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The problem of a uniaxial type-II superconductor near the upper critical field is considered in

the framework of the Ginzburg-Landau equations with a phenomenological mass tensor. The
currents are shown to flow in planes which are in general no longer orthogonal to the direction

of the vortex axes as in the isotropic case; the inclination angle is obtained in terms of anisotro-

pic masses. The magnetic field has a component normal to the vortex axes; equations are

derived which relate the transverse and axial fields. The average value of the transverse field

(the transverse induction) vanishes. The constitutive relation between the induction and the

magnetization is obtained. The components of the magnetization normal and parallel to the

vortex direction are simply related in terms of the effective masses.

I. INTRODUCTION
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Here p is the order parameter, A is the vector poten-
tial of the local magnetic field H, and n and P are the
coefficients in the GL free-energy expansion, which
can be expressed in terms of the thermodynamic crit-
ical field H, and the order parameter lgol in the ab-

sence of the magnetic field:
l
n l/p =

l pol, o.2/p

=H,'/8m. The inverse mass tensor Mk' has the
principai values 1/M, (i = 1, 2, 3). The usual summa-
tion convention over the indices repeated twice is

adopted hereafter.
Following Ref. 5, we choose lgol and H, &2 stahe

units of lPl and H, respectively. As the unit of
length we take k = (Mc'/16me2lgol2)'i' with the
mean mass M = (M~M2M3)' 3. This choice6 is arbi-

trary but convenient as is seen below. The GL equa-
tions now read
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Strongly anisotropic type-II superconductors have
been studied already for some time. The dependence
of the upper critical field H, 2 upon the magnetic field
orientation in layered (e.g. , NbSe2) crystals is described
reasonably well by the Ginzburg-Landau (GL) equa-
tions with a phenomenological mass tensor M;k'

(GL1):
t 1
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where II = (i x) ' V —A. Here all quantities are
dimensionless, and they are denoted by the same
letters as their dimensional counterparts. The
GL parameter is defined in the usual way:
~ =2J2eH, X'/te. Note, however, that ~ is expressed
in terms of M via X . The tensor p, ;k =MM;k' has the
eigenvalues p, ;=M/M;; therefore, p, ~p, 2jll3 —1.

Tilley has shown that H, 2 can be found from Eq.
(1) by neglecting the term gl Pl' and solving the
eigenvalue problem for the resulting linear equation,
i.e., essentially in the same fashion as in the isotropic
case (see, e.g. , Ref 7). O. ne finds that H, 2

= K,

where x, which replaces the GL parameter K;, of the
isotropic case, depends on the field orientation in the
crystal as specified in Refs. 2 and 6 [see Eq. (26)].
Moreover, it is stated in Refs. 2, 6, and 8 that all

other K-dependent results of the isotropic GL theory
can be translated to the anisotropic case if one re-
places K;, by K.

However, as was pointed out first by Takanaka, a
new transverse component H& of the magnetic field
arises in the Abrikosov vortex in an anisotropic ma-

terial, unless the vortex direction coincides with one
of the principal crystal axes. In the vicinity of the
lower critical field H, ~ the transverse field has been
discussed recently in Ref. 10. This field cannot be
obtained from the isotropic theory by a simple re-
placement of K;, by its angular dependent analog K."
Moreover, Hq is not necessarily small. For example,
for a vortex at 45' to the layers of NbSe2 (M, = Mq
=0.1M3) in the low-field region, Ref. 10 predicts

(Hz ) =0.25 (H,'), where H, is the usual axial field
in the vortex. Therefore, Hq should be observable in

neutron scattering and nuclear magnetic resonance
experiments. Both these techniques are applicable in

fields not too close to H, 2.

