the u 's equal to zero, Eq. (8)
reduces to

Kp =Fp2 (10)

For an interacting fermion system this is no longer
true. However, the quantity

To = —,(Ko+ Fo)1

can be identified as the kinetic energy due to the
Slater determinants.

The wave function is optimized by a variational cal-
culation similar to that detailed by McMillan. 4 In or-
der to handle the Slater determinants, we have used
the procedure developed by Ceperley et al. ' Our
Monte Carlo program was coded in FQRTRAN and was
tested by repeating the pure liquid 4He calculations of
McMillan and the pure liquid 'He calculations of
Ceperley et af. Our results are in good agreement
with theirs.

We extract the condensate fraction from the
single-particle density matrix of the 4He atoms, which
is defined as

f

P1(I» —«'I) =&4 J 1[1( r 1 r N r "lv +» r N) 1'( r 1 riv " "n3+'l r Jv)

&d»1 d»N drn+q dry/ 1[1 dr, dr&3 3 3 . 3 "23 . 3
3 3

which, using the wave function (3), can be written in the different form

N N

p1(r) =p4 $ exp —
—, X[u(I r;+ r —r, I) —u(I r; —r~I)

N4 i N3+1 J Ai

where p4 is the number density of the He atoms. p4(r) can then be calculated by Monte Carlo method. The
condensate fraction of the 4He atoms is given by

n11= p1(~)/p4 .

(12)

In practice p, ( r) becomes constant for r & 2 o .
For the 44% solution we have also calculated the single-particle density matrix of the He atoms which is given

by

p1(r) = p3 $ exp ——g [u(I r;+ r —r &I)
—u(I r; —r, I)] $ D„$1(r + r;)

&3 i-i /

(13)

The radial distribution functions are defined as

N Np

g~p( I x1 xpI) $ $(1 —8; &&)8(x1—r; )5(x& —r &&)
PaPP ia Jp

(14)
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where a, P =3 or 4, and p, p& are the number densi-
ties of the n species and the P species, respectively,
while r; and r J~ denote the positions of a o. atom
and a P atom, respectively. We have neglected spin
in the above definition. To include the fermion spin,
let r;cr; be the space and spin coordinates of a He
atom. We define the radial distribution function for
parallel spins by

N3

5 5 x~ —r;5 x2 —r&, 15

and the radial distribution function for antiparallel
spins by

N3

g. (xi2) =—2(x(1 —a )S(x, —r, )5(x, —r~I
P3 i)

(16)

(Note that gr and g„asdefined here, each approach
the value

z
at large separation. ) It is clear that

g33(r) =gr(r) +g, (r)

The radial distribution functions g,&(r) are calcu-
lated by the following procedure4: Compute the dis-
tance between each n-P pair, and count the number
of such distances which lie in a bin between r ——hr

and r +
2

Ar. Averaging this number over the confi-

guration gives us an estimate of

IV p 4rrr3g (r—)Ar, if a=P

number of He and 4He atoms put into the period cell
to give the desired concentration.

The functions g„&(r),g~(r), g, (r), p3t(r), and
p4~(r) obtained are not smooth because of sampling,
and it was considered too expensive to accumulate
enough statistics to give essentially smooth curves
directly. We have smoothed these functions by using
the DSE15 routine of IBM, which smoothes the data
points at x, (i = 1, . . . , n ) by the following pro-
cedure: Except at the end points x~, x2, x„&,x„2,
the smoothed value at x; is obtained by evaluating at
x; the linear least-squares fit to the five points
x; 2, . . . , x;+2. This smoothing gets rid of, to large
extent, the unreasonable differences of the values of
adjacent bins.

A. Solution with 44% 3He concentration

The expectation value of the Hamiltonian per
atom, E, obtained from a (14,18) calculation
(x =43 75% p3=0 141o, and p4=0. 182o. 3), is
plotted against b in Fig. 1. The optimal value of b is
taken to be 1.145 which appears to give the lowest
energy. E and the relevant average quantities as
functions of b and concentrations are presented in
Table I. In Table I, the statistical uncertainties are
obtained by the following procedure which is typical
for such calculations. " Divide a run into X(=7)
sections containing an equal number of configura-
tions. Compute the quantity of interest by averaging
over all the configurations ~ithI'n each section and ob-
tain a value, say, A; for the ith section. The fina1
average is then given by

or

IV pr34nr2g r3(r)hr, if n & p

(17)

This applies for wave functions with or without Slater
determinants. g~(r) and g, (r) are calculated by the
same procedure.

