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A multiple-scattering model which previously explained the conducting properties of fluid-

saturated porous fused glass beads is applied to the acoustic index of refraction n of an ideal

fluid in a rigid porous frame. The model consists of ellipsoidal grains coated with an effective
medium consisting of fluid and other fluid-coated grains; this nesting is continued ad infinitum in

order to insure connectedness of the pore space to very low values of porosity. For the relevant
cases considered here, the result is n =P P, where P is the porosity and P depends on the as-

pect ratio of the grains. By assuming that the scatterers used in fourth-sound experiments can
2

be characterized by long filaments or needles, randomly oriented (P =
3 ), we have achieved

excellent agreement with experimental values of n; the data also seem to agree with an earlier

theory valid for low concentration of aligned needles (n2=2 —P), when extrapolated to high

concentrations of scatterers (&SO'io). The present theory contains neither approximation. We
also resolve a controversy over the relationship between n and the hydrodynamic drag parame-
ter A.; the correct result is n = (1 —

A.)

I. INTRODUCTION

The scattering of waves or the flow of electrical
current around obstacles which have well-defined
simple geometries and which have known moduli,
densities, conductivities, etc. are examples of a class
of problems which appears in many textbooks dating
back over one hundred years. ' If there is a finite
concentration of such obstacles (approaching or even
exceeding 50%) there is interaction between the obs-
tacles due to multiple scattering of the wave or
current density off one object before it encounters
another. Such problems are exacerbated if the
geometry of the scattering centers is not easily
characterized. Some simplification occurs if the
scattering objects are inert —the electrical conductivity
of a nonconducting matrix filled with a conducting
pore fluid, or acoustic-wave propagation through an
ideal (nonviscous, nonthermally conducting) fluid oc-
cupying the pore space of a rigid skeletal frame.
Realizable examples of the former can easily be
found, examples of the latter can be approximated by
gases in a solid matrix although thermal and viscous
effects are generally quite appreciable. One example
of the latter which is realizable to a high degree of ac-
curacy is fourth sound' in a superleak system saturat-
ed with superfluid He, and we shall focus our atten-
tion on it in this article.

Fourth sound occurs when 4He below T& saturates
a superleak material whose pores are so small that
the viscosity of the normal component immobilizes it
relative to the presumably rigid superleak and only
the superfluid component can oscillate. (The moduli

of most solids are three orders of magnitude larger
than that of helium. ) From the two fluid equations
of motion in which the velocity of the normal com-
ponent has been set equal to zero, one can calculate'
the theoretical speed of fourth sound as a function of
temperature, C40 (T). This result would apply only
for the case of a superleak consisting of a parallel, col-
lection of narro~ straight capillary tubes. The porous
superleak materials actually used in practice' have a
tortuous, branching pore space, and the renormalized
experimental speed of fourth sound, Cf ( T)
= (sample length)/(arrival time), is less than the
theoretical value. The ratio of the two is defined to
be the index of refraction, n, which is a geometrical
factor presumed to be temperature independent:

C() '()
Obviously n =1 for a straight tube because the speed
of sound in a fluid confined by a rigid straight tube is
the same as that for an unbounded medium, but
n & 1 for a packed powder sample, reflecting the
multiple scattering of the wave by the obstacle
course. Currently, there is no satisfactory first-
principles theory of n and it is the purpose of this ar-
ticle to provide some progress in that direction.

From the multiple scattering point of view, the
theory of the renormalization of the fourth-sound
velocity is equivalent to solving for the motion of an
ideal, nonviscous fluid, subject to the boundary con-
dition that the perpendicular component of fluid
velocity must vanish at the fluid-matrix interface. In
Sec. II we elaborate on the connection between the
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acoustic index of refraction and the electrical'conduc-
tivity of the nonconducting superleak saturated with a
conducting fluid. In Sec. III we use this analysis to
resolve in a simple manner a controversy involving.
the relationship between n and the hydrodynamic
drag parameter. In Sec. IV we use an existing theory
of electrical conductivity in disordered systems to cal-
culate the index and compare with existing experi-
mental data on systems having air or superfluid 4He

as the pore fiuid. Salient features of our results are
emphasized in Sec. V. %e are, of course, not con-
cerned in this article with superleaks whose pores are
so small that size effects modify the superfiuid.

II. RELATION BETWEEN THE ACOUSTIC INDEX OF
REFRACTION AND ELECTRICAL CONDUCTIVITY

The concept of an index of refraction has meaning
only if the wavelength is much larger than any
characteristic pore or grain size; on a microscopic
scale one is always in the near zone and the micro-
scopic flow pattern is then the same as that of the
steady flow of an incompressible fluid3 times
exp( —icut), where cu is the frequency. Therefore, the
index of refraction, n, is independent of the fluid
characteristics (density or modulus) and is purely a
geometrical quantity. In this section we wish to ex-
plore the connection between this parameter and the
dc electrical conductivity of the pore space.