Theoretically, however, the domain near H, 2 is the
simplest one. Besides, already here one can observe
all the characteristic features of the field distribution.
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II. TRANSFORMATION OF COORDINATES

We consider now a uniaxial layered crystal. In the
system of coordinates (X, Y, Z), where Z is the axis
normal to the layers, the tensor p, ;k is diagonal

(p, = p~ = p, 1, p,„=p2). We are interested in an ar-

ray of vortices directed arbitrarily with respect to the
crystal axes. Let us denote by z the direction of the
vortex axes and introduce another system of Carte-
sian coordinates (x,y, z), which is rotated with respect
to the (X, Y,Z) axes through an angle 8 about the Y

axis (see Fig. l). All physical quantities related to
the lattice of vortices are independent of z. In the
frame (xy,z) the nonzero p's are

pgg p ] cos '9 + p3 sin'8

p'yy p' ) p'~ p'ys 0

p, = p, ~ sin 8+ p,3cos'8,

p, = (p1 —p2) sinHcos8

(3)

Roughly speaking, the field differences are simply
amplified as one goes down from H, 2. The main pur-
pose of the present paper is to determine how the an-
isotropy affects the field and current distributions in
the vortex lattice near H, 2. For the sake of simplicity
we consider only layered materials (M1= M2 (M2).
However, all results are applicable to fiber materials
as well (M1 = M2 )M3).

Let us choose the transformation

x'=ax, x2=by, x =cx+dz

The new coordinates xj have the following important
features: (a) the new x' axis coincides with the old z

axis (this is important because of the exclusive role
of the z axis in the problem); and (b) any z-

independent quantity q in the old frame is x' in-

dependent in the new one. Indeed:

Bq Bq Bx Bg Bp Bq Bz

Bx B B ByB BB
because Bx/Bx'= By/Bx'=0 and Bq/Bz =0,

Obviously, the new system is no longer orthogonal:
the x' and x' axes coincide with the y and z axes,
while the new x' axis is inclined with respect to the
old x direction (see Fig. l). Moreover, the scales
along the new axes are no longer the same, so that in

the new system one must distinguish between co-
and contravariant representations of vectors and ten-
sors.

We want the tensor p, to assume the "unitlike"
form in the new coordinates:

100
p'k=0 1 0

,0 0 1,

This gives four independent conditions for the four
unknown coefficients a, b, c,d:

The relations

2 =pxxpsz pxz = plp3~ pox+ psz = pl+ p3

p, ~p,3
= 1 (4)

pll 1 a2p p22 1 = b2p

p, =1 =c p, +2cdp, +d p, ,
p"=0=a(cp +dp, )

layer s

zi

x'

FIG. 1. The axes X, Y,Z are the principal directions of the

crystal and the axis z gives the direction of the vortices. The
current flows in planes parallel to the plane x',x2.

are useful in following calculations.
The solutions of the GL equations near H, 2 are

well known for the isotropic case where p, jj, 5jk. To
make use of this knowledge in our problem, we shall
find a new system of coordinates where p, j~ has a
"unitlike" form. We shall clarify this statement below.

Using Eqs. (4), we obtain

-1/2 b -1/2 -1/2

p p12 —12 d ( )12

i.e., the linear transformation with the desired
features does exist: Eqs. (5) and (8) determine it
completely. The inverse transformation is

x =x'/a, y =x2/b, z =x'/d —x'c/ad

To avoid misunderstanding, we note here that the
form (7) does not imply that p'k is the unit Kroneck-
er tensor Skj. It simply means that in the particular
frame chosen, the diagonal components of p,

j~ are un-

ity and the others are zero. When transformed back
to the system (x,y, z), p,

'" again assumes the form
(3), unlike the unit tensor 5/„whi hrcemains un-

changed. Our choice of the contravariant tensor p,
'

as being "unitlike" in the new coordinates is a
matter of convenience only. We could have chosen
the covariant p, ;k's as "unitlike. " Then the coeffi-
cients a, b, c,d would have been different, whereas all
the final physical results would have remained the same.
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The geometry in the new frame is completely
determined by its metric tensor g;k, the latter is de-
fined by invariance of the line element: dx +dy
+ dz2 = g;kdx'dxk. Making use of Eqs. (9) and (8), we
obtain

gik =

i

2 —1Pxx+ PxzPxx

0 IM1

)
gxggxr P1

—1 —1/2
gxxPxr JM1

gxx gl

(lo)

eiki ikRe(y+~ y)
Bh(

gxk

We use here corresponding lo~er case symbols h, a,
m, etc. , to denote co- and contravariant components
of vectors denoted by capitals H, A, H, etc. , in the
original frame (x,y, z). Thus, the covariant vector m,

