VOLUME 24, NUMBER 5

Microscopic superconducting parameters of Nb₃Al: Importance of the band density of states

J. Kwo,* T. P. Orlando,[†] and M. R. Beasley[‡] Department of Applied Physics, Stanford University, Stanford, California 94305 (Received 12 December 1980)

Critical-field measurements are carried out in low fields on a series of A15 Nb-Al asdeposited films where structural disorder, as characterized by the residual resistivity $\rho(T_c)$, is introduced by varying the composition in the A15 phase. Analysis of the critical-field slopes near T_c gives relatively low electronic densities of states at Fermi level $N^b(0)$ in agreement with heat-capacity results. The $N^{b}(0)$'s remain nearly constant over the resistivity range varied. Lacking data in the low resistivity range, our results neither support nor disagree with the resistive lifetime-broadening model of the density of states. Nonetheless, the data unambiguously demonstrate that the conventional model, in which a peak in the band density of states at the Fermi level plays the essential role, is not sufficient to explain the observed systematics in high- T_c Nb₃Al. More specifically, changes in $\langle I^2 \rangle / \langle \omega^2 \rangle$ with disorder are found to be responsible for the observed changes in T_c , where the increase of $\langle \omega^2 \rangle$ with disorder has been shown earlier in the tunneling studies. Further consideration of similar data for the other superconductors V₃Si, Nb₃Sn, and Nb₃Ge suggests that important variations in $\langle I^2 \rangle / \langle \omega^2 \rangle$ may be a general feature of the high- T_c A15 superconductors. $\langle I^2 \rangle / \langle \omega^2 \rangle$ increases as one progresses from V₃Si through Nb₃Sn and Nb₃Al to Nb₃Ge in correlation with the relative instability of the A15 phase in these materials.

I. INTRODUCTION

The A15 superconductors have received considerable interest because of the favored occurrence of high-critical-temperature superconductivity in this class of compounds. However the fundamental properties with which the high T_c 's of these materials can be associated remain unsettled. In the conventional model¹ based on the properties of the well-ordered, stoichiometric compounds such as Nb₃Sn and V₃Si, a sharp peak in the band density of states is believed to play an important role both in the high- T_c superconductivity of these materials and also in their anomalous normal-state properties. However, the so-called metastable A15 compounds (i.e., those that do not exist in thermodynamic equilibrium at stoichiometry) such as Nb₃Al and Nb₃Ge of even higher T_c do not show such anomalous normal-state behavior in the heat capacity^{2,3} and magnetic susceptibility⁴ and therefore are in potential conflict with the conventional model. On the other hand they have not been made as well-ordered, stoichiometric compounds, and clear evidence for inhomogeneities in these materials has been observed,⁵ further complicating any interpretation. Thus a definite conclusion about the origin of the high T_c 's in these superconductors cannot yet be reached.

An alternative in comparing the properties among different compounds is introducing disorder or defects artificially⁶ and even including the amorphous

counterpart⁷ in a systematic study of a given compound. The trends in the physical properties provide additional insights into the mechanisms responsible for the high- T_c superconductivity. In the case of the canonical A15 superconductor V₃Si, the depression of T_c with increasing disorder has been correlated with a decreasing band density of states at the Fermi level $N^{b}(0)$.^{8,9} For metastable Nb₃Ge, a large reduction in the ratio $\lambda/N^{b}(0)$ or $\langle I^{2} \rangle$ with disorder has been suggested by Tsuei,⁷ and Ghosh and Strongin.⁹ Here λ is the electron-phonon interaction parameter and $\langle I^2 \rangle$ is the average squared electron-phonon matrix element. However these conclusions become less certain when one recognizes the unknown or uncontrollable degree of inhomogeneities present in the metastable materials. Also (taken by themselves) the interpretations from such studies are subject to uncertainities resulting from the assumptions made about the lattice properties in the analysis used to obtain the microscopic parameters.

Given the above difficulties, we have undertaken a comprehensive study of the least unstable member of the metastable class of A15 high-temperature superconductors, namely, Nb₃Al, as a promising prospect for improving understanding. The synthesis of this compound in thin film form such as used in this study is well-controlled as described in a previous publication.¹⁰ Homogeneous samples with systematic and reproducible material characteristics across the single-phase A15 phase field (i.e., from 19 to 22.6

<u>24</u>

2506

©1981 The American Physical Society

at. % Al at low temperatures) can be prepared. Superconducting tunneling measurements¹¹ carried out on A 15 Nb-Al thin films as a function of Al composition establish for the first time the important role of soft phonons in the high- T_c superconductivity. However the basic mechanisms of the superconductivity cannot be fully understood without additional information regarding the electronic properties. Therefore in the present work we extend our study of the Nb₃Al system to include critical-field measurements on a series of Nb-Al films varying in composition across the single-phase field. Along with our tunneling measurements we can determine the various microscopic parameters [e.g., $N^b(0)$, $\langle I^2 \rangle$, and $\langle \omega^2 \rangle$, etc.] for understanding superconductivity.

Our analysis yields a relatively low value of $N^{b}(0)$ for Nb₃Al, in agreement with the heat-capacity results.^{2,12} Moreover, strikingly, the value of $N^{b}(0)$ remains approximately constant over the compositional range varied. On the other hand, a substantial decrease of $\langle I^2 \rangle$ and increase of $\langle \omega^2 \rangle$ (i.e., stiffening of the phonon modes) account for the depression of T_c with disorder. The possibility of a variation of $\langle I^2 \rangle / \langle \omega^2 \rangle$ in Nb₃Al with disorder has been noted earlier based on a similar study on radiation-damaged Nb₃Al by Ghosh and Strongin.⁹ This conclusion has not been universally accepted, however. The present work based on a very thorough analysis and particularly well-characterized samples (including electron tunneling) now leaves little doubt that variation in $\langle I^2 \rangle$ with disorder is an essential feature of the A15 Nb₃Al. Comparing these results to parallel studies on other A15 superconductors shows a systematic progression of the ratio $\langle I^2 \rangle / \langle \omega^2 \rangle$ among V₃Si, Nb₃Sn, Nb₃Al, and Nb₃Ge that correlates with the relative A15 phase instability of these compounds.

II. SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURES

The Nb₃Al thin films used in this study were prepared by the technique of electron-beam coevaporation at the optimum deposition conditions as determined in the earlier synthesis work.^{10,13} Such optimized deposition conditions give Nb-Al films with lattice parameters following the prediction of Geller radii, suggesting that the A15 structure produced is as ordered as allowed by the composition. Hence the variations of the T_c 's and residual resistivities $\rho(T_c)$'s (which we take as an approximate measure of the structure disorder), of the samples investigated in this work are caused mainly by variations in the Al composition.

In order to carry out the four-point resistance measurements used to determine the resistivity and the critical field, the films were etched into a suitable bridge pattern using photolithography. Since the chemical etch used in the patterning contained hydrofluoric acid, which has been shown to be detrimental to the metastable A15's,¹⁴ the T_c 's were compared for one sample before and after a 5-sec etch and showed no apparent degradation. The thicknesses were measured by a mechanical stylus technique and are in the range from 5000 to 6000 Å.

All the critical fields were measured with the field both parallel and perpendicular to the film. The critical fields were determined from both dc and ac resistive transitions obtained while sweeping the temperature in a fixed field. Since the transitions of most samples tended to broaden in high fields (e.g., from 0.4 to 2.0 K as the field increased up to 80 kOe), the transition temperature was chosen to be the midpoint of the resistive transition throughout all measurements.

III. RESULTS AND ANALYSIS

A. Critical fields and transition temperatures

Representative critical-field data of our samples at low fields near T_c are shown in Fig. 1. The low-field data of most samples show a rather linear dependence of H_{c2} on temperature. A slight curvature exists in the data very near T_c , deviating from the straight lines expected from Ginzburg-Landau-Abrikosov-Gorkov (GLAG) theory.¹⁵ The difference between the measured and extrapolated T_c 's are at most 0.1 K, however, despite these small anomalies, the critical-field slope $(dH_2/dT)_{T_c}$ [from which $N^b(0)$ is derived] could be determined satisfactorily from the linear portion of the data between 20 and 80 kOe. The $(dH_{c2}/dT)_{T_c}$ for all the samples studied along

FIG. 1. Representative critical-field data near T_c of the A15 Nb-Al films measured. The lines drawn through data points are intended to serve only as a guide to the eye.

with other pertinent material parameters are listed in Table I.

The dependence of T_c and $(dH_{c2}/dT)_{T_c}$ on residual resistivity $\rho(T_c)$ for our Nb-Al samples are shown in Figs. 2(a) and 2(b) along with similar data for radiation damaged⁹ Nb₃Al. Also shown for comparison are equivalent sets of data for the Nb₃Sn system.^{6,9,16}

Our Nb-Al data in general show a trend of decreasing T_c and $(dH_{c2}/dT)_{T_c}$ with increasing resistivity. The data on a bulk Nb₃Al sample,¹⁷ whose resistivity is determined by normalizing its resistivity ratio to the same room-temperature resistivity $(81 \pm 2 \mu \Omega)$ cm), agrees with the linear trend seen in our thinfilm results for T_c vs $\rho(T_c)$. The earlier critical-field measurement¹⁸ on a bulk Nb₃Al sample with $T_c = 18.7$ K gives a $(dH_{c2}/dT)_{T_c}$ of 25.6 kOe/K comparable to our results as well.

The data for radiation-damaged⁹ Nb₃Al show a less rapid degradation of T_c with $\rho(T_c)$ than our data on Nb-Al in which composition was varied, although the

TABLE I. Material parameters of the Nb-Al samples. Samples are identified individually to allow specific comparison with other physical measurements carried out or to be carried out on these samples and reported elsewhere.

Sample No.	$T_c(H_{c2})$	(at. % Al)	$ \rho(T_c) $ $(\mu \Omega \text{ cm})$	$\left(\frac{dH_{c2}}{dT}\right)T_{c}$ (kOe/K)	$\eta_{H_{c2}}(T_c)$	λ
G-78-18 No. 8C-I	16.24	22.7	54.52	25.66	1.19	1.65
G-80-41 No. 4B-I	16.03	22.6	57.78	26.41	1.18	1.60
G-80-41 No. 4B-II	15.97	22.5	56.37	26.78	1.18	1.60
G-78-18 No. 7C-I	15.60	22.2	54.66	24.41	1.144	1.54
G-78-18 No. 7C-II	14.93	21.9	55.27	23.13	1.122	1.42
G-77-59 No. 5A-I	14.52	21.7	63.13	23.07	1.071	1.36
G-77-59 No. 5A-II	14.47	21.7	60.97	22.91	1.071	1.36
G-78-18 No. 5C-I	11.44	20.1	62.70	18.56	1.0	1.12
G-78-18 No. 5C-II	11.01	19.9	63.16	19.47	1.0	1.10
Seconda Na		$\gamma (mJ/cm^3K^2)$		N*(0) states	$\frac{N^{b}(0)}{\text{eV spin unit cell}}$	
Sample No.	375F			eV spin unit cell		
G-78-18 No. 8C-I	0.37 ± 0.15	$0.06 \\ 0.71 \pm 0.12$		$12.66 \pm 2.13^{1.05}$	$4.78 \pm 0.40 \\ \pm 0.81$	
G-80-41 No. 4B-I	0.37 ± 0.15	0.71 ± 0.00	06 12	$0.98 \\ 12.55 \pm 0.98 \\ 2.13$	4.83	$^{0.38}_{\pm 0.82}$
G-80-41 No. 4B-II	0.37 ± 0.15	0.73 ± 0.00	06 12	$12.89 \pm \frac{1.05}{2.13}$	4.96	$^{0.40}_{\pm 0.82}$
G-78-18 No. 7C-I	0.37 ± 0.15	0.71 ± 0.00	$\begin{array}{c} 0.06\\ 0.71 \pm 0.12 \\ \end{array} \qquad 12.60 \pm 2.13 \\ \end{array} \qquad 4$		4.96	0.39 ±0.84
G-78-18 No. 7C-II	0.37 ± 0.15	$0.68 \pm \frac{0.05}{0.11}$		0.94 12.12 ± 1.96	$5.01 \pm \frac{0.39}{0.81}$	
G-77-59 No. 5A-I	0.37 ± 0.15	$0.64 \pm \frac{0}{0.00}$	04 09	$0.73 \\ 11.30 \pm 1.60 $	4.79	0.31 ± 0.68
G-77-59 No. 5A-II	0.37 ± 0.15	0.65 ± 0.00	$0.65 \pm \frac{0.04}{1.10} \qquad \qquad 11.56 \pm \frac{0.78}{1.78}$		4.90	0.33 ±0.76
G-78-18 No. 5C-I	0.37 ± 0.15	0.58 ± 0.00	03 07	$0.52 \\ 10.35 \pm 0.52 \\ 1.25 \\$	4.88	$_{\pm 0.60}^{0.25}$
G-78-18 No. 5C-II	0.37 ± 0.15	0.61 ± 0.00	30 07	$10.77 \pm \frac{0.55}{1.30}$	5.13	0.26 ± 0.62