Consider, then, an ideal nonviscous, thermally
nonconducting fluid of density pf and adiabatic bulk
modulus It (its speed of sound is then Vf ——QIC/pf),
and imagine that it saturates the pores of a solid ma-

trix whose porosity is P. Imagine that the matrix ma-
terial is so much stiffer than the fluid that it is immo-
bile. Assume also that any relevant time ~ and
length d characteristic of the times and distances over
which the fluid motion undergoes significant changes
satisfy the inequality

r»d/Vf .

This requirement of low frequency guarantees that
"the fluid may be regarded as incompressible" as far
as the microscopic flow pattern of the fluid is con-
cerned.

Consider a surface element of area dA in the
porous fluid-filled system. Part of this surface cuts
through solid and only PdA is in contact with the
fluid. (For statistically homogeneous, isotropic pore
structures the two-dimensional porosity on a surface
cut is equal to the three-dimensional volume porosi-
ty. ) Therefore, the total force on the fluid that is in
contact with the surface element is P6'dA where (P is
the fiuid pressure. Similarly, the net force on all the
fluid inside a volume dVO is

The effective density, p', is defined so that the ac-
celeration d v/dt, of the fluid inside d Vo, is related to
Eq. (2.1), for a nonviscous fluid:

p"P dVp= PC—P(dVp
dt

(2.2)

Here v is the time rate of change of position of the
fluid; Pv dA is the rate at which fluid crosses dA.
Obviously, for a collection of straight tubes parallel to
the direction of motion, and arbitrary porosity,
p" = pf (the bulk fluid density). In general, p" & pf
reflecting the "Kelvin inertial drag" whereby the
momentum of a fluid flowing around an obstacle is
altered. These points are nicely discussed in Landau
and Lifshitz. ~ The bulk modulus of the fluid is de-
fined by

Pf
(2.3)

Equation (2.3) is a microscopic equation of state; it
also gives the relationship between macroscopically
averaged quantities as long as the averages of Otp
and V'pf are defined in the same way.

Finally, conservation of fluid mass is expressed as

(pfPv) +—(pfP) =06
Bt

(2.4)

Note that pf, and not p', appears in Eq. (2.4). Com-
bining Eqs. (2.2)—(2.4) in linearized form, it is
straightforward to show that all quantities obey a
wave equation with speed:

V (lt /p ) 2/2 (2.5)

p'= FPpf (2.6a)

where F is the ratio of the electrical conductivity, crf,
of the pore fluid (not necessarily the same fluid as in
the acoustic problem) to the conductivity o of the
sample as a whole,

(2.6b)

Equation (2.5) defines the speed of sound of an ideal
nonviscous fluid in a rigid porous matrix (e.g. , fourth
sound). It remains to establish the connection
between the effective density, p', and the true densi-
ty, pf, in the particular microgeometry. In the
remainder of this section, we first establish the con-
nection between p, pf, and the electrical conductivi-
ty of the pore space.

Brown has utilized the fact that the differential
equation and boundary condidtions governing the
motion of an incompressible fluid in the pore space is
identical with that of the electrical conduction of the
sample if the pores are filled with a conducting fluid.
Brown has shown, in effect, that

& = —P V(PdVO (2.1) Equations (2.6) hold only if the matrix material is
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nonconducting, and there is no interfacial surface
conductivity. A summary of the proof is given in
Table I. Equations (2.5) —(2.6) imply that the veloci-
ty of the normal mode is

S/2

V=
I'P p)

(2.7)

n2=FP (2.8)

An alternative and more formal proof, based on
exact expressions for n and Fderived by Berg-
man, ' is preserited in Appendix A, We should
mention that Eq. (2.8) was clearly understood in its
full generality by Lord Rayleigh who used it in cer-
tain special cases, although he does not appear to
have published the general proof. Doubtless, others
have realized this equivalence.

We conclude this section with a few comments on
the significance of Eq. (2.8):

(I) Equation (2.8) is an exact result which can
and should be experimentally tested by, for example,
saturating a superleak with a saline solution and
measuring its conductivity.

(2) Note that for the special case of a collection of
straight tubes parallel to the direction of motion or
electric field the conductivity is obviously a =Pcry,
therefore I' =P ' and n =1 as previously noted.

(3) The index of refraction is scale invariant be-

This is the desired result because it relates the acous-
tic index of refraction to the electrical properties of
the system:

cause when the pore-wall surface effects are negligi-
ble, and (2.6) holds, it is easy to show that o.
remains unchanged if the sample is uniformly dilated
or contracted by a scale factor. The proof essentially
was given by Maxwell' and has been generalized by
Cohen. " Accordingly, the refractive index (2.8) is
also similarly scale invariant. (See Sec. IV A.) The
usefulness of this result is that Rand P can be mea-
sured on a sample at room temperature to deduce n'
at low temperature even though the matrix may have
contracted thermally.