1S

All the g;k are constants; i.e., the new space is flat,
and covariant derivatives reduce to partial ones. It is
also easy to verify using (4) that det(gik) =1. This
fact is of special convenience, because the Levi-Civita
tensor e'k', transformed from (x,y, z) to the x' system,
preserves its 0, +I form (see, e.g. , Ref. 12).

In an arbitrary flat system of coordinates with

det(g;k) =1, Eqs. (1) and (2) read

e'" = Re(y'm;i')
9h(
gxk

(19)

This form of the GL equations is not covariant; it oc-
curs only in our special coordinates. Indeed,
rr;rr;=(rri) +(a2) +(n3) is not an invariant.
Equation (19) relates contravariant components on
the left-hand side (the current) to the covariant ones
on the right.

Equation (18) looks exactly like the isotropic first
GL equation, II'hali = alii(1 —~i'~'); i.e., we succeeded
in removing the anisotropic masses from this equa-
tion. This is, however, not the case for Eq. (19),
even though the masses do not appear there explicit-
ly.

' In fact, they are present in this equation; this be-
comes obvious if one rewrites Eq. (19) as an equa-
tion for only the covariant (or contravariant) com-
ponents of the vector potential:

e ikl g h m eik(e mPqg
9xk '

Bxk(jx&

This is not necessarily the case for derivatives of the
vector potential and the phase X of the order parame-
ter: they both can be z dependent, unlike their
gauge-invariant combination (1/K) V X —A.

Because of the special form of /i,
'k given by Eq. (7),

the GL equations (ll) and (12) read in the new
frame:

m'; rr; Q
= $( I —

I gati I )

The contravariant components of the magnetic field
are

T

=Re Q'
IK

—a; Q (2o)

hi elk(
gal
Bxk

(14)
where gi is mass dependent [see Eq. (10)].

the covariant ones are h; =g;kh". Note that there is
no connection as simple as (14) between h; and the
vector potential; e.g. , h;=e;k, (Ba'/Bx )g "

The contravariant components of any vector are
transformed in the same way as the coordinates; e.g. ,
from Eqs. (5) and (8) we obtain for the magnetic
field

III. UPPER CRITICAL FIELD

,
—a;

1

IK
(21)

To demonstrate how our method works, we first
turn to Eq. (18) at H, q, where ~i'(z can be neglected:

h3 I/2 i/2(H —iH )

For the covariant components we obtain

h, =p, '/'(H„+p, /i, 'H, ), h, =/i, I/!Hy,

h3=(piiti, ) '/'H,

(15)

(16)

The field is uniform here: H„=Hy=0 Hz=H&2 or,
as is seen from (15), h' = h2 =0 and

h'=(pi/i, )'/'H, 2 . (22)

The connection (14) between h' and a, is the same as
that of H and A in Cartesian coordinates; therefore
we can choose the gauge

Being covariant, the operator '7 also transforms ac-
cording to Eq. (16). However, for a quantity in-

dependent of z in the original frame, we have simpler
relations:

a1=a3=0, a2=h x3 1 (23)

The following treatment is the same as that for the
isotropic case'. because x' does not appear in Eq.
(21),

t/2 1/2 0 (17)
Qy i' = ((x',x') exp(ik, x') (24)
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where k3 is a constant. Substituting this in Eq. (21),
we obtain the oscillator equation with eigenvalues

o„~,= h (2n + I)/K+ (k3/K) . In our case n„i,, =1,
which gives h' = (K —k32/K)/(2n +1); i.e., for n =0
and

k3 =0

we have the maximum possible h3=~. Equation
(22) now yields

Hg2 = K = K( pip~) (26)

This is the Tilley result. The angular dependence
of p is given in (3), so that explicitly H, 2

= (K/p, i)
x [cos28 + (p3/pi)sin28] 'i2. This dependence fits
quite well the H, (28) observed in NbSe2 (Refs. 3 and
4) if p, i/p3—- 11.