The structure factors are calculated by Fourier
transforming the corresponding radial distribution
functions as follows:

S a(k) =8 a+(p pa)'r Jt[g &(r) —1]e'" ' " d3r

Se(k) =1+p3 „t[g~(r)—z
]e' " ' " d r

S.(k) =p3„"[g.(r) ——,
']e'"' ' d'r .

(18)

Notice that S33(k) =S~(k) +S,(k).

III. NUMERICAL RESULTS

I.10 I.I5 I.20

For simplicity we will denote a calculation by
(W3. 1V4), where IV 3 and 1V4 are, respectively, the

FIG. 1. Expectation value of the Hamiltonian per atom of
the 44% solution as a function of b.
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To study the effect of the size of the period cell, a
(38,49) calculation (x =43.68%) with b =1.145 was
performed and the results are also presented in Table
I. The agreement between the (14,18) and the
(38,49) calculations is good, which suggests that vari-
ational calculations for the larger period cell are not
necessary. The insensitivity of the results to the size
of the cell is in agreement with the results reported in
McMillan's work4 on pure liquid He and by Ceperley
et al. ' for pure liquid He, and can be attributed to
the short-range nature of the Jastrow correlation
function u(r). The difference of 0.1 K between the
values of ED of the two calculations is, however, sig-
nificant. We have seen in Eq. (7) that, for any trial
wave function, KD should be the kinetic energy per
atom jof an ideal Fermi gas with Nt(= N3/2) atoms of
each spin in the period cell. Since Nt atoms are used
to fill (he discrete states inside the Fermi sphere, It'D

will flu'actuate with Nt about the value for an infinite
system, namely,

Ko(NI = oo) = — 3n—3 A2
2 p3

5 2m3 2

From Eq. (9) we obtain

' 2/3

=1.918 K

' 2/3

KD(Nt =7) = (4m2) — =1.95 K
75/3

t

' 2/3

KD(Nt =19)= (4m ) — =1.84 K30, P3

1 95/3

The values of ED in Table I are calculated explicitly
in a Monte Carlo run, that is, by evaluating

Nt Nt

KD= X X' 72&J( r, )
i 1 j.

at the end of each cycle'4 (after each atom has been
moved once). The value should agree precisely with
the analytical value if Dj; are updated correctly. This
serves as another test of our Monte Carlo program.
The difference between the values of KD due to the
difference of Nt does not show up in T3 due to the
relatively large uncertainty of 0.3 K in T3.

We present below the results of the (38,49) calcu-
lation with 6 =1.145. This larger system is chosen
for presentation because the size of the period cell of
the smaller system is too small to allow the calcula-
tion of g a(r) and p~ (r) for r ) 2.3o.,"while the
larger system can be used to calculate the values of
these functions up to r =3.220-. The larger-r
behavior of these quantities is important in determin-
ing the small-k values of the structure functions
S &(k) and the momentum distributions N (k)

and the uncertainty is then taken to be the standard
deviation,

1/2

(19)
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44 /——.— IZ l
QO/

- ~ ~ ~ see text
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0

r (cr)

FIG, 2. Single-particle density matrix of the 4He atoms.

0

0

1. Single-particle density matrices, the

condensate fraction, and the

momentum distri butions

FIG. 3. Single-particle density matrix of the He atoms

( W3 38 %4 =49, x =44%}, Solid curve —He atoms, dot-

dashed curve —ideal Fermi gas, solid circles —see text.

The smoothed values of the single-particle density
matrices pt(r) and p, (r) are plotted in Figs. 2 and 3,
respectively. For both functions the scatter of the
original data from the smoothed curve is typically
0.01 in the region r.& cr and almost always less than
0.02. For the region cr & r )0.3o- the scatter in-

creases from 0.02 to about 0.05. The statistics be-
come poor for r & 0.3o- so that the smoothed values
which we have shown by solid circles, are unreliable.
This can be seen also from the fact p", (r) does not
approach unity as it should. Therefore, we have re-
placed the calculated values of pt (r) in the region
0 «r «0.270- by a parabolic interpolation between
pP(0) =1 and pt (0.27o), n =3 or 4. The interpola-
tions are represented by the dashed curves in Figs. 2

and 3. Using these interpolations should give a more
reasonable large-k behavior of the momentum distri-
bution N'(k), which is obtained by Fourier
transforming pt (r), than using the computed values
directly. The functional form of pt (r) for small r is

not known. However, the slope of p~ (r) at r =0
must be zero, because, otherwise, the cusp at r =0
which behaves like e ~'~ould give an asymptotic
momentum distribution like (k2+772) 2, for which

the kinetic energy N (k)k d k diverges. Our par-

abolic interpolation is a simple choice which satisfies
this requirement.