(4) In all treatments of fourth sound it is implicitly
assumed that the fiuid motion is completely decou-
pled from the solid motion. This is certainly true if
the moduli of the skeletal frame are much larger than
the modulus of the superfluid, as was explicitly
shown in Ref. 12. Equation (2.8) is also particularly
useful for cases when the modulus of the fluid is
comparable to or exceeds that of the solid and one
cannot assume the matrix to be rigidly immobile. In
a series of papers, Biot" proposed an effective-
medium theory whereby the average displacement of
both solid and fluid parts are followed separately.
One of the parameters, n «1, the "structure con-
stant" is a purely geometric parameter independent
of material parameters which relates the off-diagonal
element of the density matrix to the porosity and the
fluid density by pi~ = (1 —n) Pp~ It has bee. n
shown'2 that when the fluid is much more compressi-
ble than the skeletal frame of the solid, one of the
modes predicted by the Biot theory has a speed given
by V = V&/n where n =u; from this point of view

TABLE I. Equivalence between the problem of the electrical conductivity of a nonconducting
rigid, homogeneous, and isotropic porous matrix containing a conducting pore material and that of
the hydrodynamics of an ideal fluid moving in the same pore space, in the long-wavelength (in-
compressible fluid) limit. All quantities have their usual meanings; rs~ is a unit vector normal to
the pore-matrix interface, ~ is a unit vector normal to a flat surface of area 3 over which the in-

tegration is performed. The quantity B represents the volume flow rate through an area A and is
therefore related to the average fluid velocity by B = (v )PA The quantity I', defined. by the last
entries, is a scalar for statistically homogeneous, isotropic samples. Inasmuch as the two problems
are equivalent, the same value of Fapplies for the two problems for a given sample, and conse-
quently the last row of the table yields Eqs. (2,2), (2.6a), and (2.6b) of the text, See Brown (Ref.
6) for details.

Elec. Cond. Hydrodynamics

j =—og'74

%24 =0

j n„=o

I =fflj ~ nldAn

I =—a.~(VC&)f

Microscopic relation

Differential equation

Boundary condition

Definition

Macroscopic solution

gv 1 V'(P
Bt p~

V (P=O

v n~=0

B= v ndAi

9B A 1= ———(7II')
Bt F pg
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fourth sound is seen to be a special case of the "Biot
slow wave" and consequently values of o. = n =FP
deduced for one pore fluid (superfluid He) can be
used for another (e.g. , water, mercury) even if the
fiuid and solid moduli are comparable, or indeed if
the fluid is less compressible than the solid. More
importantly, a measurement of the electrical conduc-
tivity can also be used to deduce n.

In passing we point out that in the opposite limit of
an unconsolidated solid matrix, corresponding to van-
ishing skeletal frame moduli, Eqs. (2.7) and (2.8) are
still valid provided that there is a large acoustic im-

pedance mismatch between fluid and solid consti-
tuents. These points are discussed in another arti-
cle. '4

(5) Although Eq. (2.8) is exact, it applies only to
the zero-frequency limit of n (co). If there are large
isolated pore regions connected by small long necks
to the main pore region (Helmholtz resonators) then
n(co) can have an appreciable frequency dependence
even at wavelengths large compared to typical pore
sizes; it diverges, in fact, at the resonance frequency. "

our notation)

F,„,= —AP V'6' (3.4)

QPpf A. d v,Fg=—
1 —

A. , dt

dvg
dt

(3.5)

and so the equation of motion for the superfluid,
when the solid matrix superleak is at rest, is

dvz
OPpf

dt

OPpfh. dv,
1 —) Ck

(3.6)

Here, F,„t is the net force due to pressure on the
fluid contained within a volume 0 of the sample (the
volume of the fluid alone is AP). The extra factor
of porosity P, not present in Ref. 16, arises from the
same reason that leads to the factor of porosity in Eq.
(2.1) of the present article. [If it were absent, Eq.
(2.8) would read n =Fwhich is obviously wrong as
can be seen in comment (2) of Sec. II.] The
remainder of the derivation is correct; the drag force
that the solid matrix exerts on the superfluid is

III. RELATIONSHIP BETWEEN THE ACOUSTIC
INDEX OF REFRACTION AND THE COEFFICIENT

OF HYDRODYNAMIC DRAG

vs= (3.1)

where the hydrodynamic drag parameter, A. , has
values between 0 and 1. Note that this effect is not
dependent on viscous forces which are absent for a
superfluid. (The normal component, if there is any,
is locked relative to the superleak by its viscosity. )
Revzen et al. "claim the following relationship:

which was first disputed by Bergman et al. ' who
claim

(3.3)

That Eq. (3.3) is incorrect can be seen most simply
by considering a collection of straight tubes of arbi-
trary porosity all parallel to the direction of fluid
motion for which n =1, X=0, and P &1. The faulty
equation is Eq. (4) of Ref. 16 which should read (in

In this section we make a slight digression and use
the results of Sec. II in order to make a simple com-
ment on a relationship involving n' which was
derived by Revzen et al. ' and which has been
claimed to be incorrect by Bergman et al. ' If a super-
leak is pulled through a He II bath at constant speed
v~ then, because the superfluid is forced around the
tortuous pore space, it acquires a macroscopic veloci-
ty v, ~vR or,

Continuing the derivation of Ref. 16 but using our
Eq. (3.4) instead of their Eq. (5) one is led to Eq.
(3.3) as claimed, correctly, by Bergman et aI. 7 Alter-
natively, Eq. (3.6) is of the form of Eq. (2.2) with
p'= pf/(I —X) (=n'pf)—

There are at least two different ways in which P

can be measured on a given superleak: (a) by
measuring the Doppler shifts of fourth-sound speeds
in moving superleaks or (b) by measuring persistent
superfluid currents in rotating superleaks. Unfor-
tunately, it does not appear to be the case that there
are published values for both n and A. on a given su-
perleak. However, for the powdered alumina super-
leaks used, it is known that the empirical relationship
n' = 2 —P gives a remarkably accurate fit to the data;
see for example, the discussion in Sec. IV 8 and espe-
cially Fig. 1. For the purposes of this section only, we
will assume that n =2 —P gives a reasonably accu-
rate value of n for a superleak of a given porosity.