FIG. 2. (a) $T_c \operatorname{vs} \rho(T_c)$ and (b) $(dH_{c2}/dT)_{T_c} \operatorname{vs} \rho(T_c)$ for the Nb₃Al and the Nb₃Sn systems: (O) bulk Nb₃Al, • (•) Nb-Al this work, (\blacktriangle) Nb₃Al radiation damaged, (---) Nb-Sn (Ref. 16), and $(-\bullet-)$ Nb₃Sn radiation damaged (Refs. 6 and 9).

initial material before damage in the work of Ref. 9 was prepared in a similar fashion as in this work and has comparable T_c , $\rho(T_c)$, and $(dH_{c2}/dT)_{T_c}$. A similar deviation in the T_c vs $\rho(T_c)$ data between the cases of radiation damage^{6,9} and of varying composition¹⁶ is seen for Nb₃Sn. In fact it occurs at comparable resistivities ($\geq 55 \ \mu \Omega \ cm$) and at the comparable compositions ($\leq 23 \ at. \%$ of Sn or Al). The absence of universal behavior in the depression of T_c with structural disorder for $\rho(T_c) \geq 55 \ \mu \Omega \ cm$, which is the range over which most Nb₃Al samples actually exist, tends not to support the existence of a definitive "universal defect"¹⁹ as the source of the depression of T_c .

Compared to the Nb₃Sn system, the data on Nb₃Al show a much more sensitive dependence of T_c on $\rho(T_c)$ independently of whether the disorder is introduced by applying radiation damage or by varying the A15 composition. In addition, the $(dH_{c2}/dT)_{T_c}$ data of Nb-Sn exhibit a maximum value near a $\rho(T_c)$ of about 40-50 $\mu \Omega$ cm which is not evident for Nb-Al. Note that $\rho(300 \text{ K}) \approx 90 \ \mu \Omega$ cm of Nb₃Sn is slightly larger than that of Nb₃Al. Extrapolating the Nb-Al data back to $\rho(T_c) \sim 0$ as guided by the features of the Nb-Sn data suggests a $T_c \geq 21$ K for very clean Nb₃Al if it could be made.

The existence of a very high T_c and its sensitive degradation with disorder has been attributed^{6, 8, 9} for the A15 V₃Si and Nb₃Sn to the sharp feature in the band density of states near the Fermi level. Whether such a model accounts for the even more rapid depression of T_c with $\rho(T_c)$ in the Nb₃Al requires a detailed examination of the microscopic parameters by extracting the $N^b(0)$'s from the measured $(dH_{c2}/dT)_{T_c}$'s. The procedures and results are described in the next section.

B. Densities of states at the Fermi Level $N^{b}(0)$

Based on the data of the critical-field slope near T_c , the general procedure of evaluating various superconducting and normal-state parameters including $N^b(0)$ is well formulated.²⁰ Briefly, the slope of critical field near T_c including corrections for the electron-phonon interaction can be written as²¹

$$\frac{dH_{c2}}{dT}\Big|_{T_c} = \eta_{H_{c2}}(T_c) \left[9.55 \times 10^{24} \gamma^{*2} T_c \left(\frac{n^{3/2} S}{S_F}\right)^{-2} + 5.26 \times 10^4 \gamma^* \rho(\,\Omega\,\mathrm{cm})\right] \times [R(\gamma_{\mathrm{tr}})]^{-1} \,\mathrm{Oe}/\mathrm{K} \quad , \tag{1}$$

where $\eta_{H_{c2}}(T_c)$ is a strong-coupling factor for the magnetic pair-breaking parameter,^{22,23} of order of 1.0 ~ 1.2; γ^* is the renormalized electronic heat-capacity coefficient in erg/cm³K² and S/S_F is the ratio of the Fermi surface S to the corresponding Fermi surface S_F of a free-electron gas of density *n*. Once $(dH_{c2}/dT)_{T_c}$, T_c , $\rho(T_c)$ are measured together with suitable estimates of $\eta_{H_{c2}}(T_c)$ and S/S_F , γ^* can then be obtained.²⁴ To estimate $\eta_{H_{c2}}(T_c)$ information about the strong-coupling properties of the material is required. This is available from the tunneling studies carried out previously on similar Nb₃Al thin films.¹¹ The coupling strength $2\Delta/k_BT_c$ varies linearly from approximately the BCS value to 4.4 as the composition varies from 21.5 to 22.8 at.% Al and T_c increases from 14.0 to 16.4 K. Thus $\eta_{H_{c2}}(T_c)$ must be determined for each individual sample with different T_c and composition. This is done by using the measured $2\Delta/k_B T_c$ to calculate (T_c/ω_0) from the analytical expression of Kresin and Parkhomenko²³ based on a simple Einstein spectrum for $\alpha^2 F(\omega)$ and then using this value T_c/ω_0 to calculate the $\eta_{H_{c2}}(T_c)$. For samples with T_c less than 14.0 K where $2\Delta/k_B T_c$ is BCS-like, $\eta_{H_{c2}}(T_c)$ is taken to be 1.0.