a. 48e component condensate fraction In Fi.g. 2, the
limiting value of pj (r)/p4 for large r gives a conden-
sate fraction of 19 + 1%. The condensate fraction rIO

of the solution is larger than that of pure 4He, which
is about 12% for b =1.16 and p = po. This enhance-
ment seems to be due to the fact that the average
density of the solution is smaller than that of pure
4He, and hence the probability of atoms being scat-
tered out of the condensate is less. To verify this, we

have done a calculation in which exactly the same
parameter (It =1.145) as in the (14,18) calculation
was used except that the determinants were deleted
from the wave function. This can be viewed as a
solution of mass-3 bosons and mass-4 bosons. The
He condensate fraction so obtained is 18 +1% which

is very close to the fermion-boson solution. Thus the
Fermi statistics of the He atoms do not play an im-

portant role in determining no. Notice in Table I
that, for a given concentration, no is not sensitive to
the number of particles used in the period cell.

b. 3He component. The single-particle density ma-
trix for 3He atoms p37(r), which is shown in Fig. 3,
becomes negative at ro = 2.76o-, in contrast to the
fact that p4t(r) is always positive.

For noninteracting He atoms, the angular aver-
aged single-particle density matrix pI 7(r) can be cal-
culated analytically to be

p(0)(r)

p3

1+ sin, I =73L7 . 2mr
mr J7

t

1 ~ sinkr 7
1

3L t0 . 27rr 72 . 2&27rr+ +2 sinI.=. k -"-. L L .F

I =19
7

7
1

3L27 . 27rr r2 . 2&27rr + 4 . 2 J37rr-
sln + v2 sin —— + sin

7rr L27 L27 3&3 L27
I =27 (20)
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where kr = (3rr N3)'~ /LI and LI is determined for
each value of N(=N3+N4) according to Eq. (4).
This means that

kr=(3m x/u )' '/(I+ax)'

N"(k ) = ' d r e' " ' ' [p~(r) —ne] (21)

The subscripts on L are a reminder that x varies
slightly with N3 for integral values of N3 and Nq. In
Eq. (20) the x values are close to 44%. The values
I =7, 19, and 27 are the three smallest numbers of
fermions which can occupy the Fermi sphere symme-
trically. These functions are all represented by the
single dot-dashed curve in Fig. 3, because their
values are very close in the range r & 3.20- of the fig-
ure. For an infinite ideal Fermi gas system the
single-particle density matrix is

3(sinkrr —krr coskrr )

(krr )'

The values of this function for r & 3.2o- are also very
close to those of Eq. (20). For r )3.2a. the curves
would differ appreciably.

c. Momentum distributions. The momentum distri-
bution of the 4He atoms, given by

totic behavior of the difference pt(r) —net which
should be like r ' since it is believed that N'(k) is
proportional to k ' at small k." Therefore, the
curves in Fig. 4 are probably reliable in the interval
lo. &&k &Sa

For the 'He atoms p3(r) presumably has long-
range oscillations which are important in determining
the discontinuity of N3(k) at the Fermi momentum.
We have only the values of p3~(k) for r & 3.2o. (con-
taining less than one cycle of the oscillation), which
is not enough to allow a reliable calculation of N'(k).
Nevertheless, the fact that the two curves cross the
abscissa at nearly the same point suggests that we can
estimate a rough upper bound to the discontinuity
hN in N3(k) at kr. We assume that N'(k) has a
step AN and a smooth broad background just as in
the calculations by Ceperley et al. '9 [see their Fig.
2(d)]. Then p~(r) will be d N pIO~(r) plus a short-
range part which is already negligible before the first
crossing. Therefore, the ratio p', (r)/pI+(r) near the
common crossing give an estimate of 4N. Applied to
Fig. 3(c) of Ref. 19, this gives AN —0.4 for x = 1,
which is consistent with their Fig. 2(d). In our case
Fig. 3 permits only very rough estimate 4N & 0.2 for
x =0.44.