It is possible to deduce the value of A. for two dif-
ferent superleaks in which Kojima et al. ' have mea-
sured Doppler splittings of fourth-sound resonances.
Mehl and Zimmerman's have measured X (X in their
notation) in their study of torsionaI oscillations and
persistent current flow experiments. The data are
summarized in Table II in which comparison is made
between 1/(1 —

A, ), P/(1 —X), and calculated values
of n2=2 P. If the values of n2 are —correct (the
value for the P =0.78 superleak has been measured"
and is equal to 1.24) then there are some disagree-
ments with n2 =. 1/(1 —X) indicating a possible break-
down of the validity of the concept of the hydro-
dynamic drag parameter.
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TABLE II. A comparison of experimental values of 1/(1 —X) and P/(1 —) ) against n which is

assumed to be approximately equal to 2 —P. See text for explanation.

Superleak P I/(I -) ) 2 —P P/(I —) )

Alumina'
Alumina'

Resinb
Alumina
Aluminab

0.65
0.78
0.59
0.82
0.83

0.46
0.34
0.32
0.15
0.13

1.85
1,52
1.47
1.18
1 ~ 15

1.35
1,22
1.41
1.18
1,17

1.20
1.18
0.87
0.97
0.95

' Kojima et al. , Ref. 17. b Mehl and Zimmerman, Ref. 18.

IV. SELF-SIMILAR MODEL FOR THE ACOUSTIC
INDEX OF REFRACTION

In Sec. IV A we summarize the relevant theoretical
results for the electrical conductivity (i.e. , F) for sys-
tems consisting of nonconducting ellipsoidal grains
embedded in a conducting medium and, of course,
use these results to derive expressions for the acous-
tic index of refraction due to incompressible ellip-
soidal grains. In Sec. IVB, we compare the results
with existing acoustical data.

A. Theory

For a dilute concentration of oriented ellipsoidal
scatterers, Fricke' has derived an expression for the
conductivity from which we deduce n [Eq. (2.8)]:

1 —PL;
Pl

1 —L;
(4.1)

Here L; is the depolarization factor in the direction of
the applied field or motion of fluid, and it can be cal-

culated explicitly for a given grain shape from Eq.
(82) of Appendix B. Special cases of interest to us

are spherical grains, for which L; = —,, which yields

the well-known Maxwell' result

ductivity at extremely low levels of porosity ((1%).
That is, the "percolation threshold" occurs at or near
zero porosity because the pore space is highly corre-
lated and thus interconnected even at the low porosi-
ties. In order to guarantee the interconnectedness of
the pore space in the theory, Sen, Scala, and Cohen
build up the rock in steps. The model consists of el-
lipsoidal grains which in turn are coated by other
fluid-coated grains, Coating at each level consists of
nested coated ellipsoids. The scale invariance of the
problem (see Appendix 8) allows us to make the
sizes arbitrary. The effective-medium approximation,
i.e., the coherent-potential approximation (CPA), is
used at each step to compute the effective dielectric
constant; a finite concentration of grains is obtained
by introducing an infinitesimal amount of grains (di-
lute limit) in an effective medium consisting of the
previous mixture, and then integrating to the final
concentration. The trick of nested coating keeps the
pore space interconnected and improves the local-
field corrections for the single-site approximation.
There are, of course, competing theories but we do
not focus on them in this article.

If the ellipsoidal grains are nonconducting and the
pore material is conducting, the self-similar result for
the static conductivity can be expressed under fairly
general conditions as

n' (dilute spheres) =
2 , P, ——(4.2) F P—m (4.4)

and needles (extremely prolate spheriods) whose
axes are perpendicular to the direction of motion, for
which L; = —,, and therefore,

1

n' (dilute needles x) = 2 P—(4.3)

These results are exact in the dilute concentration
limit (P ~1).

In order to go beyond the dilute limit, Sen, Scala,
and Cohen2 have proposed a "self-similar model"
for the dielectric properties of two-phase composite
media with the original goal of understanding the
dielectric properties of sedimentary rocks. There, the
key observation is that the samples have a finite con-

where I depends on the aspect ratio of the grains
through the pertinent depolarization factor. [We
have elaborated on Eqs. (4.4) —(4.9) and their condi-
tions of validity in Appendix 8.] Note that the self-
similar result, (4.4) connects smoothly with (4.1) in

the dilute limit where both are exact:

1 —PL;
n = lim (PP™)=

p ~] 1 —L;
(4.S)