The S/S_F is determined by requiring the extrapolated γ^{*M} from the results derived magnetically in this work to agree with the thermally derived γ^{*c} corresponding to a T_c of 18.7 K. In this procedure we have assigned a $\rho(T_c)$ of 50 $\mu \Omega$ cm for the sample in that heat-capacity measurement according to the systematic trend T_c vs $\rho(T_c)$ shown in Fig. 2(a). The S/S_F ratio is thus found to be 0.37. In the dirty limit, which is the case for all Nb₃Al samples measured, the second term in Eq. (1) dominates and the uncertainty in the factor S/S_F causes only a small uncertainty in the determination of γ^{*M^*} s.

The resultant γ^{*M} 's from this analysis are shown in Fig. 3(a) as a function of the residual resistivity $\rho(T_c)$ and are listed in Table I. The asymmetric "error bars" in the γ^{*M} 's represent the uncertainty due

FIG. 3. (a) Electronic specific-heat coefficient γ^* vs $\rho(T_c)$ and (b) band density of states at the Fermi level $N^b(0)$ vs $\rho(T_c)$, for (O) bulk Nb₃Al, (\bullet) Nb-Al this work, (---) Nb-Sn Ref. 16, and (\blacktriangle) Nb₃Al radiation damaged with corrections described in the text. The right-hand scale of γ^* in mJ/g atom K² is for Nb-Al only.

to S/S_F of 0.37 ±0.15. A further increase of $S/S_F > 0.52$ only slightly increases γ^{*M} . Therefore, within the accuracy of our estimates, a large γ^* comparable to those of the stoichiometric and ordered Nb₃Sn and V₃Si is unlikely in the presently best-made Nb₃Al even with a T_c onset ~19.0 K. The dashed line shows γ^{*M} vs $\rho(T_c)$ for Nb-Sn samples¹⁶ analyzed by the similar method which includes a possible increase of $\langle \omega \rangle$ with disorder. The reason for doing so will be discussed in detail in a later section.

The band density of states for A15 Nb-Al can be calculated from γ^{*M} 's with the relation

$$N^{b}(0)\left(\frac{\text{states}}{\text{eV spin unit cell}}\right) = \frac{17.8}{1+\lambda}\gamma^{*M}\left(\frac{\text{mJ}}{\text{cm}^{3}\text{K}^{2}}\right), \quad (2)$$

where we take 5.180 Å to be the lattice parameter of A 15 Nb₃Al. To estimate λ , we have used our tunneling data rather than Kresin and Parkhomenko's formulas,²³ since in the latter method the resolution in determining T_c/ω_0 in the weak-coupled limit is severely reduced.²⁵ From the gap inversion analysis in the tunneling studies, 11 $\langle \omega_{log} \rangle$ and λ have been generated for two junctions with a T_c of 14.0 and 16.4 K. As shown by Allen and Dynes,²⁶ a nearly linear dependence of $T_c/\langle \omega_{\log} \rangle$ on λ over a small range of λ is found true for three possible spectra of $\alpha^2 F(\omega)$. Hence λ can be obtained for samples of T_c between 14.0 and 16.4 K by interpolation for each $T_c/\langle \omega_{\log} \rangle$, where a linear decrease of $\langle \omega_{\log} \rangle$ is assumed to account for the linear increase in $2\Delta/k_BT_c$. For samples of $T_c < 14.0$ K, $\langle \omega_{\log} \rangle$ is taken to be the same as that of $T_c = 14.0$ K because the coupling strength remains BCS-like.

The resultant $N^{b}(0)$'s for the A15 Nb-A1 films are plotted in Fig. 3(b) as denoted by the solid circles. As listed explicitly in Table I, the $N^{b}(0)$'s remain essentially constant over the T_c and $\rho(T_c)$ range investigated. The changes of $N^{b}(0)$ with $\rho(T_{c})$ for the Nb-Sn samples¹⁶ analyzed by the similar fashion are also shown in Fig. 3(b) by the dashed line for comparison. Note that it is the more rapid variation of the electron-phonon correction $(1 + \lambda)$ with composition in Nb₃Al than Nb₃Sn over the range studied that has practically eliminated the variation in γ^* vs $\rho(T_c)$ seen in Fig. 3(a). The $N^{b}(0)$ data of the α -particledamaged⁹ Nb₃Al agree well with those of our Nb-Al samples of comparable T_c 's, if one includes the corrections for the $\langle \omega \rangle$'s, λ 's, and $\eta_{H_{c2}}(T_c)$'s as described earlier. In particular we take $\eta_{H_{c2}}(T_c)$ to be 1.0 for the weak-coupled samples with $T_c \leq 14.0$ K. The $N^{b}(0)$ vs $\rho(T_{c})$ data after these corrections are shown in Fig. 3(b) by the solid triangles. Thus, even with a much larger variation of resistivity $\rho(T_c)$ or disorder up to 112 $\mu\Omega$ cm, $N^{b}(0)$ still remains nearly constant and only decreases by 15% at the extreme level of damage [$\rho(T_c) \sim 112 \ \mu \Omega \ cm$].