is shown in Fig. 4. The single-particle density matrix
p4~(r) used for this calculation is based on the
smoothed data in Fig. 2 for r )0.27cr and by the
parabolic interpolation mentioned above for
r & 0.27a. The values of N4(k) for k ) So. ' should
not be considered to be reliable because of the more
limited data on p~(r) for small r Aclear indic. ation
of this is that N (k) (with x =44%) becomes nega-
tive at k =11.2o '. The values of N4(k) are not re-
liable for small k where they depend on the asymp-

2. Radial distribution functions (RDF) and
the structure factors

The smoothed values of the RDF's g~(r), g, (r),
and their sum, which is g33(r), are plotted in Fig. S.
The Pauli hole effect seems to dominate the variation
of g~(r) outside the repulsive core region and the
peak at the first coordination shell, which appears in
g, (r), is absent. A similar peakless variation of g~(r)
characterizes the calculations of pure He by Ceperley

0.6-
x =44%

———x= l2%----- x =65'/ l.2-

0.8-

0,2

0.4-

0 I

0

k(~ ')

FIG. 4. Momentum distribution N4(k),

FIG. 5. Radial distribution functions (N3 =38, N4 =49,
x =44%). Solid curves: upper —g33(r), middle —g, (r),
lower —gz(r) Broken curves: dot-dashed —g33 (r),
dashed -g,'(r), dotted —g~'(r).



2522 NING-KEE LEE AND BERNARD GOODMAN 24

et al. ' The Pauli hole can be removed by dropping
the determinant factors dt, dt from P(r ~, . . . , r ~,3'
r „+t,. . . , r ~) in Eq. (3). The radial distribution

functions g~'(r) and g,'(r) so obtained are shown by
the dotted and dashed curves, respectively, in Fig. 5

along with their sum g33(r) which is shown as the
dot-dashed curve. [We have calculated g~'(r) and

g,'(r) only up to r =2.71~). The fact that g~'(r) is
closer to g, (r) than to g~(r) confirms the role of the
Pauli hole in determining the shape of the latter.

The values of g, (r) are higher than those of g,'(r)
in the region of the first maximum because the Pauli
hole reduction of the number of atoms of paralle1

spin in that region, where the potentia1 is attractive,
permits more atoms of antiparallel spin to move in.
If the system were of infinite size g~'(r) and g,'(r)
would be identical because there is no longer any dis-
tinction in P between up- and down-spin particles.
However, for a fixed number of particles of each la-

bel 3t or 3j in the volume 0, the functions g and g'

satisfy the integral relation, 28

—P3, X=P
[g,(r ) — ]d3r =—

,0, x=a (22)

which expresses the fact that, if n is the label of the
atom at the origin, there are only A' —1 atoms of
that label remaining in Q. For the Slater-Jastrow p
the Pauli hole excludes precisely one particle of paral-

lel spin so that g~ can go strictly to the value —, at

large enough distances. The situation is different for'

the primed g's where the deficit —p3' in Eq. (22) for
g~' requires a small reduction in the uniform density
at large distances to compensate for the filling in of
the Pauli hole. If we assume that Ag' —=g„'—g~' is

constant throughout most of 0, then 4g' = W3
'

=0.026, which is consistent with our data as shown
in Fig. 5 at large distances.

The RDF's g34(r) and g44(r) are plotted in Fig. 6. I.O-

x =44%
+-+"+-+ )( = ) /

-+-+

Notice that the value of the first maximum of g34(r)
is larger than that of g44(r). Similar to the differ-
ences between g, (r) and g,'(r), this difference
between g34(r) and g44(r) is due to the fact that the
Pauli hole forces the 'He atoms with parallel spins to
spend more time around the 4He atoms.

Let g'~(r), n, P=3 or 4 denote the RDF's corre-
sponding to g ~(r), except that g'&(r) are obtained
from the calculation in which the determinants are
deleted from the wave function. The dashed line in

Fig. 6 represents g34(r) For r &. I 75cr., there are
no statistically significant differences between the
values of g34(r), g33(r), and g44(r). For r &1.7o.,
however, the values of g33 (r) and g4'4 (r) (not shown
in Fig. 6) are consistently lower than those of g34 (r)
by about 0.02 again because of the difference in the
normalizations as defined by Eq. (22) with —, and

p3 replaced by 1 and p '5
&, respectively. The

lowering of g44 (r) is slightly smaller than that of
g~'(r) because %4 & N3.