IV. CURRENT (a„-II«a„)
Let us turn now to Eq. (19). First we rewrite it in-

terms of i[i= v co e xp(i X), the gauge-invariant super-
momentum q;, and the current density j'.

q, =— . —a;, j'=e'
K Bx I Bxk

(27)

(Here we use cJ2H, /4n X as the unit of current den-
sity. ) We obtain

j =cuq~, j =coq2
~ 1 2

j = cuq3

(28)

There is a substantial difference between the impli-
cations of Eqs. (28) and (29). To see this, we con-
sider the supermomentum in the original frame,
Q = (I/K) CX —A. In the isotropic case Q has only x
and y components; ~Q ~

diverges near the vortex axis
as (Kr) ', where r'=x'+y', and decreases to a
value of order unity near the cell boundary. This is
correct even at H, 2. The anisotropy does not change
this situation drastically; q ~ and q2 remain large even
at H, 2. Unlike q~ and q2, however,

currents vanish only if the vortices are oriented along
one of the principal crystal directions (ii=0, m/2) be-
cause of the factor p, = (p, i

—pi) sin&cos8. For
strong anisotropy, J, is of the same order of magni-
tude as J„, if 8 is not close to 0 or m/2; e.g. , for
NbSei the maximum value of p, /p, is about 1.5,
which is achieved at 8 =73'.

Consider now a plane passing through the y
axis at an angle P with respect to the xy plane.
The unit vector normal to this plane is i
= (—sing, 0, cos$) and ri J = —J„sing+ J, cos$
= J, cosset [I —( p, /p, ) tan@]. We see that n I =0
for

taniti= p, /p (32)

i.e., the current lines are parallel to this plane. Thus,
the remarkably simple relation (31) also can be for-
rnulated as follows: in a system of parallel vortices in
a uniaxial crystal, vortex currents flow in a plane in-
clined with respect to the plane normal to the vortex
axes. The inclination angle is given by Eq. (32).
This angle is in general not small: in NbSe2 $
reaches the maximum value of =57' at the vortex
orientation 8 = 73'.

The current plane coincides with the plane x'x in
the coordinates x' used above. This follows, e.g. ,
from j' =0. It is clear now why the nonorthogonal
frame (x',x2,x') proved to be so convenient in our
problem. In Fig. 1, the intersection of the current
plane with the figure plane is shown as the axis x'.
The angle gati

( Rat any 8 (0 ( 8 ( m/2); this is seen
from Eq. (32) written explicitly

BHx

By

IJI xs BHs

By

Applying B/By to bo'th sides here and using
A=0, one gets

(34)

tanit = tan&
p)+p3tan 8

Equation (31) can be rewritten in terms of the field
H:

1 Bx 1
q3 3 a3 =—k3 —a3 =0

K Bx K
(30) pxz B Hs

p~ By'
(35)

J, =(p /p )J (31)

We conclude, therefore, that in the immediate vi-
cinity of H, 2, axial currents J, exist in a system of
Abrikosov vortices in an anisotropic material. These

at H, 2 because of (23), (24), and (25). This means
that in the region of interest (H, 2 H(( Hg2) q3-
must be small. Therefore, j is of a higher order in
the small parameter (H, 2

—H)/H„ than j ' and j ' In.
other words, j3 should be considered as zero in the
linear approximation. Going back now to the original
frame (x,y, z), we obtain with the help of Eq. (15):

where '7' = B2/Bx2+ B2/By2. Operating by B/Bx we
have

2
jxgz 8 Hg

p~ BXBy
(36)

The field H„~ affects the free energy density and
therefore all the thermodynamic results, such as the
constitutive relation between the magnetic induction
B (the average of the microscopic H over several in-

tervortex spacings) and the thermodynamic macro-
scopic field A~, and the equilibrium lattice structure.
In the following sections we calculate the thermo-
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dynamic properties of an anisotropic uniaxial super-
conductor near H, 2, taking into account the trans-
verse field.

