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Low-temperature magnetic susceptibility of Si:P in the nonmetallic region
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Measurements of the phosphorus donor susceptibility XD(T) in Si:P have been made using a

superconducting quantum interference device at phosphorus concentrations from 1 && 10' to
4 & 10 cm over the temperature range from 2 mK to 4 K and in applied magnetic fields
down to 10 Oe. Above T —30 mK a plot of lnXD vs lnT shows a roughly linear characteristic
with a slope which diminishes with increasing concentration. For T (30 mK XD is found to

level off in an unexpected fashion in that the temperature at which this occurs is relatively in-

dependent of concentration. The leveling is less pronounced at 10 Oe for the most dilute sam-

ple; however, this sample exhibits an anomalously large saturation effect in 50 Oe. The leveling

of XD cannot reasonably be attributed to hyperfine effects or to magnetic ordering as a conse-

quence of interdonor exchange interactions. Susceptibility calculations are presented which are
based on a priori exchange couplings between many-valley orbital ground states for the donors.
In the spherical approximation for the envelope functions, the exchange integral is the product
of a rapidly varying interference factor and an isotropic factor which can be obtained from varia-

tional calculations for the hydrogen molecule. Calculations of XD(T) have been carried out us-

ing both a pair approximation modified to take account of larger clusters and a computer-
simulation cluster analysis which includes an error 'estimate based on a molecular-field approxi-
mation. The molecular-field approximation is described in detail here for the first time. The
two methods of calculation are in mutual agreement and in good accord with the data down to
T —30 mK, where modified pair corrections are small. The calculations yield values of en-

velope function radius and donor concentration in good agreement with other experimental and

theoretical estimates.

I. INTRODUCTION

In the past two decades, a sizable body of experi-
mental data has been collected on the electronic
properties of doped semiconductors. These materials
undergo a transition from metallic to nonmetallic (in-
sulating) behavior at impurity concentrations below
some critical value. ' Thus for Si:P the electrical resis-
tivity is observed to diverge at low temperatures' for
donor (P) concentration nD & 4 x 10'8/cm', indicating
that electrons at the Fermi level have become local-
ized. It is only at still lower concentrations
(nD & 1 && 10'Slcm') that the donor electrons in the
insulating ground state can be considered to be in

essentially hydrogenic 1s orbitals around individual

phosphorus ions. ' In this case the magnetic proper-
ties of the system can be described in terms of a sys-
tem of localized spins (s = —, ) coupled by hydrogenic

exchange interactions which are random in magni-
tude, but uniformly antiferromagnetic in character.
Moreover, using molecular-hydrogen calculations4'
as a guide, the exchange interactions can be quantita-
tively characterized.

The low-temperature magnetic properties of such
an "amorphous antiferromagnet" are of interest for
several reasons, a general one being the currently

wide interest in the behavior of amorphous systems.
The exchange-coupled donors have several features
in common with spin-glasses as well as some interest-
ing differences. It is one of the main points of this
work to search for spin-glass ordering in a doped
semiconductor. Our conclusion in brief is negative,
but certain anomalous behavior is found at very low
temperatures which, however, is quite different from
that of conventional spin-glasses.

In considering common features doped semicon-
ductors have with spin-glasses, the primary one is
that such systems are magnetically disordered with
competing exchange bonds. Thus, there is no way to
arrange the spins to satisfy all bonds or to produce
long-range magnetic order. Many systems of this na-
ture are found to exhibit the susceptibility peak
characteristic of spin-glasses. The present systems
differ from conventional spin-glasses in that the spins
are s = 2, the interactions are purely antiferromag-

netic, and the strength of the nearest-neighbor ex-
change interaction ranges over several orders of mag-
nitude. It is not clear which of these differences is
responsible for the apparent lack of spin-glass order-
ing. We consider this question further in Sec. V.

The present magnetic susceptibility studies were
carried out using a superconducting-quantum-
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interference-device (SQUID) magnetometer in a dilu-
tion refrigerator, with demagnetization cooling em-
ployed for temperatures below 20 mK. Experimental
details are given in Sec. II. Measurements were
made at temperatures ranging from 4K down to 3
mK in fields as low as 10 G. Donor concentrations
ranged from 1 && 10' up to 4 && 10' /cm . Extremely
careful work was required to subtract correctly the
large diamagnetic background susceptibility of the sil-
icon host.

Previous work on Si:P was limited to higher con-
centrations and temperatures T ) 1 K. The only
study comparable to the present one is that of In-
doped CdS, in which magnetization measurements
were carried out using Faraday rotation techniques
over a temperature range 70 mK ~ T «2 K. The
latter measurements reached the percolation thresh-
old' of the donor spins, but were limited to relatively
high field (Ho —I kG). The present measurements
on Si:P, presented in Sec. III, extend to well below
the percolation threshold of all but the lowest con-
centration sample and are in much lower fields.

The strength of the exchange interactions was ob-
tained from calculation of molecular hydrogen as was
done previously for CdS, with an additional modifica-
tion to include the rapidly varying interference factors
appropriate to indirect-gap semiconductors. The
magnetic properties of the random exchange Hamil-
tonian are calculated in two different ways, as
described in Sec. IV. A modified pair approxima-
tion" is presented in detail here for the first time.
This modification enables us to include the effect of
larger clusters in an approximate way and substantial-
ly improves the low-temperature behavior. In addi-
tion, a numerical cluster analysis of simulated ran-
dom distributions similar to that used in previous
work is also reported. This method is believed to
give accurate results where the molecular field correc-
tions are small, and is used to test the accuracy of the

modified pair approximation. These methods of cal-
culation agree with each other and, using a priori
values of the exchange interactions, give excellent
agreement with experiment over a wide temperature
range. Both methods are essentially limited to higher
temperatures and deviate from experiment at T & 30
mK. Neither method is capable of predicting a tran-
sition to a state with "frozen-in" spin orientations
such as the spin-glass state. The comparison between
experiment and theory is discussed in Sec. V.

II. EXPERIMENTAL

A. General considerations

P-doped Si samples (uncompensated) grown from
the melt were obtained from various sources'2 (see
Table I). The phosphorous concentration of all sam-
ples was determined from their room-temperature
resistivities using the Irvin curve. Since the sus-
ceptibility measurements must be done in low fields,
the SQUID technique is ideally suited for this pur-
pose. Two cryostats were used, one to cover the
temperature range from 1.1 to 4.2 K, and another (a
dilution refrigerator with a nuclear magnetic cooling
stage) for the lower temperatures.

B. Cryostat for the 1.1 to 4.2 K region

The measuring system, which is located in a
pumped helium bath, consists of a superconducting
field coil and a pair of astatically wound pickup coils
inside it, into which the samples can be dipped for
absolute magnetization measurements. The arrange-
ment is shown schematically in Fig. 1. All coils are
wound onto concentric Be-Cu forms which fit tightly
into each other and are securely fastened to the lower
part of a quartz tube (0.9 cm i.d.), which contains the

TABLE I. List of- parameters for all samples investigated. Values of nD are obtained from the
Irvin curve (see Ref. 2). a and n,h„, are values of the Bohr radius and concentration, respective-

ly, used in the calculations. 5 is the cluster threshold employed in the computer simulation studies.
The initials W.E. and G.D. refer to Western Electric Co. and the General Diode Co., respectively.
Values of a" can be varied by +3'!o and n, h,«by +10'/o, in a correlated fashion, without seriously
affecting fits.