For spherical grains L;= —, , m =+2 and this

result, of/a. =P 3 2, agrees to within 0.1% with the
experimental electrical conductivity of fused glass-
bead samples saturated with saline water over a
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porosity range P =0.03 to 0.38. This is strong evi-
dence that the self-similar model can successfully
span the range from dilute concentration of scatters
(where it is exact) to high concentrations or low

porosity. For the acoustics problem we have the
result from Eq. (2.8) that

n2 (self-similar, spheres) =P 't2 (4.6)

which connects smoothly with Eq. (4.2), n'=
2

——,P, as P tends to 1.1

If the grains consist of extremely prolate spheroids
(needles) all of whose major axes are perpendicular
to the electric field or direction of motion, then
I.;=—, and m =+2 which means

n2 (self-similar, needles L) = P ' (4.7)

This result connects smoothly with Eq. (4.3),
n2 = 2 —P, as, P tends to 1.

'In order to apply the self-similar model to a system
of randomly oriented spheroids with equal probability
of any orientation, there must be an averaging pro-
cedure which was carried out by Veinberg" and (was
applied to rocks by) Mendelson and Cohen2' and is
discussed in our Appendix B. The exponent m of Eq.
(4.4) is then given by

5 —31.,m=~ — *, P(L„)dL, ,
3 1 —L,'

(4.S)

B. Comparison with experimental data

As mentioned in the Introduction, fourth-sound
experiments correspond to the idealization of wave

propagation in a nonviscous fluid occupying the pore
space of a rigid matrix; indeed, consideration of the
more general Biot theory for coupled fluid to sobd
motion has indicated'2 that the immobility of the ma-
trix is accurate to one part in 10 . In this subsection
we compare the existing index of refraction data for
fourth sound with the self-similar model. We con-
clude with the analysis of data on propagation in the
air-filled pores of a lead-shot matrix.

Rudnjck ' ' and co-workers have investigated
fourth sound in superleak materials that consisted of
loose powders primarily of Cr203 or A1203, although

where P(L,) is the probability distribution of
spheroids whose depolarization factor along the sym-
metry axis is L,. For spherical grains with P(L, )

1=8(L, ——, ) we have m = —, as before. For randomly
3

oriented needles or filaments P(L, ) =5(L,) and this

gives m =
3

which implies that the acoustic index of
refraction for an array of randomly oriented needles
is, within the context of the self-similar model,

n' (self-similar, random needles) =P 't' . (4.9)

carbon black and silica were also used. The powders
were compacted under pressure to achieve the
desired porosities. Their index of refraction data, for
porosities in the range 43% to 94%, are presented in
Fig. 1; all data correspond to grain sizes from 500 to
10000 A. so that there are no healing length effects. 2

Because of the extremely high values of porosity, it is
clear that the matrix of scattering centers is far from
that of a dense random packing of spheres, for
which the porosity is only 38%, and the possibility of
intraparticle porosity arises. Micrometer-sized parti-
cles of y-alumina (A1203) used as catalyst supports
actually are aggregates of 50—100 A sized particles
and thus have intraparticle pores25 of the order
20—30 A. However, Rosenbaum et al. 26 have pub-
lished scanning transmission electron microscope
(STEM) pictures of two superleak powders, a 0.05 p, m

A1203 powder (Linde 8 y-alumina) and a 1.0 p,m
A1203 ((x alumina) powder which give the impression
of slightly prolate (elongated) spheroids which are
fairly closely packed; in neither of these pictures is
the resolution good enough (=0.1 pm) to observe
any intraparticle porosity, particularly since the
powders were coated with a metallic film for the
STEM. In order to establish further the pore sizes a
liquid-nitrogen desorption isotherm test was per-
formed and this indicated that, for the 0.05 p,m
alumina, the pores in the range 0—30 A accounted
for about 0.72% of the sample volume with the
remaining porosity in pores in the 200—300 A range,
as expected (total porosity is about 69%). The same
test on the 1.0 p,m alumina indicated no significant
porosity in pores less than 1000 A, as expected. ~e
conclude that the extremely high values of porosity
in some of the samples are probably due to the sur-
face contact forces which can hold small particles in
very open, bridging configurations; it is known 8 that
ordinary sand, ground to 1 p,m size particles, has a
porosity of 75% when poured loosely into a container.
It is also known generally that aggregates of such
small particles do not crack under pressure but de-
form plastically during compaction. We therefore
surmise that the loose powders form more or less
long filaments of bridging particles, looking some-
thing like strings of pearls, and that, as pressure is
applied, the individual particles sinter to form con-
tinuous smooth filaments. We therefore take as our
working hypothesis (below) the assumption that the
matrices can be modeled mathematically as random
arrays of long filaments or needles.

We prefer, however, to make our theoretical
versus experimental comparison in stages. Consider,
first, Eq. (4.3), n'=2 P, for the index of—refraction.
It contains two highly dubious assumptions: that the
scatterers are all perpendicular to the direction of
motion, and that the dilute limit holds for all relevant
concentrations. Nevertheless, the fit to Rudnick's
data is quite good even for fairly low porosities, as
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2.0 .—

——DILUTE NEEDLES J TO PROPAGATION DIRECTION------ SELF-SIMILAR NFEDLKS J TO PROPAGATION DIRECTION
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b
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II

I.2—

I.O
0.5 0.4 0.5 0.6 0.7
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FIG. 1. Acoustical index of refraction n in'fourth-sound experiments on packed pounder superleaks. The circles are measured
values from Ref. 23 and the triangles are measured values from Ref. 22. All curves represent theoretical approximations as ex-
plained in the text.

can be seen in Fig. 1 and as originally noted by Rud-
nick. " %e wish to eliminate both assumptions.