V. ABRIKOSOV IDENTITIES IN THE
ANISOTROPIC CASE

In our calculations we follow essentially the original
Abrikosov approach in which the central role belongs
to the couple of well-known Abrikosov identities. "
Perhaps the simplest way to derive the identities has
been proposed by one of the authors. " %e now
briefly review this method for the isotropic case and
later will apply it to the anisotropic situation.

Let us begin with the first GL equation for an iso-
tropic material

As discussed in the Appendix, this inhomogeneous
linear equation for P& has a solution if its right-hand
side is orthogonal to the solution of the correspond-
ing homogeneous equation II II+/ =0, i.e., to p«.
Therefore, we have

1

K —Hp
(«)) +,—1 (co2) =01

K 2K
(44)

F= (H,' —cd2/2) (45)

Then after introducing the structure parameter
pq = (cu2)/(&d)', he averaged Eq. (42) to obtain the
magnetic induction

the second Abrikosov identity.
Abrikosov further substituted the GL equations

into the GL free energy to get 5 = J (H' —
l pl'/2) d&,

or for the macroscopic free energy density

and rewrite it in terms of the operators II—= II„
+ I rr, ;

II II+p=p 1—
K

(38)

8 =H« —(o))/2K, (46)

expressed (co) and H« in terms of 8 and P„with the
help of Eqs. (44) and (46), and finally obtained

We know that
l
Pl2 is of order (~ —H)/x near

H, &
= ~. Therefore, neglecting the term plpl' in the

region considered, we also have to neglect the term
P(1 —H, /~). In other words, instead of solving the
linearized Eq. (37), 112&« = P«, we have a more con-
venient form, II II+/«=0, for the order parameter

Q« in the lowest approximation. The last equation is
further simplified to

F(B)=82 —(K —8)'/8, 8=(2K' —l)p~+I . (47)

The coordinate transformation explored earlier re-
duces the anisotropic GL equations (1) and (2) to
the "isotropiclike" form (18), (28), and (29). As in
the isotropic case, we introduce the operators
rr = 'l7~ + l7r2. Now, 17 7r lj/ = ( rrf +%'2+ i [%'~, 1l'2]) if&

where the commutator yields

II+y«=0 . i g Ba2 Ba& iQ
[m, , w2]y=, —,= h

K gX ()X K
(48)

1 $0) 1 /coQ= — B, Q, =2 (40)

Now, the second GL equation '7 & H = roQ yields

Performing the necessary operations [IT= (i ~) ''7
—A], we obtain in terms of P« = Jcoexp(i X) and

Q = '7x/~-A:
Eq. (14) has been used here. Further, it is easy to
see that (m3) P=(q3)'P. [Use the definitions (13)
and (27) of vr; and q; and recall that any quantity in-

dependent of z is also independent of x3, so that
Blyl/Bx'=Bq3/Bx'=0. ] Thus, m;rr;y=[rr rr+

+ h'/~ + (q3)'] p. Now Eq. (18) reads

ijH, 9H,
~Qx =

~ ~Qy =
8y

' ' ex
(41)

h3
(49)

Eliminating a&Q from Eqs. (40) and (41), we obtain
the first Abrikosov identity

H =H«Cd/2K

where Hp is an arbitrary constant.
The solution P«of the homogeneous equation (39)

has to be normalized. To do that, let us return to the
exact nonhnear Eq. (38) and look for its solution in
the form P«+&~. Making use of (39) and (42), one
gets for Q~

1

11 11'4i=4«+, —1 lb«i' (43)
K 2K

We have shown before that q3 =0 at H, 2 [see Eq.
(30)], so that q3 is of order of (H, 2

—H)/H, 2 near
H, 2 (we shall return to this assumption later). Then
all terms on the right-hand side of Eq. (49)
[(K —h )/~, lQl, (q, )'] have to be neglected along
with lPl', and we have in this approximation
7r+y« ——0 or

1 QO) 1 BM

Equation (28) yields: cuq~ = Bh3/Bx Qlq 2

Bh3/Bx', which after combination with Eq. (50)
gives h3 =const —co/2K, or in the original coordinates
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(x,y, z):

07
Hg =Hp-

2K
(51)

here we used Eqs. (16) and (26), The quantity Ho is
a constant still to be determined.