Sample Origin
p(295 K)
(n cm)

nD

(10'7/cm3) (A)
theor

(10"/cm') (mK)

A
B
C
D
E

Recticon Co.
W.E.
G.D.
G.D.
G.D.

0.086
0.037
0.029
0.022
0.012

1.1
4.3
7.2

12
37

17.2
15.2
15.2
15.4

1.07
4.25
7.1

11

12.5
25.0
25.0
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was taken to avoid spurious signals from the sample
holder or from oxygen impurities. Only pure helium
gas out of liquid storage containers was used as a
thermal exchange gas. After trying out many sample
holder materials, the best results were obtained by
wrapping a 0.38-cm diameter cylinder out of clear
thin mylar foil, attaching one end of it to a fiber
holder and sticking the samples to the other end of it
with a dab of fresh Duco cement. In this way, the
bare sample could be lowered into the coil, and it was
not necessary to subtract any empty holder signal.
When measuring such weak signals in low magnetic
fields, one is very susceptible to ferromagnetic dust
particles on the surface of the sample. Reproducible
results could only be obtained on freshly etched sam-
ples. "Older" samples always showed evidence of a
small amount of surface ferromagnetism (as could be
determined from the field dependence), the origin of
which is still unclear.

C. Adiabatic demagnetization cryostat

FIG. 1. Magnetometer for the 1.1 to 4.2 K temperature
region. (a) Fiber rod, (b) quartz tube, (c} lead capillary
with SQUID lead, (d) lead shield, (e) mylar cylinder, (f)
Be-Cu springs, (g) Be-Cu locking screws, (h) SQUID pickup
coils, (i) sample, (k) lead shield heater, (1) coil form, (m)
Be-Cu spacer, and (n) field coil.

sample holder. The Nb pickup coils (10 turns each)
are directly connected to a SQUID sensor via a lead
capillary tube. Measurements are done by first freez-
ing a field of 300 Oe into the lead shield (using the
built-in lead shield heater) and then dipping the sam-
ple in and out of the upper pickup coil while monitor-
ing the flux change. The samples were always in the
shape of prisms of approximate dimensions
0.38 x 0.38 & 1.3 cm . An absolute calibration of the
SQUID system is obtained by dipping into the pickup
coils a rectangular cross section one-layer copper coil
of the same dimensions. Passing a current through
this coil generates the same magnetic field as that of
a uniform magnetic dipole density inside it. The
magnetic form factor is thus properly taken into ac-
count with this calibration. Working with this cryo-
stat in the range between 1.1 and 4,2 K, great care

To obtain data below 1 K, a moving-coil magne-
tometer was built into a dilution refrigerator, as
shown schematically in Fig. 2(a). The arrangement is
based on the same measuring principle as described
above, except that now the two samples attached to
the copper coldfinger remain stationary and the coil
system is moved. In the neutral position sho~n in
Fig. 2(a), the two pickup coils "see" only the high-
purity copper coldfinger, whose signal thus cancels.
In an upper position, the upper sample dips into the
upper coil and in a lower position, one can observe
the magnetization of the lower sample. The system
is calibrated the same way as described above. %'ith
the dilution refrigerator alone, end temperatures of
15 mK can be reached. Lower temperatures are gen-
erated by nuclear adiabatic demagnetization of 30 g
of PrNi5, which is soldered to the lower end of the
coldfinger (see Ref. 13 for a review of this tech-
nique). It should be pointed out that absolute mea-
surements are only possible in the absence of the nu-

I

clear cooling stage, since the superconducting magnet
constitutes too much of a disturbance for the magne-
tometer, in spite of the fact that there is a supercon-
ducting shield around the pickup coils. Care was tak-
en to build the magnetometer suspension out of non-
magnetic material (mostly lead-free brass) and to
avoid superconducting solder joints in its vicinity, in

order to minimize spurious signals when moving the
coils. To avoid warmup effects during this process, it
was found important to take off any mechanical load
from the guidance wheels of the coil assembly (the
~heel bearings are made out of graphite and have
0.127-cm-diameter stainless-steel axles). The coil as-
sembly is therefore symmetrically suspended with silk
threads and counterbalanced at the top, as shown in

Fig. 2(b). Also indicated in this figure is the opto-
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Fl&. 2. Left: Very low temperature moving-coil magnetometer. (a) Mixing chamber of dilution refrigerator (b) supercon-
ducting heat switch, (c) copper coldfinger, (d) support cage, (e) indium shield, (f) guiding rollers, (g) upper sample, (h) field
coil, (i) upper SQUID pickup coils, (k) coiled lead capillary containing SQUID lead, (1) lower SQUID pickup coils, (m) lower

sample, (n) vacuum can, (o) 1 K shield, (p) spacers, (q) PrNi5 cooling rods, and (r) SC solenoid. Right: Optomechanical posi-

tioning system of the moving coils, mounted on the top of the cryostat. (a) Flexible motor drive rod, (b) worm gear, (c)
suspension wheels, (d) silk threads, (e) glass cylinder, (f) differentially connected photocells, used to steer the dc motor, (g)
counterweight to moving coils in cryostat, and (h) light bulbs.

mechanical mechanism which allows the coil to au-
tomatically home in on the three positions which can
be set by positioning the three light bulbs. In opera-
tion, the coils are thermally anchored to the continu-
ous heat exchanger and cool to about 0.4 K. During
motion, they warm up to about 0.8 K. The warmup
effect on the coldfinger is much smaller, typically 1

rnK at 20 mK. Thermal contact to the samples was
made by a thin layer of Apiezon grease, and tempera-
tures were measured with thin layer Speer carbon
resistors. These were calibrated against the suscepti-
bility of cerium magnesium nitrate down to 20 mK,

and by means of a Co Co single-crystal nuclear
orientation thermometer at lower temperatures.

III. RESULTS

The absolute volume susceptibility between 1.1 and
4.2 K of all nonmetallic samples investigated is
shown in Fig. 3. The sample of pure silicon was cut
from a high-purity single crystal with a reported resi-
dual concentration of ionizable impurities of less than
10"/cm . Its diamagnetic susceptibility is practically
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FIG. 3. Absolute volume susceptibilities between 1.1 and

4.2 K of Si:P samples with various phosphorus concentra-
tions as indicated.

temperature independent below 4.2 K. The doped
samples clearly show the paramagnetic contribution
from the donor spins which increases with decreasing
temperature. Although it was shown that the electri-
cal resistivity for the highest concentration investigat-
ed here (3.7 x 10's/cm3) diverges as T 0, '4 it is

clear that in this sample most of the donor electrons
are no longer localized around individual phosphorus
ions, but those at the Fermi level are localized with a

localization length which is much larger than the ef-
fective Bohr radius.