For an appreciation of the statistical uncertainties
we give the comparison between the computed
RDF's and the smoothed RDF's as follows: From
r =0.750- to 1.2' the scatter of the original data
points from the smoothed curves varies from 0.01 to
0.05. However, because of the sharp rise of these
-functions in this region, we can still draw rather
smooth curves thorugh the original data points.

- Around the first maximum, between say, r = 1.2(T

and 1.9o-, the scatter of the data points from the
smoothed curves is typically 0.02. For I' & 1.9o-, the
scatter is typically 0.01 or less.

The structure factors S34(k) and S44(k) are plot-
ted in Fig. 7, while S~(k), S,(k), and S33(k) are

l.2— 0.5-
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/
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FIG. 6. Radial distribution functions (A'3 = 38, Ã4 =49,
x =44%). Solid curve —g34(r), dot-dashed curve —g44(r),
dashed curve —g34 (f).

FIG. 7. Structure factors. The upper curves are S44(k)
while the lower curves are S34(k). The solid lines are for
x =44%, the dashed for x =12% and the crosses plus dots
for x =6.5%.
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FIG. 8. Structure factors Sz(k), S,(k), and S33(k)
(A3 38, N4 =49, x =44%).

l2
0

0

FIG. 9. Radial distribution functions g34(r) and g44(r)
for 6.5% and 12% solutions. The solid curve is g34(r) for
x =12%; the dashed curve is g34(f) for x =6.5%; and the
dot-dashed curve is g44(r) for both x =6.5% and 12%.

plotted in Fig. 8. They are obtained by using Eq.
(18). The difference between the values of the struc-
ture factors obtained by the smoothed RDF's and
those obtained by the unsmoothed RDF's are typical-

ly 0.003 to 0.002 for 0 & k ~ 1 o- ', and always less
than 0.001 for k &1o- '. Owing to the lack of de-
tailed information about the RDF's for r & 3.2o-, the
values of the structure factors for k & 1o- ' are not
reliable and, therefore, are not shown in the figures.
According to the theory of Tan et at. , ' which is
based on the compressibility sum rule, 5 33(k) should
be proportional to k for small k.

B. 129o and 6.5% Solutions

The 12% and the 6.5% solutions were simulated by
doing (14,100) (x =12.28%) and (14,201)
(x = 6.51%) calculations. Owing to the fact that the
minimum of E in the (14,18) calculation (Fig. 1) is
shallow and that the optimal value of the parameter
b, namely, b =1.145, is rather close to the optimal
value 1.16 for pure liquid 4He, we expect that the op-
timal value of b for these rather dilute solutions
should not be very different from that of pure 4He.
Therefore, we have taken b =1.16 for the (14,100)
and the (14,201) calculations. The values of the
average binding energy and the condensate fractions
are given in Table I. The statistical uncertainties in
E3 T3 and F3 are larger than those of the (14, 1 8)
calculation. The reason is that, even though about
the same number of moves are generated for all the
calculations, the data samples collected for the quan-
tities E3, T3, and F3 which pertain to He are smaller.
For the same reason the statistics are not good

enough to allow reliable calculation of the RDF's
g~(r), g, (r), and the single-particle density matrix
p3~(r) for the 3He atoms.

The p4~(r) obtained in the (14,100) (x =12%) cal-
culation and that obtained by a (0,32) calculation
(that is for pure liquid 4He) are plotted in Fig. 2.
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FIG. 10. Radial distribution functions near the first maxi-
ma. —g34(r) x =6.5%, V —g44(r), x =6.5%; x —g34(r),
x =12%, L —g44(r), x =12%, 0—g34(r), x =44%; —
g44(r), x =44%.
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The values of pt(r) obtained in the (14,201)
(x =6.5%) calculation lie between those of the
(14,100) and (0,32) calculations. Similar to the cal-
culation for the 44% solution, we have replaced the
computed values of pf(r) in the region 0 & r «0.27 o.

by a parabolic interpolation between pf(0) =1 and
pf(0.27o.).

The momentum distribution N'(k) obtained by Eq.
(21) for the (14,100) and the (14,201) calculations
are plotted in Fig. 4. The values of th|: condensate
fraction for these calculations are given in Table I.