IV. DISCUSSION

A. Microscopic parameters of Nb₃Al

The degradation of superconductivity due to disorder or defects in the high- $T_c A 15$ superconductors has been intensively studied both theoretically²⁷ and experimentally.^{6,9,19} The prevailing model^{6,28} explaining such behavior is based on the idea that resistive-lifetime broadening of the density of states with the structural disorder is the fundamental factor in reducing T_c . However, in the case of the A15 Nb₃Al, a rapid degradation of T_c with disorder is found also (nearly twice as fast as those of Nb₃Sn) in both our Nb-Al films and the radiation damaged⁹ Nb₃Al, and yet the $N^{b}(0)$'s derived from the analysis of the critical-field data remain approximately constant. Thus changes in $N^{b}(0)$ cannot account for the depression of T_c from 16.2 to 4 K. Hence in the McMillan equation $\lambda = N(0) \langle I^2 \rangle / M \langle \omega^2 \rangle$, λ cannot be simply proportional to $N^{b}(0)$, and a substantial decrease in the ratio $\lambda/N^{b}(0) \propto \langle I^{2} \rangle / \langle \omega^{2} \rangle$ (by as much as 50%) must be involved. As shown explicitly in the tunneling studies, the decrease of T_c from 16.4 to 14.0 K with the reduction of the ratio $2\Delta/k_BT_c$ from 4.4 to a BCS-like value mainly results from the phonon mode stiffening by 25%. If we assume $\langle \omega^2 \rangle$ remains constant for $T_c \leq 14.0$ K where the coupling strength stays weakly coupled, the reduction in the ratio $\langle I^2 \rangle / \langle \omega^2 \rangle$ mostly arises from a decrease of $\langle I^2 \rangle$ by 40%. These variations of the microscopic superconducting parameters, λ , $N^{b}(0)$, $\lambda/N^{b}(0)$, $\langle \omega^{2} \rangle$, and $\langle I^2 \rangle$ for Nb₃Al with respect to T_c are shown in Fig. 4(a) by the solid line. Corrections related to any possible continuing increase of $\langle \omega^2 \rangle$ with disorder for $T_c < 14.0$ K affects only the relative weightings between $\langle I^2 \rangle$ and $\langle \omega^2 \rangle$.

The modest value of $N^{b}(0)$ in A15 Nb₃Al and its insensitivity to structural disorder raises the question of the relative importance of $N^{b}(0)$ to the high- T_{c} superconductivity of Nb₃Al. As a consequence it is reasonable to ascertain how sensitive such results are to the analysis used, particularly since we include the unconventional feature of changes in $\langle \omega \rangle$'s with disorder in the analysis. In Fig. 4(a), we show the resultant microscopic parameters (dotted curves) analyzed assuming no phonon softening following Orlando et al.²¹ The data for α -particle-damaged Nb₃Al analyzed by Ghosh and Strongin⁹ (dash-dotted curves) are also shown. These latter authors used a larger $\langle \omega_{log} \rangle$ to estimate λ , as suggested from the neutron work,²⁹ and took $\langle \omega_{log} \rangle$ to be constant throughout. They reached the similar conclusion of the decrease of $\langle I^2 \rangle / \langle \omega^2 \rangle$ with disorder by about 25%. Comparing these three different analyses, the following conclusions can be drawn quite unambiguously: Any variation in $N^{b}(0)$ with T_{c} is indeed rather mild and can even be considered negligible. As a

FIG. 4. Microscopic parameters λ , $N^b(0)$, $\lambda/N^b(0)$, $\langle \omega^2 \rangle$, and $\langle I^2 \rangle$ as a function of T_c for various A15 compounds where $N^b(0)$, $\langle \omega^2 \rangle$, and $\langle I^2 \rangle$ are in units of states/eV spin unit cell, (meV)², and (eV/Å)², respectively. The solid lines shown are the data analyzed by the method in this paper. The dotted lines are for the same data analyzed by assuming a constant $\langle \omega \rangle$ as in Ref. 21. The dash-dotted line corresponds to the data of radiation damaged Nb₃A1 analyzed by Ghosh and Strongin (Ref. 9).

result a substantial decrease of $\langle I^2 \rangle$ from 25% to as much as 55% is necessary to account for the lowering of T_c .

The controversy regarding the heat-capacity results² of A15 Nb₃Al can be reconciled based upon the above conclusions, since we find $N^{b}(0)$ remains nearly constant regardless of the amounts or the kinds of defects introduced. The increase in γ^* for Nb₃Al of even improved quality, as gauged by the narrower transition width in the heat-capacity measurement, is expected not to be substantial. This has been demonstrated in the more recent heat-capacity measurements^{12,30} on Nb₃Al with a T_c onset 18.7 or 19.0 K and a relatively narrow transition width of ~ 0.50 K. Furthermore, the heat-capacity measurement on the radiation damaged Nb₃A1 ($T_c = 7.8$ K) of Cort et al.¹² showed a slight decrease of $N^{b}(0)$ and a substantial increase of the Debye temperature, thus supporting the stiffening of phonons with disorder that we found in the tunneling studies.

B. Comparison with other A15 superconductors

To understand further the systematics in the microscopic parameters of Nb₃Al, we compare our results with other high- $T_c A 15$ compounds. The systematic changes in the parameters of Nb₃Sn obtained by carrying out similar analyses on critical-field data near T_c are shown in Fig. 4(b).^{16,21} The analysis²¹ which assumes a constant $\langle \omega \rangle$ leads to an essentially constant ratio $\lambda/N(0)$ and hence a constant $\langle I^2 \rangle$ over a variation of T_c from 17.8 to 8 K. However, tunneling studies in both Nb₃Sn (Ref. 31) and Nb₃A1 (Ref. 11) find that the coupling strength increases rapidly as the composition approaches stoichiometry. This similarity suggests the possibility of mode softening occurring in Nb₃Sn, also. Using the proximity-gap inversion analysis³² on earlier Nb₃Sn tunneling data³³ do show evidence³⁴ for such mode softening. The analysis including such an increase of $\langle \omega \rangle$ with disorder gives a milder decrease of $N^{b}(0)$ of only 30% and some reduction of $\lambda/N^b(0)$. However, $\langle I^2 \rangle$ remains constant. Therefore both methods of analysis lead to the same conclusion of no variation of $\langle I^2 \rangle$ with T_c in Nb₃Sn. Lacking quantitative tunneling results on V_3S_1 , in Fig. 4(c) we show only the results of critical-field data analyzed²¹ by assuming a constant $\langle \omega \rangle$. A rather large $\omega_0 \sim 24$ meV is used in this analysis as suggested from the phonon spectrum in the neutron work.²⁹ The very slight reduction of λ , however, with the very substantial decrease of $N^{b}(0)$ with disorder leads to an increase of $\lambda/N(0)$ or $\langle I^2 \rangle$ to be a factor of 1.8 as large. As mentioned earlier, the reduction of the resolution in determining ω_0 from $2\Delta/k_BT_c$ in the weak-coupled case²⁵ can lead to subsequent uncertainty in determining λ from this ω_0 and T_c . For example, ω_0 's of 18 and 24 meV both give nearly the same $2\Delta/k_BT_c$, yet, if the smaller $\omega_0 \sim 18$ meV is used for the initially ordered V₃Si, a nearly constant value of $\lambda/N^{b}(0)$ could result and both $\langle \omega^{2} \rangle$ and $\langle I^2 \rangle$ have to increase proportionally as T_c is reduced.