The lower-temperature donor susceptibility (XD)
data for all insulating samples spanning the three de-

cades of temperature between 3 mK and 4.2 K are
shown in Figs. 4 and 5, where Xp in volume units is

plotted against temperature in a doubly logarithmic
plot. For convenience the samples have been labeled
A through E in order of increasing phosphorus con-
centration (see Table I). The scales for the succes-
sive concentrations are displaced by a decade for clar-

ity, and the solid line represents the calculated Curie
law for free spins at nominal concentration. The
various symbols refer to different measuring fields,
as indicated in the caption. The dashed lines are the
results of calculations, as discussed in Secs, IV and V.
It can be seen that for all concentrations, the reduc-
tion of XD from its free spin value increases towards
lower temperatures. At 4.2 K, this reduction is.only

15% for the smallest concentration (1.1 x 10"/cm'),
increasing to a factor of 10 at 3.7 & 10"/cm . Down
to about 30 mK, the temperature dependence is fairly
well described by a T "law, with the exponent n

varying between 0.9 for the lowest and 0.64 for the
highest concentration,

It is remarkable that for all concentrations except
the lowest one the donor susceptibilities become tem-
perature independent below about the same tempera-
ture, namely, around 10 to 20 mK. For the two
highest concentrations (D and E), the XD curves in

Fig. 5 are nearly parallel to each other, i.e. , XD of the
higher concentration (sample E) is roughly a factor of
3 lower than that of sample D over the whole tem-
perature range. This behavior reflects the greatly in-
creased interactions which are a precursor to the me-
tallic phase.

At the lower concentrations, we observe XD to be-
come field dependent at low temperatures. For free
spins, the effect of paramagnetic saturation in 50 Oe
should reduce the initial susceptibility by 4'/o and 13%
at 10 and 5 mK, respectively. An effect of this order
is observed in sample C, where we would in fact not
expect it, since the theoretical analysis shows that
there are only few spins in this sample coupled with
exchange interactions less than the equivalent of 10
mK. Even more startling field effects are seen in the
lower concentration samples A and B. In sample A,
the reduction of Xp on increasing the field from 10 to
50 Oe is about a factor of 2, much larger than can be
accounted for by the paramagnetic saturation effect.
In sample B, a reverse field effect is observed. In 10
Oe, XD is flat below 20 mK, while in 50 Oe, a shallow
maximum is observed around 10 mK.

The latter effect may be a consequence of unusual-
ly long spin-lattice relaxation times associated with

sample B. In samples C—E the response time was

typically about 2 min when warming from 3 to 5 mK,
and about 5 min for sample A. In sample B, howev-
er, this response time was more than 10 min, even
between 5 and 10 mK. This behavior, together with
the fact that the maximum is observed only in larger
fields, suggests that the sample was cooled into a
nonequilibrium state, out of which it relaxes during
the slow warmup. Similar behavior has been ob-
served in spin-glasses, where the magnetization in
the frozen state is also the higher, the slower the
sample is cooled through the spin-glass freezing tem-
perature. In our apparatus, data below 15 mK can
unfortunately only be obtained while warming up,
since the SQUID system is inoperative during the
demagnetization cycle, During this cycle the samples
are cooled in their respective measuring fields from
20 to 2 mK in a time of —20 min (and from 10 to 2

mK in -7 min).
One would expect the spin-lattice relaxation times

to be longest in the least concentrated sample (sam-
ple A). The fact that the observed thermal relaxation
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time of sample A below 10 mK in 10 Oe is shorter
than that of sample B raises the possibility that the
latter sample was "purer" in the sense that it con-
tained a smaller concentration of magnetic impurities.
This is indeed possible, since sample B originates
from a different source than samples A and C (see
Table 1). It is also possible, then, that the observed
strong field dependence of X~ below 10 mK in sam-

ple A is in fact not an "intrinsic" property, but an ef-
fect induced by the presence of magnetic impurities.

It is also of interest to display the XD data in
Curie-gneiss plots. This is shown in Fig. 6, where the
straight line again refers to free spin behavior. True
Curie-Weiss behavior, i.e., XD = C/( T + 0), where
8()0) is the'arithmetic average of all exchange cou-
plings expressed in degrees kelvin, " is expected only
for T & 0. It can be seen that even for our lowest
concentration (1.1 x 10'7/cm3), we do not yet get
into this regime at 4.2 K; i.e., there is a relevant frac-
tion of donor pairs coupled with exchange interac-
tions stronger than the equivalent of 4.2 K. Since we
argued above that there must also be a large fraction
coupled with less than 6 mK, the range of relevant
exchange interactions in this sample must extend
over at least four decades. This is in agreement with
theoretical predictions (see Sec. IV). The characteris-
tic downward curvature observed in all Curie-gneiss
plots in Fig. 6 is another consequence of the broad
distribution of interaction strengths.

IV. THEORETICAL CALCULATION OF THE
MAGNETIC SUSCEPTIBILITY JN THE

INSULATING PHASE AND COMPARISON
WITH EXPERIMENT

A. Donor wave function

In the limit of low donor concentration, the donor
electrons in Si:P are well characterized by hydrogenic
orbits and described by effective mass theory" with
modifications due to the short-range part of the im-

purity potential„referred to as "central cell correc-
tion. " In effective mass theory there are six degen-
erate states arising from the six conduction band val-
leys along the [100] directions in silicon:

y~(r) =F~(r)g„(r) (4.1)

where g„( r ) is the Bloch wave function of the p, th
conduction band minimum (p. = +x, +y, + z). F~(r)
is the 1s hydrogenic envelope function well represent-
ed by the Kohn-Luttinger" variational form

r ]/2.

F+,(r)=, ,(, exp —,+, +

(4.2)

FIG. 6. Curie-Weiss plots of the molar donor susceptibili-
ties (X& per mole of phosphorus ions) for the several con-
centrations of phosphorus in silicon investigated. Data sym-
bols correspond to different measuring fields, as in Fig. 5.
The solid line shows free spin behavior.
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with suitable permutations for the x and y valleys.
(The anisotropy of the envelope function is a conse-
quence of the anisotropy of the conduction band
minima. )

The effect of the central cell in Si:P is to remove
the degeneracy so that the ground state is the nonde-
generate symmetric combination

yg(r) = Xy„"(r) (4.3)

B. Exchange interaction

The magnetic properties of isolated "monovalent"
systems (such as phosphorus in silicon) are described

by the spin- —, Heisenberg Hamiltonian

3'. = Q Js s,' s, + X p, , A,
i&j i

where JJ = J(R J) is the exchange coupling between
the ith and jth spins, p, l

= g p, ~ s& is the magnetic

(4.4)

In addition, the attractive potential in the central cell
causes a shrinkage of the envelope wave function,
which may be represented by a reduction in the Bohr
radii a and b, estimated to be about 20%.