Second, we consider the self-similar model for nee-
dles perpendicular to the direction of propagation, Eq.
(4.7), n2=P ', which is also plotted in Fig. l, where
it is clear that there is strong diagreement with the
data.

Third, the self-similar model for randomly oriented
needles, Eq. (4.9), n2 = P ~3, is plotted in Fig. 1

where it is seen to be in at least as good an agree-
ment with the experimental data as is the empirical
expression Eq. (4.3). Unfortunately, the two expres-
sions are nearly identical over the range where the
data exists. The most glaring discrepancy between
Eq. (4.9) and the data occurs at P =43%; to achieve
this porosity, however, it was necessary to pack the
powder with —10000 psi of pressure which may
have severely altered the skeleton shape. %e must
emphasize that the scattering matrix shapes are not
known, however, and we are simply conjecturing, on
the basis of the high porosities of these systems, that
they consist of a random orientation of needles or
filaments each of which may have originally consisted
of many individual powder grains. If this conjecture
is correct, then the self-similar model agrees quite
well with the available experimental data on n and
without the two logical difficulties posed by Eq. (4.3)
as discussed above. Roughly speaking, the error in-
troduced by the assumption of dilute scatterers and
the error introduced by the assumption of oriented
scatterers very nearly cancel each other for porosities
greater than 50%, although each assumption by itself
introduces substantial error.

TABLE III. Experimental values for the index of refrac-
tion of sound propagating in the air-filled pores of a lead-
shot matrix; corrections have been made for viscous and
thermal effects. Various theroretical predictions are also in-

cluded for comparison.

n

Exp.'
Self-similar

spheres
p-1/2

Dilute
spheres
-(3-r}1

2

Dilute
needles, i

2 —P

0.385
0.390

1.64
1.59

1.61
1.60

1.31
1.31

1.62
1.61

' Reference 30.

Finally, we consider the self-similar model for an
array of spherical scatterers, n = P ' ', which is also
plotted in Fig. 1 and which is, not surprisingly, in
strong disagreement with the experimental data. This
result represents the lower bound ' to n within the
isotropic self-similar model; it is gratifying that, with
one exception, the data all lie above this curve.
There is no upper bound; m in Eq. (4.4) can be infin-
ity for extremely oblate spheroids (disks) for which
I,=1. This is because thin flat plates can very effec-
tively block the flow of fluid in the direction perpen-
dicular to the plate.

In connection with the search for fourth sound in
He, Kojima et al. 9 has reported n' =4.67 for a 20%

porosity superleak of cerium magnesium nitrate
(CMN) powder; this is considerably larger than that
predicted by the isotropic self-similar model for pro-
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late spheroids of any eccentricity. Microscopic exam-
ination indeed indicates the presence of thin flakes.

We conclude this section with a brief analysis of
the much older data of Ferrero and Sacerdote' for
the speed of sound propagating in the air-filled pores
of a matrix of spherical lead shot; the data have been
corrected for thermal and viscous effects. Their
results are summarized in Table III where it is seen
that the self-similar model n'=P '~' provides a quite
decent fit to the data whereas the dilute spheres or
high porosity limit, n =

2
—

2
P does not. This is not

surprising since the validity of the self-similar model
for spherical beads was already established for the
electrical case over a much wider and inclusive poros-
ity range. It is accidental that Eq. (4.3) also agrees
with the data; the equations n2 =2 —P End n2 =P '~2

intersect at P =0.382 but differ greatly at other poro-
sities as can be seen in Fig. 1.

V. SUMMARY

We emphasize here the following aspects of this .

paper.
(1) The problem of the index of refraction of

fourth sound can be mapped onto the problem of the
electrical conductivity of the pore space. Even if the
pore fluid is not superfluid helium, one of the param-
eters of the Biot theroy, n, is also related to the elec-
trical conductivity. This equivalence, as quantified by
Eq. (2.8), ought to be subjected to an experimental
verification. The equivalence could fail for fourth
sound due to finite-size effects that occur when the
pores are-small compared to the correlation length.
From the electrical side it could fail if there is an ap-
preciable surface conductivity at the fluid-solid inter-
face. In systems for which Eq. (2.8) holds, one can
now use the results from the large body of literature
on the conductivity of inhomogeneous systems, as we
have done in this article. One also has the useful
result that n'= n = FP is scale invariant when interfa-
cial effects are negligible.

(2) The aspect ratio(s) and orientation(s) of the
grains are extremely important especially at low poro-
sities (high concentration of grains) as can be seen by
comparing or contrasting Eqs. (4.6), (4.7), and (4.9)
which are plotted in Fig. 1.