As for the even more metastable A 15 compounds Nb₃Ge, which is not actually shown in Fig. 4, both the heat-capacity⁴ and critical-field^{6,9} measurements give a low $N^b(0) \sim 4.0$ states/(eV spin unit cell). The latter experiment of Ghosh and Strongin⁹ also showed the evidence of a large decrease of $\lambda/N^b(0)$ by 50% as T_c is reduced from 20.9 to 11.0 K. This observation, coupled with the strong-coupling feature^{31,35} of Nb₃Ge found in the tunneling experiments, suggests a similarity between Nb₃Ge and Nb₃Al. Thus the systematic variations in the microscopic parameters of Nb₃Ge are expected to behave very similarly to those of Nb₃Al shown in Fig. 4(a).

Although one may question the decomposition of the electron-phonon coupling parameter λ into factors of $N^b(0)$, $\langle I^2 \rangle$, and $\langle \omega^2 \rangle$ in such complicated systems as the A15 compounds, the systematic trends shown in Fig. 4 are very suggestive. From the stable A15 compounds V₃Si and Nb₃Sn to the nearly stable Nb₃Al and on to the metastable Nb₃Ge, T_c^{max} increases from 17.2 to 23.2 K, but $N^b(0)$ contrarily becomes smaller. Thus the ratio $\lambda/N^b(0) \propto \langle I^2 \rangle /$ $\langle \omega^2 \rangle$ progressively increases, although for any individual material introducing disorder leads to either an increase or a constant or even a decrease of $\lambda/N^b(0) \propto \langle I^2 \rangle/\langle \omega^2 \rangle$. These results are in contrast to the correlation $\lambda \propto N^b(0)$ previously obtained³⁶ among V₃Si_{1-x}Ga_x ($0 \leq x \leq 1$) by chemical substitutions and do not support the picture where $N^b(0)$ plays the only essential role.

It is believed that the very strong electron-phonon interaction, as characterized by the large $\langle I^2 \rangle / \langle \omega^2 \rangle$, may lead to the structural instability or phase decomposition,³⁷ as been seen in the Pb-Bi system.³⁸ Such a possibility agrees with the systematic trend observed in going from V₃Si to Nb₃Sn to Nb₃Al and Nb₃Ge. In addition a tendency toward structural instability appears to correlate with the increase of the residual resistivity $\rho(T_c)$ with $\langle I^2 \rangle / \langle \omega^2 \rangle$ that we have observed among these A15 materials for a given composition. It might be further argued that the degree of difficulty in preparing homogeneous high- T_c materials should increase due to this tendency toward instability and lead to a limitation on the achievable T_c . The saturation behavior of T_c observed recently in Nb₃Al near the stoichiometric composition³⁰ could be understood as an expected outcome of such, although alternative explanations have been proposed.30

The inevitably large resistivities in all A15 Nb₃A1 made to date presumably prevent an experimental confirmation of the resistive lifetime broadening model and an unambiguous determination of $N^{b}(0)$ for well-ordered, stoichiometric Nb₃Al. Lacking data on clean samples [i.e., with $\rho(T_c) < 50 \ \mu \Omega \ cm$] in both the radiation damaged⁹ Nb₃Al and the Nb-Al cases, any extrapolation of $N^{b}(0)$ vs $\rho(T_{c})$ data to $\rho(T_c) \sim 0$ is largely arbitrary. Consequently the possibility of a high $N^{b}(0)$ in very clean Nb₃Al is not ruled out. It is clear, however, that such a high $N^{b}(0)$ comparable to Nb₃Sn is not solely responsible for the extrapolated high $T_c > 21$ K, which presumably must also involve the changes in $\langle I^2 \rangle / \langle \omega^2 \rangle$ discussed above. On the other hand, the presence of such a peak would be consistent with band-structure calculation.³⁹ The measured low $N^{b}(0)$'s in all Nb₃Al samples would then result from the smearing of the density of states with the large resistivities, as suggested by the resistive-lifetime broadening model.^{6, 27, 28}

It is important to recognize that the present analyses are carried out within the conventional framework of the strong-coupled electron-phonon theory of superconductivity which neglects many potential real-metal effects. For example, the formal (Eliashberg) theory is derived upon the assumption of the constant density of states near the Fermi level $\sim \omega_D$. Recently, Pickett and Klein⁴⁰ have generalized the Eliashberg strong-coupling theory by including the fine structure in the density of states and come to the conclusion that T_c (of Nb₃Sn, for example) is much

less sensitive to the fine variation in $N^{b}(0)$ due to inherent averaging processes than is widely appreciated. Moreover, the possible effects of spin fluctuations from the electron-electron interaction have been evoked⁴¹ to describe self-consistently the critical fields of V₃Ga. These results also suggest that T_c should be affected, not only in V₃Ga itself but in Nb₃Sn and V₃Si as well. If the suggested spin fluctuations are included in the analysis for the microscopic parameters of these materials, the result is an increase in λ (electron-phonon) and decrease in $N^{b}(0)$ for high- T_{c} V₃Si, V₃Ga, and Nb₃Sn. Although these many-body corrections can change the values of the microscopic parameters, our initial estimates indicate that they would not affect the conclusion that $\langle I^2 \rangle / \langle \omega^2 \rangle$ gets progressively larger as one goes toward the more unstable materials.