Though there are some differences from the usual
hydrogenic problem because of the anisotropy of the
wave function, the isotropic (or spherical) approxi-
mation is often found to be quite reasonable, espe-
cially for the ground state, which is a symmetric com-
bination of the six valleys, and has cubic symmetry.
One then obtains an effective Bohr radius, a', which

0
for Si:P is between 16—18 A depending on the aver-
age one takes, and a corresponding Rydberg, which is
close to, but somewhat less than the ionization ener-
gy, 45.5 meV. (Note that the "Bohr radius" here is
enhanced relative to hydrogen by the ratio ajm',
where ~ =11.4 is the dielectric constant and m' an
average conduction band mass, while the Rydberg is
reduced by a factor a~/m'. ) Because the Bohr radius
is much bigger than the Si lattice constant, the substi-
tutional positioning of the P atoms, leading to discrete
impurity sites, is not of importance.

Optical studies' show that for the densities below
nD —10"cm ', the modification of the low-lying
( 1 s 2p) excited states can be understood in terms
of randomly distributed close donor pairs. For the 1s
states (as monitored by the "forbidden" transition
between the symmetric and other 1s states) the pair
approximation works well up to nD —10' cm, as
expected because the radius of the 1s state is smaller
than the 2p state by a factor of -2. Consequently,
for densities below nD & 10'8 cm one has a system
of localized electronic spins coupled antiferromagneti-
cally (as in the case of hydrogen) with each other.
The exchange constant is determined by the splitting
of the singlet and triplet state of a pair of donors.

where k„and k„are the wave vectors of the conduc-
tion band minima, and j„„(R)is an exchange in-

tegral involving the envelope functions for electrons
in the N, th and vth valley [Eq. (A4)]. The result is
an exchange coupling which oscillates rapidly on the
scale of the Bohr radius (with a period of the order of
the lattice constant). The oscillations are due to the
mismatch of the phase of the Bloch wave part of the
electron wave function at the two donor sites. They
are a direct consequence of the central cell potential.
For the present we shall neglect the anisotropy of the
envelope functions; the effect of the anisotropy will

be examined in detail in the next subsection. Equa-
tion (4.5) then reduces to

J(R) =
6 icos(k„R) j,(R) (4.6)

where j,(R) is the hydrogenic value. The latter has
been calculated in detail by Kolos and %olniewicz
for R & 10a8, and their results match well to the
asymptotic (R ~) expression derived by Herring
and Flicker5

5/~

j,(R) = 1.636 e (R ~) . (4.7)
08

The simplest approximation to treat the rapidly os-
cillating factor in Eq. (4.6) is to average it, which
leads to a hydrogenic exchange reduced by the factor
6. However, a better approximation, which we have
chosen to employ, is to treat J(K) as j,(R) multi-
plied by a random variable $ which varies between 0
and 1 with the appropriate probability distribution.

moment of the ith spin and A the external field.
(g = 2 is the gyromagnetic ratio and p, s the Bohr
magneton. ) We have used the convention of a posi-
tive sign in the first term on the right of Eq. (4.4),
which corresponds to positive exchanges for antifer-
romagnetic coupling. This is convenient in the
present context, as it obviates the necessity of putting
negative signs all over in the text, which could cause
confusion. Magnetic dipolar interactions between
donor moments are estimated to be —10 K and
have therefore been neglected.

An ab initio calculation of the exchange coupling
for a pair of phosphrus donors in silicon, taking into
account the wave function anisotropy, central cell ef-
fects, and the wave function distortion due to the
presence of the other donor is not available. Howev-
er, assuming that the orbital part of the ground-state
pair wave function can be represented as a product of
one-electron wave functions of proper symmetry and
restricting oneself to the valley-symmetric combina-
tion forced by the central cell potential, the exchange
coupling can be written as (see Appendix A)

J(R) = —icos(k„R) cos( k„K )j„„(R), (4.5)



252 ANDRES, BHATT, GOAL%IN, RICE, AND %ALSTEDT 24

where

(4.9)

is the Curie susceptibility for free s = —, spins with

g =2. (Here nD is the donor density, p,s the Bohr
magneton, k~ the Bolzmann constant, and T the tem-
perature. ) J is the singlet-triplet splitting and p(J)
the probability distribution of the exchange couplings
of the strongest-coupled neighbor.

For a single valley isotropic semiconductor the ex-
change splitting J is a function only of the magnitude
of the separation (R) of the spins in the pair, and
monotonically decreases with increasing R. p(J) is
easily obtained from the nearest-neighbor probability
distribution from randomly positioned donors
[PNN(R) ]

0.2 0.4 0.6 0.8 ].0

PgN(R)
p J =

dJldR J(a)

where

PNN(R) =4rrnDR exp( 3rrnDR—)
4

(4.10)

(4.11)
Plot of the probability density A'($) of the at-

tenuation factor P (0 ( @ & 1) which reduces the hydrogen-
ic exchange interaction due to phase mismatch (see text and

Appendix A).

This distribution is computed in Appendix A and
shown in Fig. 7. Because of the inverse-square-root
singularity at the origin [Eq. (A9)l, the distribution
of the random variable is heavily biased towards
small values. This leads to a much weaker exchange
coupling than the hydrogenic case, which applies to
direct gap semiconductors such as CdS. The singu-
larity also leads to a longer weak-coupling tail in the
probability distribution of the nearest-neighbor ex-
change than expected by the simple averaging pro-
cedure. This has an effect similar to a reduction of
the concentration,

C. Pair approximation

The simple pair approximation has been found to
be satisfactory in explaining the magnetic susceptibili-

ty of doped semiconductors at low concentrations and
high temperatures. In this approximation one simply
pairs each spin with its strongest-coupled neighbor,
and solves for the susceptibility of pairs of spins. For
pairs and s = —, spins with Heisenberg exchange, one

easily obtains

(4.g)

However, in Si:P, the exchange interaction is not
spherically symmetric and is multiplied by a rapidly

. oscillating phase factor. The formulas [(4.10) and
(4.11)] require appropriate generalization.

First we consider the effect of anisotropy, and
compare the results for the anisotropic and isotropic
interactions. In this comparison we set aside the
complications due to the random phase factor and

simply use the average value. Thus we obtain

J(R) = —,', [j (R) +j„(R)+j„(R)1 (4.12)

The j»(R) are evaluated in Appendix B within the
Heitler-London approximation using Kohn-Luttinger
wave functions [Eq. (4.2)]. We note that the
Heitler-London results for hydrogen differ signifi-
cantly from those of Kolos and Wolniewicz. Howev-
er, the effect of anisotropy should be similar for both
forms.