Substituting Eq. (51) into Eqs. (35) and (36), we
obtain in the same approximation for the transverse
field

t) CdV~H =yX (52)

2
+2H

2K@,~
Thus, in the anisotropic case three equations
(51)-(53) appear in place of the first Abrikosov
identity (42) of the isotropic case, for which
H„=Hy =& =0.

Equations (52) and (53) show that H„and H» are
of order ru, i.e., of order (H, q

—H)/H, &. This means
that A, as well as Q, are also linear in (H, ~ H)/H, i, —
so that q3=(~/K)Q, [see Eqs. (16) and (26)l is of
the same order of magnitude. One can neglect now

(q3) in Eq. (49) with respect to other terms on the
right-hand side.

The same theorem that led to the normalization
(44) in the isotopic case now yields ((1 —h'/N —co)cu)
=0. Using Eqs. (15) and (51), we obtain the new
normalization

1

(co) + z
—1 (o)z) +2y(H„o)) =0, (54)

VI. FREE ENERGY DENSITY

which coincides with that of the isotropic case if K = K

and y=0.

where n is the normal to the sample surface. Equa-
tion (56) follows from the minimum condition for 5
in the same way as the isotropic boundary condition,
which coincides with Eq. (56) if p;k=5,„. We have,
therefore,

F = (H,'+Hj~ —co'/2)

(Hq =H„+H„) which differs from the isotropic free
energy density (45) by the mean square of the
transverse field.

To make further progress, we have to calculate the
averages (H„co) of Eq. (54) and (Hq~ ) of Eq. (57).
For this purpose let us use the Fourier transforms of
ru and A, which are periodic in the flux-line lattice:

o)(r ) = $u-e'" ' '

(58)
ao =S cu r e dS6

where the integral is taken over the lattice cell, S is
the cell area, and the 6 are two-dimensional
reciprocai-lattice vectors. Equations (52) and (53)
then yield

H - =yG o)-/G H - = —yG G o)-/G (59a)

which are valid for 6 &0.
We now show that the transverse magnetic induc-

tion Bq= (Aq) vanishes. We stress this, because the
erroneous conclusion that 8 A 0 was made in Ref. 9.
Consider the GL current equation (2) and multiply it

by m»; = p»,
' from the left to get m»j; = co('7x/»

—A)». If one integrates m»;j; jcu over a contour Co
in the plane (xy) normal to the vortex axes (see Fig.
2); one obtains the macroscopic relation 8, =2m X/K,
where 2n/~ is the flux quantum and N is the number
density of z directed vortices.

To evaluate the components of the transverse in-

It is easy to show that, as in the isotropic case, the
free energy

s= ~3dv —[y(&+ ~
2

1

+p, ;k
—A; Q

— —Ak p +H1 8 i 8
I K BX; K BXk

1
~kP Ik

I K BXI
(56)

(55)
can be transformed with the help of the GL equation

(1) to the form 5 = &ldV(H —
~
p~4/2). One needs

only to integrate by parts the terms (8$/Bx, ) (Bg'/Bxk)
and»I;$8$ /Bxk', the resulting surface integral van-
ishes because of the boundary condition

0
0 ~

0 0
I I

I l

l I

I

FIG. 2. Some of the vortices are sho~n by the dashed
lines. The plane of the contour Cp is normal to the z axis
and the plane of the contour C is normal to the y axis. The
points 1, 2, 3, and 4 are equivalent within the primitive cell.
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duction, e.g. , B„,consider a contour C in the plane
(xz). The magnetic induction is independent of the
shape of the contour. We choose the contour C as
shown in Fig. 2 where the points 1, 2, 3, and 4 are
equivalent with respect to their positions within the
primitive cell. Then, because the paths 1 2 and

f2

4 3 are equivalent, ' dx(m„, j;/o&) is cancelled. by

I dx(m„;j;/cu). Similarly, the integrals along theJ3
paths 2 3 and 4 1 cancel. Therefore, (I) ('7)l/»

C—A) d 1 =0. Moreover, (I) '0)t d 1 =0, because
no singularities of the phase X are surrounded by C.