(3) It is also important to go beyond the results for
the dilute concentration of scatterers (high porosity);
compare Eqs. (4.6) and (4.2) and especially (4.7) and
(4.3) which are plotted in Fig. 1. The self-similar
model [Eq. (4.6)] has previously been shown to work
extremely well in his regard for the case of the elec-
trical conductivity of fused spherical glass bead sam-
ples, at very low porosities, whereas the dilute limit,
(4.2), fails utterly.

(4) As regards aspect ratios, it would be extremely
helpful if scanning electron micrographs of the actual
superleak were published so that one could know

what to calculate. One might hope to actually mea-
sure the statistical distribution of depolarization fac-
tors P(L, ) by scanning of serial sections taken from
rigid superleaks.

(5) For the superleaks used by Rudnick, one could
easily discern between the predictions of the self-
similar model for an array of randomly oriented nee-
dles, n' =P ' ', and the result for a dilute concentra-
tion of needles perpendicular to the direction of pro-
pagation, n' = 2 —P, simply by going to porosities of
30% or less. Of course, it is important to monitor the
shape and orientations of the grains as this is being
done.
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APPENDIX A: FORMAL DERIVATION OF
THE EQUIVALENCE OF THE ELECTRICAL

CONDUCTIVITY AND THE ACOUSTIC INDEX
OF REFRACTION

e( r ) ( Vy~'d'
CT CFf ~ „9(r)(V&)d'r

(A2)

Here 8( r ) is a function which is unity in the pore
space and zero in the insulating solid and o-f is the
conductivity of the fluid. We have used e( r )
=1 +4rri o(r )/ro and ta.ken the limit co 0. Using
the definition of porosity

P= —)e( r ) d'r,
V aJ

(A3)

The formal equivalence of the potential flow in an
ideal liquid and the potential problem of electrical
properties of inhomogeneous media is useful. There
is a vast literature on properties of inhomogeneous
material which can be brought to bear onto the prob-
lem of fluid flow using this formal analogy.

There are several equivalent ways of defining the
effective complex dielectric constant e,ff for an inho-
mogeneous medium. The most economic for the
present purposes is Eq. (2.9) of Ref. 8, which gives

2

e( r ) ~

'7 $ ~2 d'r — e( r ) V'$ d3r
e ff V ~

(Al)

In (Al) $ is the electrostatic potential. For a brine
saturated porous matrix made of nonconducting
solid, Eq. (Al) gives for the dc conductivity o., of the
rock,
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and formation factor

F = rrf/0'
we find from (Al) —(A4)

r

J e( r ) ( '7 P) d'r

(A4)

and

L„+Ly+L,=1

For a sphere a„=a~=a„(82) gives

L„=Ly =L, =
3 (BS)

r

J e( r )~ Vy~'d'r
~ e( r ) d'r

This equation is identical to an expression for n ',
the index of refraction of fourth sound given by Eq.
(A10) of Bergman, Hohenberg, and Halperin'
(BHH); the boundary value problem defined by Eqs.
(A2) and (A3) of BHH is identical to that defined by
Eqs. (4)—(12) of Bergman. s The velocity potential p
of He is equal to the electrostatic potential apart from
a multiplicative constant, which cancels out in (A5)
anyway.

Using (A5) and Eqs. (14) and (A10) of BHH we

find

For a circular cylinder with its axis in the x direction(a„~,ay = a, )

L„=O, Ly =L, =
2

1 (86)

L„=1, Ly =L, =O (87)

The elliptic integral (Bl) can be expressed in terms
of elementatry functions for the special case of
spheroids, (a~=a, ). For a prolate spheroid
(a„&a~ = a, ) of eccentricity e = (1 —a~~/a„~) 'i~ the
depolarization ratio L, along the symmetry axis (the
xaxis) is

For a plate, with its face perpendicular to the x direc-
tion (ay, a, ~)

n2=Fp

which is Eq. (2.8) in the text.

r

L, =L = ln — —2e1 —e2 1+e
2e3 1 —e

t

Ly =L, = T~(1-L,)

(Bg)

APPENDIX 8: THE DEPOLARIZATION FACTORS L
AND THE EXPONENT, m, OF THE SELF-SIMILAR

MODEL

In this appendix we give explicit formulas for the
depolarization factors L;,L, in terms of particle
shapes and we give the relationship to m of Eq. (4.4).

Consider an ellipsoid of conductivity 0-~, embedded
in a medium of conductivity, a-2, and subjected to an
external field Eo. The field Eo can be decomposed
into components EO„EO~,EO, along the axes of ellip-
soids. It is easy to show (following, for example,
Landau and Lifshitz, 3' pp. 20—27) that the field in-

side the elliposid is given by

For an oblate spheroid (a„&a~=a, ), e =(a~/a„'
1 ) 1/2

L, =L,=, (e —tan e)
1+e' -1

e
(89)

Ly = L, = T~(1 —L,)

(Note that we continue to denote the x axis as the
symmetry axis for all spheroids whereas several
texts '" have chosen the x axis as the symmetry axis
for prolate spheroids but the z axis as the symmetry
axis for oblate spheroids. )

For the nearly spherical cases, e « 1, (88) and
(89) give

E; = — — ' (i =xy, z)
op+(o) —op)L;

(81) L, =
3

—
» e (prolate)

1 2

L, = —, +—„e' (oblate)
(810)

where L; is a pure number, given by the integral

goo

L;=T'a„aiba J ds (s+a,")

(82)

Here a„, a~, and a, are the axes of the ellipsoid; ob-
viously L& is invariant with respect to uniform expan-
sion or contraction of the ellipsoid. It follows from
(82) that

We now discuss the relationship between m in Eq.
(4.4) and (L,) for an arbitrary concentration of
scatterers as given by the self-similar model for in-
sulating grains (o.