The probability density of having a nearest-
neighbor exchange is then given by

J
p(J) =nap(J) exp no Jl p(J'—)dJ', (4.13)

where p( J) is the density of J values

p(J) = J 5(J —J(R))d3R

Using the appropriate Kohn-Luttinger radius ratio
a/b =1.73 we obtain the plots of p(J) shown in Fig.
8, for two values of the dimensionless density
noa'b =0.0005 and 0.003. [Because of the large
range of exchange couplings, we use lnJ as the vari-
able, with a probability density p(lnJ)d lnJ =—p(J)dJ,
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pled neighbor, as generalized from Eq. (4.13) is
shown in Appendix C to be

~R„(J)
p(J) = J 4rrnDR dRj, (R) 'N

0 j, R

(J) 1

x exp —
Jl 4mnDR'2dR' J N(@)d@

0 J/j, (R )

(4.14)

where RH is the radius at which the hydrogenic ex-
change equals J; i.e.,

(4.15)

FIG. 8. Distribution of nearest-neighbor exchange cou-
plings p(lnJ) for isotropic (circles and points) and anisotro-
pic exchange interactions (appropriate for Si:P, dashed and
solid lines) for two values of nDa b, as indicated. In this fig-
ure, calculations have been done using the Heitler-London
approximation and the average value of the attenuation fac-
tor.

or p(lnJ) = Jp(J). ] The results for the isotropic in-

teraction (a/b =1) with an effective radius a'
[a'=1.07(a b)' for nDa b =0.0005 and
a" = 1 03(a'b. )' ' for nDa'b =0.003] are shown as
points. The values of a' were adjusted to obtain the
best fit. Still better agreement can be obtained by ad-
justing the energy scale (Rydberg) somewhat, but
since our results for susceptibility are least sensitive
to small changes in the Rydberg, we have chosen not
to do so. The resu1ts calculated for the isotropic in-

teraction are within a few percent of the p (J) ob-
tained for the anisotropic interaction. Consequently,
in subsequent work we will use the approximation of
an isotropic interaction. The slight variation in a re-
flects the fact that for lower concentrations one is
way down in the exponential tail of J(R), where the
coupling is dominated by the largest radius. This
gives a slightly larger effective isotropic radius than
the mean value appropriate at higher concentrations.
This trend is also found in our values fitted to the
experimental results.

Having demonstrated that the exchange coupling
for the symmetric ground state can be adequately
represented by an isotropic J(R), we use the expres-
sion derived in the last section:

The distribution of exchange couplings for the near-
est neighbor p(J), on the other hand is (see Appen-
dix C):

p(J)
pR (J)

0 j, (R)

(4.16)

HYDROGENIC EXCHANGE

NEAREST NEIGHBOR

LLI

(0

Figure 9 shows the difference in the distribution of
couplings for the strongest coupled and nearest
neighbor for a typical concentration (-8 x 10" cm '
in Si:P), along with the distribution for hydrogenic
exchange. The curves were calculated with the
Kolos-Wolniewicz-Herring-Flicker (KWHF) values

J(R) =4Ij, (R) I
0-6 IO-5 IO 4 IO

J ( hartree)
IO 2 IO-'

where qh varies between 0 and 1. The probability
density of P,N($) is given in Appendix A and
shown in Fig. 7. This ieads to the result that J(R) is
not a monotonically decreasing function of R, and
that the nearest neighbor may not be the strongest
magnetically coupled neighbor. The distribution of
exchange couplings for the strongest magnetically cou-

FIG. 9. Calculated probability densities p(lnJ) for hydro-
genic exchange (dashed line, valid for direct-bandgap,
single-valley semiconductors) and for the multivalley case of
silicon, both for nearest neighbor (dash-dotted line) and for
strongest neighbor (solid line ) exchange. These results are
calculated with KWHF exchange, using spherical envelope
functions.
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for j,(R) in Eqs. (4.14), (4.16), and (4.10). As em-
phasized earlier, the exchange is reduced by about an
order of magnitude from the hydrogenic case. In ad-

dition, Fig. 9 clearly shows that the fluctuations of
the phase factor lead to rather different distributions
for the nearest neighbors and the magnetically
strongest coupled neighbors.

D. Modified pair approximation

f(T) —= x, (T)/x, (T) (4.1 7)

gives the fraction of effectively isolated spins at a
temperature T (i.e., those with strongest couplings
J & ksT). This naturally leads one to define an ef-
ft:ctive, temperature-dependent, clustering volume
through

f ( T) = ex p [ nD u ( T)]—(4.18)

[Equation (4.18) is motivated by the result that the
probability of finding no neighbors in a volume v

around a given spin at a density nD is exp( nou) ]- .

To evaluate the contribution of each spin to the

The pair approximation works well at high tem-
peratures and low concentrations. In this limit, the
only spins "frozen" out are those which are unusual-

ly close, and because of the exponential form of the
interaction, these are very likely to be isolated pairs.
However, as has been shown, " even for low concen-
trations it breaks down at low temperatures, when
the susceptibility drops below about 70'/0 of the Curie
value. Numerous remedies have been suggested, in-

cluding grouping spins into sets of three, ' and modi-

fying the nearest-neighbor distribution to take into
account the possibility that the neighbor is already
"paired up" with another spin. " The former forces
a doublet ground state for each set of three spins,
thus leading to a significantly overestimated suscepti-
bility, equal to one-third the Curie value, at low tem-
peratures. The latter treats the probability distribu-
tions for the neighbors of the spins in the pair as in-

dependent, which again can be shown to overestimate
the susceptibility. %e present in this section another
method of improving on the pair approximation,
which correctly takes into account three spin clusters,
and also we believe gives a good approximation to
the behavior of larger ones. The method has been
found" to give results within =10'/0 of numerical
cluster methods down to temperatures where the sus-
ceptibility is 20'/0 of the Curie value. Further im-

provement should be possible by studying the statis-
tics of the energy levels of finite sized larger clusters.

The procedure starts with a calculation of the sus-
ceptibility in the simple pair approximation. Using
the KWHF exchange, Eqs. (4.14) and (4.8), we com-
pute the susceptibility in the simple pair approxima-
tion. The temperature-dependent ratio

r

1 (nou)'
XMpA( T) = X ( T) e I +—

3 2!

(nDu)'
5 41

=x, (T)e isn h(n nu)/( nou)

Using Eqs. (4.17)—(4.19) one easily obtains

xMPA(» I —[xp(»/x, (T)]'
x, (T) 21n[x, (T)/x (T)]

(4.19)

(4.20)

which reduces to the simple pair approximation at
high temperatures when few spins are frozen out. In
this limit xp/x, 1 and

XMpA( T) —xp( T) 1 +
6

1 +x, ( T)

x, T

(4.21)

Alternatively one can arrive at Eq. (4.19) by divid-

ing the system into cells of volume v and evaluating
the susceptibility of each cell independently, allowing
for a Poisson distribution of spins in each cell.

Using Eq. (4.20) we obtain the susceptibility curves
shown in Figs. 4 and 5 as the long dash lines. Both
donor concentration nD and the effective Bohr radius
a' have been adjusted to give a good fit, with the
resulting parameter values given in Table I. A good
fit to experiment is achieved, except for the lowest
temperatures, and the values of nD obtained agree
with those derived from the room-temperature resis-
tivity data to within about 5'/o. This demonstrates
that this method is an independent measure of con-
centration. A detailed comparison of these calcula-
tions with the experimental data is given in Sec. V,
along with a discussion of the fitted parameters.