The results of g34(r) and g4~(r) for the (14,100)
and the (14,201) calculations are shown in Fig. 9.
The first maximum of g3q(r) is again larger than that
of g4q(r), that is, the effect of the Pauli hole can still
be seen in these relatively dilute solutions. As the
'He concentration increases, the positions of the first
maximum of g34(r) and g4q(r) shift to the larger r
values, while the values of the maximum decrease.
This behavior is displayed in Fig. 10 and is attribut-
able to the combined effect of the decrease in the
average total density and partial density of He as the
He concentration increases. The structure factors

are plotted in Fig. 7.

IV. DISCUSSION

In Table I we see that the calculated average bind-
ing energy per atom for the 6.5% solution is —5.45 K
as compared to the experimental value of —6.87 K
found by Seligmann et al. ' This is not surprising be-
cause the variational calculation gives the upper
bound of the ground-state energy. For bulk liquid
4He the upper bound of the ground-state energy
found by Schiff and deerlet' was —5.95 K as compared
to the experimental values of —7.14 K. The compar-
ison with experiment for x & 6.5% is not possible be-
cause of phase separation in the real solutions at
those concentrations.

We believe that the enhancement of the conden-
sate fr'action in the 44% solution can be experimen-
tally observable for the following reasons: Doku-
kin et ai. ' and also Sears and Svensson'6 have mea-
sured the condensate fraction in pure liquid 'He over
a considerable range of the temperature, and they fit
their results approximately to the dependence given
in Eq. (2). If similar behavior exists in the 44% solu-
tion, "one should be able to observe no at a tempera-
ture 0.75 K. Just above this temperature the real
44% solution is stable with T„=1.4 K. Using Eq. (2)
we find that np(T =0.75 K) =0 97np(0) This s.ug-.
gests that an inelastic neutron scattering experiment
on a solution of this 'He concentration and at a tem-
perature slightly above 0.75 K may see the enhance-
ment of the condensate fraction.

%e have found that, for a given He concentration,
the value of the first maximum of g3q(r) is larger

than that of g44(r) T. his behavior exists for all the
concentrations used in our calculations. This
phenomenon in the 6.5/0 solution should be observ-
able at low enough temperatures, say less than 0.02
K, at which the 'He atoms become a degenerate
Fermi liquid. %e expect these properties to be less
profound experimentally in the 12/o and 44'/o solu-
tions just above the phase separation line because the
fermions are not fully degenerate. From the relation
Tp (x ) g kr/2 In3 ks for the degenerate temperature
and the approximate constancy of m3' with x,
m3 - 3 m3, we estimate T&(0.12) =0.48 K and
TF(0.44) =1.14 K as compared with the phase separa-
tion temperature of 0.2 and 0.75 K, respectively. It
should be pointed out that this behavior of g34(r)
and gqq(r) is based on the use of the same Jastrow
factors u (r) for all the species [Eq. (5)], and the
basis for it seems to be the Pauli exclusion principle.
The use of species-dependent Jastrow factors is not
expected to change this behavior and the cost of op-
timizing such a more complex wave function did not
appear to be justified.

Some comments are ~orth making on the relation-
ship to recent work, some of which has appeared since
this manuscript was submitted. Guyer and Miller'
have analyzed the conditions of miscibility of isotopic
fermion-boson mixtures in the ground state using the
Slater-Jastrow function, Eq. (3), as starting point but
making the lowest-order fermion cluster approxima-
tion for the pair correlation functions g & which are
implicit in the terms in Eq. (7) for the total ground-
state energy. For example, they use g34 g44,
whereas Fig. 6 sho~s a significant difference as men-
tioned above. Their quantitative conclusions should
change somewhat as they themselves have already es-
timated by estimating the effect of including three-
body exchange. Our work has not been directly con-
cerned with miscibility and there is no evidence of
phase separation in the Monte Carlo runs. This may
be due in part to the periodic boundary conditions
and small particle numbers and may provide a way to
calculate the homogeneous phase E(x) needed in

their analyses.
Owen has discussed the optimization of the

Slater-Jastrow wave function for pure 'He both by
improving the form of u(r) at intermediate and large
r through incorporation of virtual excitations of the
fermions and through assuming a state dependence,
u~(r). The linear dependence of S(k) on k at small
k is obtained, which is not accessible in the present
calculations nor those of Ref. 19.
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