Thus, (I) A ~ d 1 =0; i.e., By =0. A similar argument

shows that B„=O.
We have now in addition to Eq. (59a):

H„o p= (H„)„a=8„=0
Hy o p

= (Hy ) cep = By = 0 (59b)

The average (Hz ) needed for the free energy den-
sity (57) is easily found now from Eqs. (59a) and
(59b):

G 'jc o j'
(H,' ) = (H„') + (H,') = y' X', , (60)

Obviously I8~ depends on the lattice structure. Thus,

, pi(p~ —1) (o))'
(H') =y(H. -) =~'

2
(65)

We have now instead of (51) and (54):

8, = Hp (cu)/—2» (66)

F = 8, —(» —8,)2/(5+ 5i) (68)

5 = (2» —I ) Pg + 1, 5) = —2» y'P)(Pg —1 ) . (69)

The expressions (68) and (69) replace the isotropic
free energy density (47) and reduce to it when» = »
and y =0.

VII. MAGNETIZATION

(co) = 2»(» Hp)/[Pg (2» 1 ) 2» y Pi(Pg 1 ) ]

(67)
Equations (66) and (67) allow us to express Hp and
(py) in terms of 8,. Doing this and using (51) and
(65), we obtain the free energy density (57) as a
function of induction 8, (recall that 8„=By =0):

where X means go ~p. Likewise,

(H„py) = S t
J H„gpp o e' o ' " dS

6
G'j~o j'

= Xpy o H„o = y $'
6

(61) BF
Ms

K —8,=8, +
8+5)

(70)

The quantities K, 5, and 5~ appearing in the free en-
ergy density (68) all depend on the vortex orientation
in the crystal; they are all functions of H. The com-
ponent of the macroscopic field H~ in the direction
of the vortices is

Note that both (Hq2) and (H„py) are expressed in
terms of the same sum.

Further, we have

MG = MG —CUD= CO
— M

=( )'(~.-» (62)

On the other hand,

g j„-j g j„-j2
(63)

(64)

so that the needed sum, X'Gy'jo& o j2/G, is a certain

part of X'jo& o j2 dependent on the lattice periodicity

and on the orientation of the axes x,y with respect to
the lattice. For example, for the square lattice both
sums on the right-hand side of Eq. (63) are equal if
the axes x and y coincide with symmetry directions.

We introduce now a new constant P~ of order uni-

ty, so that

, Gy'j" o j' Pi ~, , /3t(P~ —I)(~)'

(The factor —arises from the system of units adopt-

ed here. )
It is easy to verify with the help of Eqs. (66) and

(67) that H~ =Hp. Thus, the constant Hp has the
meaning of the component of H~ along the vortices,
i.e., the same as in the isotropic case.

Let now the induction B change its direction by a
small angle 58 while jBj =const; then 58„=8,58 (B
is directed along z initially). The corresponding varia-
tion of the free energy density is 5F = (BF/58) s50
= (BF/Bg) s(58„/8); i.e;, H~„= (5F/5e) s/28 Per-.
forming the differentiation of (68), we have

K —B BK 1~ K —B
HMr (5+ 5g)» 58 Iym 5+ 5)

(71)

We neglect here terms of order (» —8)'/» and make
use of Eqs. (26) and (3). Formulas (70) and (71)
along with B„=O represent the constitutive relation.