It is interesting to examine the low-temperature
limit of XMpg(T). In this limit X„(T) 0, leading to

x, ( T)

2ln[x, (T)/x, (T) ]
(T-0) . (4.22)

For exponential interactions this gives a diverging

susceptibility at a temperature T, we imagine cir-
cumscribing a volume u(T) around the spin. We al-
low for the possibility of all numbers of spins n in v
given by the Poisson distribution, and ascribe to each
spin 1/n of the susceptibility of the n-spin cluster. "
Since the spins in the cell are connected to each other
.by bonds of order T or greater, we expect only the
ground state to be relevant at 7. All even numbered
clusters are assumed to have a singlet ground state
(all spins paired) while odd numbered clusters have a
doublet ground state (one spin free). This leads to a
susceptibility in this modified pair approximation:
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susceptibility XMpA( T 0) —[ T ln ( To/T) ] ', in

marked contrast with the pair approximation. Apply-
ing the same argument for power-law couplings
J(R) —R "gives divergent susceptibility (and thus
no spin-glass behavior) for n ) 3; this value for the
crossover has been arrived at by Fisch' using a dif-
ferent approach.

A comparison of the results obtained by the
present method with the more detailed cluster calcu-
lation to be described in the next section shows this
to be an accurate and useful approximation to X( T)
down to the lowest temperatures where the cluster
calculations are valid. However, at lower tempera-
tures the validity of our procedure of replacing the
infinite system by an ensemble average of finite clus-
ters in a temperature-dependent volume is an open
question. Assessment of this point awaits a more
rigorous theory. If our scheme is found to be justi-
fied, it would be of great interest to do statistics on
the energy levels of larger clusters (in the way we
have defined them) and incorporate their low-lying
excited states to improve our approximation.

E. Cluster analysis of computer simulation

The Si:P susceptibility data have also been analyzed
by a computer simulation technique which has been
applied successfully to the case of dilute donors in
CdS. We give here a brief sketch of this method of
analysis, a more detailed description being found in
Ref. '9. Random sites in a cubic volume are selected
for a finite sample of N spins. The exchange interac-
tion matrix is then set up using Eq. (4.4). The in-
terference factor in Eq. (4.6), which was absent in
the CdS case, is treated as a random statistical vari-
able because of its rapid variation with R. The value
of this factor for a given exchange bond is deter-
mined by choosing a random number on the unit in-
terval, these numbers being distributed as given in
Appendix A. The exchange interaction is limited to a
range of R ~9as, giving J(R) values ranging over
more than five orders of magnitude. Periodic boun-
dary conditions are applied to the simulation cube to
avoid surface effects.

The magnetic properties of the simulated spin sys-
tem described are calculated with the following ap-
proximate scheme. The system is divided into clus-
ters by setting an interaction threshold 4 such that if
Jj & 5, then spins i and jare in the same cluster.
is set at or near the minimum temperature of the
data to be analyzed, if possible. The cluster Hamil-
tonians are solved exactly and the magnetization of
the entire system is then calculated, taking interclus-
ter interaction into account with a molecular field
scheme. Thus, the system Hamiltonian [Eq. (4.4)] is
approximated by one which is a sum over clusters n,

where X indicates a sum over the nth cluster and

"~ = (2g»&~) (o'*)- X Jjk
jk

(4.24)

is the molecular field acting on that cluster. In Eq.
(4.24) the sum X&'„' is over spins j in cluster n and k
not in cluster n. N„ is the number of spins in cluster
n and (a.,),„ is the mean polarization (0 ~ (o,),„~1) for the entire sample. There is a practical limit
on the size of clusters to be diagonalized, which we
have set at eight. Larger clusters are broken down
into smaller units by cutting the weakest bonds possi-
ble and/or eliminating strongly coupled spin pairs
which are sufficiently isolated to remain magnetically
inert.

This method is exact in the limit of low concentra-
tions and high temperatures. As these conditions are
relaxed, we estimate the accuracy of the results by
the size of the molecular field corrections. Although
these corrections are probably no more accurate than
within a factor of 2, when they are small the results
are thought to be correspondingly precise. While the
simulation method gives no analytic results, it is use-
ful both to compare with data and to test the analytic
results of Secs. IV C and IV D under conditions
where the accuracy is good.

The qualitative nature of. the results reported here
are quite similar to those obtained earlier for CdS, in
spite of the topologically different clusters which
result from a nonmonotonic dependence of the ex-
change interaction on separation. The magnetic con-
tribution from each cluster at temperature T is ob-
tained by weighting the Curie constants from the
various spin multiplet eigenstates according to their
degeneracy and Boltzmann factor. Since the states
with lower spin tend to lie lower in energy, one finds
an overall Curie constant that diminishes steadily to-
ward low temperatures. All odd clusters are found to
possess doublet ground states, whereas a significant
fraction of even cluster ground states are triplets (the
remainder being singlets). Eight-spin clusters contri-
bute, for example, the same susceptibility per spin as
all clusters do on the average. We emphasize that
clusters as defined here and in the modified pair ap-
proximation are totally different; thus, there is no
simple relationship between the results obtained with
these two methods.

Cluster analyses of two independent random distri-
butions of A = 324 spins have been carried out for
each of the three lowest concentrations (Fig. 4) using
the parameter values given in Table I. The two cal-
culated susceptibility curves at each concentration dif-
fered by a few percent at most; averages of the two
are plotted in Fig. 4 both with (short dash line) and

Xapp X„&„~where

3C„=—gp, s(H+14) $ S„+T~ X' JtrS, S, (4.23)
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without (dot-dash line) molecular field corrections.
In cases where the corrected cluster analysis curve is
indistinguishable from the modified pair approxima-
tion result (Sec. IV D) the short dash line is omitted.
In fact, the latter condition applies everywhere except
in the vicinity of 1 K for sample C and below —100
mK for sample B. For sample A the molecular field
corrections are negligible down to 10 mK, thus the
"uncorrected" curve is omitted.

The correspondence between these results and

both the modified pair approximation curves and the
experimental data are discussed in detail in the next
section.

V. DISCUSSION AND CONCLUSIONS

This work has measured the magnetic susceptibility
of phosphorus doped silicon in the temperature range
4 K down to 2 mK, for doping levels nD ranging from
just below the delocalization transition at —4 x 10'

cm down to 10" crn . To our knowledge„ this is

the most thorough investigation to date of an s = —,

amorphous system with antiferromagnetic Heisenberg
exchange over temperatures ranging to well below

the magnetic percolation threshold of the system.
Down to about 25 mK, the donor susceptibility is

found to be a monotonically increasing function as
the temperature is reduced. However, the slope on a

log-log plot of susceptibility versus temperature is

much reduced from the Curie law (slope equal to
—I), and the susceptibility at low temperatures is ex-
tremely nonlinear in donor concentration in the
above range. The data are not fitted by a Curie-Weiss
form„because the exchange couplings range to well

above the temperatures studied, For concentrations

nD & 1 x 10'~ cm ' and T & 30 mK, the modified pair
approximation and numerical cluster calculation using
the same a priori values of the exchange interaction
are in agreement with each other. Both are found to
give excellent agreement with experiment as shown
in Fig. 4. Note that at the lower temperatures in

this range, the susceptibility is much less than the
Curie value. The only parameters which enter these
calculations are the donor concentration nD, the ef-
fective Bohr radius a'„and the effective rydberg„ I.
The fits are not sensitive to the values of (R and we
have used an average value 0 =440 K for all concen-
trations. This value falls within the range defined by
6t =e'/2ea'. The values of nD and a' are quoted in

Table I. They are found to be within a few percent
of the values obtained from other measurements.
This confirms the basic correctness of our model.
The decrease in a" with nD is small, and of the mag-
nitude that is expected because of the approximation
of the anisotropic envelope functions by isotropic
ones. The agreement of better than 5% in nD with
values derived from conductivity shows that the sus-
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FIG. 10. Observed donor susceptibilities as a function of
donor concentration at 4.2 and 0.0875 K (solid circles).
Also sho~n are the values for free spins (heavy solid lines)
as well as those calculated in the modified pair approxima-
tion {light solid lines).

ceptibility can be used as an independent reliable
measure of concentration.