The microscopic parameters of the transition-metal compounds have also been discussed from the theoretical point of view. For instance, Hanke et al.⁴² suggested that the tendency of forming covalent bonding due to the p-d hybridization can lead to a resonancelike increase of the nonlocal dielectric function and to a simultaneous increase of $\langle I^2 \rangle$ and a decrease of $\langle \omega^2 \rangle$. On the other hand, calculations based on a nonorthogonal tight-binding scheme by Weber and Varma⁴³ showed the phonon anomaly could be equally well caused by the anisotropic electronic band topologies. Not being in a position to judge the relative merits of these theories we simply note that the former model of Hanke et al.⁴² does provide a simple physical explanation of the systematic trends of $\langle I^2 \rangle$ and $\langle \omega^2 \rangle$ observed in Nb₃A1 and presumably Nb₃Ge. Also it does not require the existence of a very large $N^{b}(0)$ to give high- T_{c} superconductivity. Evidence for the tendency of the formation of the covalent bonds in the metastable A15's has been addressed previously by Tsuei et al.⁷ and Cargill et al. 44

An alternative pairing mechanism based on the exchange of acoustic plasmons has been suggested by Tutto and Ruvalds⁴⁵ and Soukoulis and Ruvalds.⁴⁵ Although there is yet no direct experimental evidence supporting or disproving this model, our results, in fact, have shown that high T_c and strong coupling in Nb₃Al and Nb₃Ge can be adequately described within the conventional strong-coupling electron-phonon theory.

In conclusion, in this work we have proceeded from a careful and thorough analysis of the data to obtain the microscopic parameters describing the high- T_c superconductivity in Nb₃Al. A further comparative study including V₃Si and Nb₃Sn shows a more intriguing interplay among the parameters $N^{b}(0), \langle \omega^{2} \rangle$, and $\langle I^{2} \rangle$ of these A15 compounds than generally assumed, although, in general, they all exhibit a sensitive degradation of T_c with structural disorder. Moreover, although the conventional strong-coupling superconductivity theory that our analysis is based upon may be subject to further refinements or modifications, it is nonetheless evident that the conventional model, in which a peak in the band density of states near the Fermi level plays the essential role in determining the properties of these superconductors, is not sufficient in general. We conclude therefore that a fully adequate explanation of the systematics of the superconducting properties of the high- $T_c A 15$ compounds as a class appears to require other essential ingredients discussed in this paper.

ACKNOWLEDGMENTS

We would like to acknowlege many useful and informative discussions with T. H. Geballe and R. H. Hammond as well as for their help in this present work. We also thank S. Foner and E. J. McNiff, Jr., at the Francis Bitter National Magnet Laboratory for carrying out the high-field measurements. The research reported here was supported by the Department of Energy through Contract No. DE-AT03-76ER71043. One of us (J.K.) would also like to acknowledge partial support from the Air Force Office of Scientific Research Contract No. F49620-78-C-0009.

- *Present address: Bell Laboratories, Murray Hill, N.J. 07974. *Also in the Dept. of Physics.
- [‡]Also in the Dept. of Electrical Engineering.
- ¹For a more complete review, see Weger and Goldberg, Solid State Phys. <u>28</u>, 1 (1973).
- ²R. H. Willens, T. H. Geballe, A. C. Gossard, J. P. Maita, A. Menth, G. W. Hull, Jr., and R. R. Soden, Solid State Commun. 7, 837 (1969).
- ³G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Solid State Commun. <u>26</u>, 417 (1978).
- ⁴E. Ehrenfreund, A. C. Gossard, and J. H. Wernick, Phys. Rev. B **4**, 2906 (1971).
- ⁵G. S. Brown, L. R. Testardi, J. H. Wernick, A. B. Hallak, and T. H. Geballe, Solid State Commun. <u>23</u>, 875 (1977).

- ⁶H. Weismann, M. Gurvitch, A. K. Ghosh, H. Lutz, O. F. Kammerer, and M. Strongin, Phys. Rev. B <u>17</u>, 122 (1978).
- ⁷C. C. Tsuei, S. von Molnar, and J. M. Coy, Phys. Rev. Lett. <u>41</u>, 664 (1978); and C. C. Tsuei, in *Superconductivity in d- and f-Band Metals*, edited by H. Suhl and M. B. Maple (Academic, New York, 1980), p. 233.
- ⁸R. Viswanathan and R. Caton, Phys. Rev. B <u>18</u>, 15 (1978);
 A. Guha, M. P. Sarachik, F. W. Smith, and L. R. Testardi, Phys. Rev. B <u>18</u>, 9 (1978).
- ⁹A. K. Ghosh and M. Strongin, in *Superconductivity in d- and f-Band Metals*, edited by H. Suhl and M. B. Maple (Academic, New York, 1980), p. 305.
- ¹⁰J. Kwo, R. H. Hammond, and T. H. Geballe, J. Appl. Phys. <u>51</u>, 1726 (1980).