We express now the magnetization M = (II —H)/4n.
from (70) and (71) to obtain

p~ H2 —8 H, 2
—8—4mM„=— —4mM, = — '

err 8+ 8) 5+8)
(72)
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in conventional units. Here M„and M, are the mag-
netization components normal and parallel to the
vortices, respectively. The ratio

M/M, =—p, /p,

is especially simple and, what is more important, in-

dependent of the still undetermined structure param-
eters 8 and St [or P" and Pt', see Eq. (69)].

In the crystal frame (X, Y,Z), Mz = M, cos&
—M„sin8, Mx = M, sin8+ M„cos8. After simple
algebra we obtain for the component Mx in the layer
plane and for Mz normal to the layers

H2 —8 P3
4~Mx = sin8

5+5&

H, 2
—8—4mMZ ——

5+5)
their ratio is

p, ]
cos8

(74)

VIII. DISCUSSION

According to the anisotropic effective mass GL
theory, the structure of the local magnetic field in a
system of vortices in a strongly anisotropic uniaxial
material differs substantially from that of the isotro-
pic case. The transverse field, which obeys Eqs. (52)
and (53) near H, 2, in principle can be found for a
known distribution of

~

p~'= co( r ). The latter
depends on the equilibrium lattice structure, which
still remains to be determined.

It is clear that the lattice structure depends on its
orientation 8 within the crystal; in other words, the
angular dependence of the parameters 8 and 5t (or
Pq and P') also remains unknown. This will make it
difficult to compare Eqs. (72) and (74) with experi-
ment. Moreover, the expressions for Mx and Mz
depend on the sample shape. Indeed, the connection
between the magnetic induction B inside the sample
and the externally applied magnetic field H,„, is af-
fected by the sample shape via demagnetization ef-
fects: 8 =H,„,—((8)(H,2

—H,„,), where ((8)
depends upon the demagnetization coefficients. Thus
no predictions independent of sample shape and
flux-line lattice structure can be made on the basis of
Eqs. (72) and (74).

To the contrary, the ratio (75) depends neither on
the structure of the vortex lattice nor on ~B~. How-

Mx/Mz (p3/p, t)tan8

Again, this ratio is independent of the lattice structure.

ever, the direction 8,„,of the external field differs
from the direction 8 of B. At H, 2, 8,„,= 8; in the im-
mediate vicinity of H, 2, 8,„,=8+0[(H,2

—H«, )/
H'q]. However, there is no sense in keeping a small
correction to 8 in Eqs. (73) and (75), because the
magnetization components are both proportional to
the small parameter (H, 2 H,„,—)/H, 2. This is the
maximum accuracy our theory can provide, so that
the ratios M„/M, and Mx/Mz can be obtained here
only to zero order in the small parameter. For this
reason the angle 8 can be replaced by 8,„, in the
results (73) and (75).

Thus, the ratios (73) and (75) are in an especially
convenient form for experimental verification.
Indeed, the ratio p,3/p, ~ can be obtained from the an-
gular dependence of H, 2, Mx, Mz, and 8,„,all can be
measured independently.

Our last remark concerns the limiting case K &) 1.
We have from Eqs. (69) and (53): Bt = —(p, /p, )'
x (Pq —1)Pt/2. This quantity is of order unity and

-2
therefore can be neglected with respect to 5=2K P„
when K»1. The free energy density (68) then can
be obtained to good approximation from its isotropic
counterpart (47) by a simple replacement of ~;, by
the angular dependent k.
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APPENDIX

Let $0 be a solution of the homogeneous equation
L $0 =0, where L is a linear operator. Consider
another equation Lp=q, which is no longer homo-
geneous. Multiply it by Po from the left and
integrate over the domain where L is defined:

Jtgoqdx =
J POLgdx = JIPLgodx, where L is the

operator transposed to L. We see that if L =L', i.e.,
if L is an Hermitian operator, the last integral is zero:

L'P'=(Lgo)"=0. Thus, I Pogdx=0; i.e., Poand

q are orthogonal.
In the case considered in the text, the operator

II II+=II +H/" is certainly Hermitian: H/" is a
real number and H' is the kinetic energy operator
[see Eq. (43)].
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