In Fig. 10 we show the donor susceptibility versus
concentration at two fixed temperatures. The in-

crease in strength of exchange interactions as n~ is

increased causes XD to deviate from the Curie sus-
ceptibility, which is linear in nD. As expected, the
departure from linearity is more pronounced at the
lower temperature. Also shown are values of X~ ob-
tained in the modified pair approximation, which
agree well up to concentrations n& —1.2 x 10' cm
(see also Fig. 5). That the fit is good up to these
concentrations may appear somewhat surprising. The
implied absence of a change in the exchange interac-
tion indicates that extensive delocalization takes place
only at higher densities, i.e., within a factor of 4 of
the Mott density. (We note in passing that the tran-
sition from the metallic side has been found to be
very abrupt in recent low-temperature conductivity
studies. '~) At still higher concentrations, the accura-

cy of both types of calculation is expected to
deter iorate.

At the lowest temperatures, there is a systematic
deviation of the experimentally measured susceptibili-
ty from the calculated results, toward lower values.
In samples A, C, and D the deviation is rather abrupt
and takes place at T —30 mK, independent of nD.

The concentration independence suggests that the de-
viation is not likely to be caused by ordering of the
electronic spins due to their mutual interactions (ex-
change or dipolar). Other causes for the saturation
could include nonequilibrium effects, or possibly oth-
er interactions such as those between electronic and
nuclear spins (hyperfine) or with other impurities,
etc. , which have not been included in the Hamiltoni-
an. We have examined the possibility of susceptibili-
ty saturation due to hyperfine condensation (the hy-

perfine interaction in Si:P is about 5 mK) by calculat-
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ing the susceptibility of clusters of one, three, and
(magnetic) four electronic spin clusters. The hyper-
fine interaction in dilute Si:P is about 5 mK. The de-
viations obtained at T —10—20 mK, ho~ever, are
not adequate to explain the discrepancy between
theory and experiment. Regarding other possibilities,
it is difficult to rule out nonequilibrium effects in the
experiments as a cause of the observed saturation,
although the equilibrium appeared to be good at tem-
peratures of 20 mk and above. The variation of the
saturation effect among samples A —C suggests that it
is nonintrinsic behavior caused by magnetic impurity
species.

Particularly anomalous behavior of the susceptibili-
ty is seen for sample B which was obtained from a
different source from any of the other samples
(Table I). First, the Bohr radius needed to fit the
susceptibility (15.2 A) is lower than expected from
the fits to the other samples. At low temperature„
long relaxation times of the order of 10—20 min were
observed, and in the SQUID measurement the sam-
ple actually showed a small peak in susceptibility in a
field of 50 Oe, which disappeared in 10 Oe. Also,
the saturation effect in this sample is reversed from
that for the lowest concentration sample (which has
the correct sense but is anomalously large). We be-
lieve this behavior is likely to be due to nonequilibri-
um effects rather than spin-glass type ordering. The
nonequilibrium effects seen in this sample point to
the possibility of the same in other samples at tem-
peratures below 20 mK.

The possibility that the observed saturation effect
in any of the samples is actually spin-glass ordering
has to be rejected because of its unexpectedly small
variation with concentration. For example, in sample
C the measurements extend to well below the per-
colation temperature for the exchange bonds. '" Yet,
if the observed flattening of XD below T —30 mK
were a spin-glass transition, then the corresponding
transition in samples A and B would have to occur at
temperatures well below 30 mK. Since they do not„
we are forced to conclude that the flattening is due to
some other effect which takes precedence.

In view of the absence of identifiable spin-glass
transitions in our Si:P samples, it is useful to consider
further the contrasting features of Si:P and typical
spin-glass materials which were mentioned in Sec. I.
First, no spin-glass transition has been reported in a

system with spins s = —,. Klemm'" has argued that
spin-glass transitions do not exist for such systems.
Recently, however, Bray and Moore" have predicted
such a transition for the Sherrington-Kirkpatrick
model with s = —.A second point is the purely anti-
ferromagnetic character of the exchange in Si:P.
Although spin-glass ordering is frequently said to oc-
cur because of the competition between ferro- and
antiferromagnetic bonds„recent work ' has strongly
indicated that purely antiferromagnetic systems can

exhibit spin-glass behavior. Finally„a most important
point is the short-range interaction in Si:P, which
leads to a very wide range of nearest-neighbor in-

teractions. In this respect Si:P resembles diluted anti-
ferromagnets below their percolation threshold„
which exhibit no magnetic transition. In contrast,
spin-glasses tend to have a relatively narrow distribu-
tion of exchange couplings. What may happen in
Si:P below the percolation temperature is that
strongly-coupled clusters condense into singlet
ground states, i.e., magnetically inert regions, ' The
system is then unable to support the long-range corre-
lations believed to characterize the spin-glass transition.

At concentrations above —10"cm ', but still
below the insulator-metal transition„ the donor elec-
trons are not in the isolated donor orbits, and conse-
quently the spin susceptibility cannot be described in
terms of our model for the exchange interaction. In-
stead the description is in terms of a strongly corre-
lated Fermi gas, with disorder-induced Anderson lo-
calization at the Fermi level. While the moderate
temperature dependence of X( T), which disappears
only on the metallic side of the transition where one
obtains a Pauli T-independent susceptibility, is in
qualitative agreement with this picture, there exists
no complete theory for this region.