~
=0) embedded in a conducting

host fluid (oq = o.f). In general both the conductivi-
ty of the sample, o-, and the depolarization ratios of
the grains, C, are second rank tensors, and the rela-
tionship between them is very complicated. If the
composite medium is macroscopically isotropic, corre-
sponding to random orientations of insulating
spheroids, 0- is a scalar and is simply given' ' by

L„&L~ & L, if a„&a~ & a, , (83) 0 = CTfP (811)
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where o-f is the fluid conductivity, P is the porosity,
and m is given by

Here the angular brackets denote average over the el-
lipticities where the subscripts in (812) now refer to
principal axes of the ellipsoid and not to the field
direction. Using the fact that L» =L, =

2
(1 —L,),

for spheroids whose x axis is the symmetry axis
L„=L„(812)gives

o(needles, perpendicular) = ofP' (817)

For aligned plates (oblate spheroids with eccentricity
e ~~) embedded in a conducting fiuid the exact
result for conductivity parallel to the plates is

o (plates, parallel) —= ofP, (818)

~hereas there is no conductivity in a direction per-
pendicular to the plates:

The conductivity in a direction perpendicular to the
symmetry axes is obtained directly from Eq. (A12) of
Mendelson and Cohen" within the self-similar model
and (816) (above):

or
o.(plates, perpendicular) —=0 (819)

(813)

where P(L, ) is the probability distribution of depo-
larization factor L,. For a sample consisting of spher-
ical grains only, the distribution is P(L, ) =5(L, ——,)
(because L, = L» =L, = —,), and therefore we have

m(spheres) = —,
=3 (814)

For a sample consisting of a random array of ran-
domly oriented needles, we have P(L, ) =5(L,) from
(86) and therefore

m (random needles) =
3

5 (815)

o (needles, parallel) =o&P— (816)

Next, consider the anisotropic materials. If all the
grains are ellipsoids of the same shape but arbitrary
size and oriented with all their principa1 axes in the
same directions, taken to be the coordinate axes,
then the conductivity tensor and the depolarization
tensor are diagonal. The diagonal elements of the
conductivity, a- for example, are related to the
depolarization factors via a transcendental equation
(A12), of Mendelson and Cohen. " This is because
an ellipsoid embedded in an anisotropic effective
medium produces a nonuniform field outside the el-
lipsoid which mixes the field components in the dif-
ferent directions and thus the conductivities in the
different directions; in integrating to the final concen-
tration of grains in the self-similar model, the effec-
tive host medium at each stage is, of course, aniso-
tropic even though the pore fluid itself is isotropic.
There is no problem for the isotropic host effective
medium corresponding to a random orientation of
grains.

For the cases of extreme ellipticity, however, we
can still obtain simple expressions for the conductivi-
ty. For aligned needles or tubes (prolate s'pheroids
with eccentricity e —= 1) embedded in a conducting
fluid the conductivity along the direction of the sym-
metry axes is exactly given by

Equations (816)—(819) are also of the form of Eq.
(811) or equivalently (4.4),

(820)

for conductivity along the ith direction and the ex-
ponent is related to the pertinent depolarization fac-
tor by

(821)

as can easily be checked from (86) and (87).
The self-similar model for the conductivity'is of

the form of Eq. (Bll) and (813) for random orienta-
tions of spheroids of arbitrary eccentricity. For
aligned spheroids, the conductivity tensor of the an-
isotropic macroscopic medium is given by Eqs. (820)
and (821) for spheres (L, = —,, m = —,), plates, or

1 3

needles; we surmise that Eqs. (820) and (821) are
reasonable approximations to the full self-similar
model for aligned spheroids of arbitrary eccentricity.

The procedure used by Veinberg" (and its applica-
tion to rocks by Mendelson and Cohen" ) did not
employ the coated ellipsoid technique. Veinberg ' in-
troduces grains by an infinitesimal amount at each
step into the previous mixture and uses the
effective-medium approximation (EMA) at each step.
Since only an infinitesimal amount of grain is intro-
duced at each step (far below the precolation thresh-
old), the medium remains conducting at each step
Furthermore, for coated spheres, EMA is equivalent
to uncoated spheres with the Clausius-Mossotti
[average T-matrix approximation (ATA)].20 But,
ATA in turn is the same as EMA in the dilute con-
centration limit. '0 Thus the procedures in Refs. 19
and 20 are equivalent for spheres. Although we have
not proved this in detail for nonspherical cases (other
than needles and plates) we expect that using coated
ellipsoid, is equivalent to using uncoated ones, pro-
vided that we use the correct boundary contition, i.e.,
start with fluid at step zero.
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