- ¹¹J. Kwo and T. H. Geballe, Phys. Rev. B <u>23</u>, 3230 (1981).
- ¹²B. Cort, G. R. Stewart, A. L. Giorgi, M. P. Maley, C. L. Snead, Jr., A. R. Sweedler, and S. Moehlecke, Bull. Am. Phys. Soc. <u>26</u>, 479 (1981).
- ¹³R. H. Hammond, IEEE Trans. Magn. MAG-11, 201
- (1975); see also J. Vac. Sci. Technol. 15, 382 (1978).
- ¹⁴W. A. Lanford, R. C. Dynes, J. M. Poate, J. M. Rowell, and P. H. Schmidt, Appl. Phys. Lett. <u>32</u>, 339 (1978).
- ¹⁵A. L. Fetter and P. C. Hohenberg, in *Superconductivity*, edited by R. E. Parks (Marcel Dekker, New York, 1969), Vol. II, p. 866.
- ¹⁶T. P. Orlando, J. A. Alexander, S. J. Bending, J. Kwo, S. J. Poon, R. H. Hammond, M. R. Beasley, E. J. McNiff, and S. Foner, IEEE Trans. Magn. <u>MAG-17</u>, 368 (1981).
- ¹⁷G. W. Webb, Z. Fisk, J. J. Engelhardt, and S. D. Bader, Phys. Rev. B <u>15</u>, 2624 (1977).
- ¹⁸S. Foner, E. J. McNiff, Jr., B. T. Matthias, T. H. Geballe, R. H. Willens, and E. Corenzwit, Phys. Lett. <u>31A</u>, 349 (1970).
- ¹⁹L. R. Testardi, J. M. Poate, and H. J. Levinstein, Phys. Rev. B <u>15</u>, 2570 (1977).
- ²⁰N. R. Werthamer, in *Superconductivity*, edited by R. E. Parks (Marcel Dekker, New York, 1969), Vol. I, p. 321.
- ²¹T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).
- ²²D. Rainer and G. Bergmann, J. Low Temp. Phys. <u>14</u>, 501 (1974).
- ²³N. F. Masharov, Sov. Phys. Solid State <u>16</u>, 1524 (1975)
 [Fiz. Tverd. Tela <u>16</u>, 2342 (1974)]; V. Z. Kresin and V. P. Parkhomenko, *ibid.* <u>16</u>, 2180 (1975) [*ibid.* <u>16</u>, 3363 (1974)]. The particular results of this paper of importance here are

$$\frac{2\Delta}{k_B T_c} = 3.53 \left[1 + 5.3 \left(\frac{T_c}{\omega_0} \right)^2 \ln \frac{\omega_0}{T_c} \right]$$

and

$$\eta_{H_{c2}}(T_c) = 1 + \left(\frac{\pi T_c}{\omega_0}\right)^2 \left[0.6 \ln \frac{\omega_0}{T_c} - 0.26\right]$$

²⁴See Ref. 21 for a detailed discussion of the procedures involved.

- ²⁵B. Mitrovic, C. R. Leavens, and J. P. Carbotte, Phys. Rev. B 21, 5048 (1980).
- ²⁶P. B. Allen and R. C. Dynes, Phys. Rev. B <u>12</u>, 905 (1975).

- ²⁷A. S. Aleksandrov, F. F. Elsein, and M. P. Kazeko, Sov. Phys. Solid State <u>21</u>, 1181 (1979) [Fiz. Tverd. Tela <u>21</u>, 2062 (1979)].
- ²⁸L. R. Testardi and L. F. Mattheiss, Phys. Rev. Lett. <u>41</u>, 1612 (1978).
- ²⁹B. P. Schweiss, B. Renker, E. Schneider, and W. Reichardt, in *Superconductivity in d- and f-Metals*, edited by D. H. Douglas (Plenum, New York, 1978), p. 189.
- ³⁰J. L. Jorda, R. Flukiger, A. Junod, and J. Muller, IEEE Trans. Magn. <u>17</u>, 557 (1981).
- ³¹D. F. Moore, R. B. Zubeck, J. M. Rowell, and M. R. Beasley, Phys. Rev. B <u>20</u>, 272 (1979).
- ³²E. L. Wolf, John Zasadzinski, J. W. Osmun, and Gerald B. Arnold, J. Low Temp. Phys. <u>40</u>, 19 (1980); Gerald B. Arnold, John Zasadzinski, J. W. Osmun, and E. L. Wolf, *ibid.* <u>40</u>, 225 (1980).
- ³³D. F. Moore, M. R. Beasley, and J. M. Rowell, J. Phys. (Paris) <u>39</u>, C-1390 (1978), Suppl. 8.
- ³⁴J. Kwo, M. R. Beasley, T. H. Geballe, R. H. Hammond, and T. P. Orlando, Bull. Am. Phys. Soc. <u>26</u>, 211 (1981).
- ³⁵J. M. Rowell and P. H. Schmidt, Appl. Phys. Lett. <u>29</u>, 622 (1976).
- ³⁶F. Y. Fradin and T. D. Williamson, Phys. Rev. <u>10</u>, 2803 (1974).
- ³⁷W. L. McMillan, Phys. Rev. <u>167</u>, 331 (1968).
- ³⁸R. C. Dynes and J. M. Rowell, Phys. Rev. B <u>11</u>, 1884 (1975).
- ³⁹B. M. Klein, D. A. Papaconstantapoulos, and L. L. Boyer, in *Superconductivity in d- and f-Band Metals*, edited by H. Suhl and M. B. Maple (Academic, New York, 1980), p. 455.
- ⁴⁰W. Pickett and B. M. Klein (unpublished).
- ⁴¹T. P. Orlando and M. R. Beasley, Bull. Am. Phys. Soc. <u>26</u>, 480 (1981).
- ⁴²W. Hanke, J. Hafner, and H. Bilz, Phys. Rev. Lett. <u>37</u>, 1560 (1976).
- ⁴³W. Weber, in Superconductivity in d- and f-Band Metals, edited by H. Suhl and M. B. Maple (Academic, New York, 1980), p. 131; C. M. Varma and W. Weber, Phys. Rev. Lett. <u>39</u>, 1094 (1977).
- ⁴⁴G. S. Gargill, III and C. C. Tsuei, in *Rapidly Quenched Metals III*, edited by B. Canton (The Metal Society, London, 1978), p. 337.
- ⁴⁵I. Tutto and J. Ruvalds, Phys. Rev. B <u>19</u>, 5641 (1979); C.
 M. Soukoulis and J. Ruvalds, J. Low Temp. Phys. <u>40</u>, 89 (1980).