It would be highly desirable to complement our
results in Si:P by other experiments which are direct-
ly sensitive to nonzero expectation values of spin
(S,) at the donor sites. Examples include line
broadening due to freezing of spins in EPR, or possi-
bly nuclear orientation techniques. (One could look
for anisotropy in y radiation of neutron-activated
phosphorus nuclei which orient themselves in the lo-
cal hyperfine fields at low temperatures. ) In the
search for magnetic ordering due to the magnetic ex-
change interaction, the direct gap doped semiconduc-
tors with large donor binding energies offer greater
promise because there is no reduction of exchange
due to many-valley effects, and thus the interference
due to hyperfine coupling is also not as great.
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APPENDIX A: EXCHANGE INTEGRAL
FOR SHALLOW DONORS IN Si

The exchange energy for a pair of donors at R~
and R~ with electrons in the symmetric 1 s ground
state (with envelopes perturbed as necessary by the
presence of each other) is given by
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2

J(Ra—R„)= „d r, d r,p~(r, R„—)g~(rq —Rs) Q~(r~ —Rs)P~(rz —R„)
r~ rp

where

yg( r ) = XF,( r )g, ( r )
6

(A2)

is the ground-state wave function centered around the origin. The sum on p, is over the six conduction band
minima located at k=k„with Bloch wave functions $„(r ) —exp(ik„. r ), and F„are the corresponding (aniso-
tropic) perturbed "hydrogenic" envelopes. Substituting Eq. (A2) in Eq. (Al), and neglecting terms for which
the integrand is rapidly oscillating, we obtain

J(R) = —,', QJ,„(R)e (A3)

where

2

j„„(R)= Jtd'r~d'rqF„( r~ —K„)F„(r&
—Rs) F„(r, —R&)F„(r&

—R„)
e r~ -r&

(A4)

J,(R) = —, icos( k, R) j,(R) (A6)

On the other hand„ if we average over the rapidly os-
cillating cosine terms, only the terms with p, =+ v

survive, to give

(J(R)) = —,', gj,„(R) . (A7)

and R=R~ —R&.
The valleys at k„and —k„have the same en-

velopes leading to

J(R) = —,6 icos(k~ R) cos(k„R)j~„(R) . (A5)
lMV

If we assume the envelope functions to be spheri-
cal, so j„„(R)=j,(R), independent of p, and v, we
immediately obtain

Obviously a combination of Eqs. (A6) and (A7) leads
to an averaged exchange (J,(R) ) which is spherically
symmetric and equal to j,(R)/6.

For the spherical case (A6) we may do better than
averaging over the cosine factor, by noticing that
since the lattice constant is much less than the Bohr
radius, the effect of the cosine factor can be
represented by a random number $, between 0 and
1, multiplying j,(R). The probability density (distri-
bution function) N(P) of the random number @ is

just the density of states for a band whose energy
dispersion is the square of the energy dispersion for a
three-dimensional simple cubic tight binding band of
s states. While no analytic form exists for this distri-
bution function we have found the following formula
to be accurate within —2%„ for the simple cubic tight
binding density of states

&3I2,

~
—', (1 —I~I) j'"l~~+(I.I

—
—,
' ) —

—,
' ~'(l.

l

—
—, ) '"&,

(A9)

APPENDIX B: EVALUATION OF THE EXCHANGE
INTEGRAL FOR ANISOTROPIC WAVE FUNCTIONS

IN HEITLER-LONDON APPROXIMATION

[Note that there is no factor of 2 in Eq. (A9) because
the density of states (A8) is for —1 ~ e ~ 1, while in

Eq. (A9) 0 ~$ ~l. l

In order to see qualitatively the effects of anisotro-

py of the envelope function it is instructive to carry
through the calculation in the Heitler-London ap-
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proximation. Even in this case, the evaluation of the
integral is only approximate. Results for the distribu-
tion of exchange couplings are obtained using two
complementary methods to evaluate the integrals.
These are found to be within a few percent of each
other over the values of exchange of interest.

In the Heitler-London approximation, using the

Kohn-Luttinger (unperturbed) 1 s wave functions

(and similarly F„and F~), we obtain

(81)

F(r)= 1
exp[ —(x'/a'+y'/a'+z'/b') ' ']

( ~a 2 b) I /2

j~(R) = „d3r~'d3rzF, (rt )F,( r2 —R), , F, (r2 )F,(rt —R)
1') —r2

(82)

Scaling the lengths in the three directions by the respective Kohn-Luttinger radii, thus x~ =x /a, y; =y, '/b, and
z;=z /b(i =1,2), we get

e' ", exp[ —(rt —Ir& —r l)]exp[ —(r2 —Ir2 —r I)]j„(R)=
2

d r&d r2
en a " [{r~ —r2( —(1 —b /a )(zq —zz) ]'

(83)

where r =(X/ aY/a, Z/b). The major dependence of j on R comes from the exponential terms in the
numerator of the integrand. Thus, in order to evaluate the integral in Eq. (83) approximately we may use the
angularly averaged value of the denominator, which is

(
1 1

sin '[(1 —b /a )'/ ]
( r t

—r2 {'—(1 —b'/a') (z~ —z2)',„{r t
—rz { ( I —b /a )

giving

2j (R)=, , /, {sin '[(I b /a')'/'])j//(—r)
ea 1 b2 a2 1/2

where

(84)

j//(r) =
5 {—e "(—

8
+ —, r +3r'+ —, r ) +(6/r) [S'(y+Inr) +S'Ei(—4r) —2SS'Ei( —2r)]] (85)

is the hydrogenic result in atomic units. z In Eq. (85) y=0.5772, . . . , is Euler s constant, Ei the exponential
integral, and S = e '(1 + r +

3
r2), S' = e'(1 —r +

3
r').

Alternatively, at large separations (R ))a, b), we may replace the denominator by the value appropriate for
the line joining the two donors„around which the maximum contribution to the exchange arises:

1

{ r~ —r2{ —(1 —b /a )(z& —z2)

1

[1 —(1 —b'/a') cos'e]' '
{ r, —

rz~

where H is the polar angle of r, related to the polar
angle H' of R by

r -]/2
b

cosH = 1 + tan'H'
0

so
[/2

j„(R)=,cos'8'+ sin 8' jH( r)
ea

(86)

Similar expressions are obtained for j and j~ by ap-

propriate permutations of x, y, and z. The total ex-
change, averaging over the rapidly oscillating phase
factors, is given by Eq. (A7):

(J(R) ) = —,', [j (R) +j (R) +j„(R)] (87)

Results obtained for the distribution function using
Eqs. (84) and (86) differ from each other by even
less than the few percent error resulting from usage
of the spherically symmetric exchange interaction,
and thus either may be used.
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APPENDIX C: PROBABILITY DISTRIBUTION OF
EXCHANGE COUPLINGS

j,(R H)=J (C 1)

The probability of finding a neighbor with an ex-
change between Jand J+dJis weighted by the prob-
ability of finding the appropriate value of P. This is

given by N(PJ)(dPJ/dJ)dJ with QJ = J/j, (R) and
the distribution function % is calculated in Appendix
A. If this neighbor is to be the strongest magnetic
neighbor then we must multiply by the probability
that there is no neighbor with an exchange value

I

To obtain the probability distribution of the strong-
est neighbor with an exchange value of J we assume
that it is located a distance 8 from the spin at the ori-
gin. The value of R is clearly bounded by R~(J)
where

x exp( —no& J) (c3)

quoted in Eq. (4.14).
The nearest-neighbor distribution can be obtained

by a similar argument with the modification that the
volume OJ is replaced by the volume of the sphere
of radius R weighted, of course, by a factor of unity.
The result is quoted in Eq; (4.16).

greater than J. . This probability is exp( —nDQ J)
where 0J is volume out to a distance RIr(J) weight-
ed by the. fraction of exchange values greater than J
in this volume. Thus

Rtf(J) f 1

OJ =4m J
R' dR'J, N(@)dp . (C2)

Jjj,(R )

I" inally we obtain the result

RZ(X)
p(J) =4m nDJ R dRN(QJ)j, '(R)
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