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Investigation of condensed matter via resonant neutron scattering. Correlation-function formalism
with application to the study of the interatomic force density
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Resonant epithermal neutron scattering provides a new regime for the study of the properties
of condensed matter. The differential scattering cross section is developed in a resonant-
correlation-function formalism involving the positions of two scattering centers at four different
times. The resonant correlation functions contain information which cannot be obtained from a

study of the Van Hove correlation functions which are related to the thermal neutron scattering
law, and these resonant correlation functions enable one to observe phenomena which are
beyond the scope of thermal neutron scattering. The extraction of the time-dependent intera-

tomic force density is taken as an example.

I. INTRODUCTION

Thermal neutron scattering studies constitute a
powerful and well-understood means for probing the
microscopic properties of condensed matter. ' It was
first shown by Van Hove that the differential cross
section for the scattering of thermal neutrons may be
expressed in terms of microscopic two-time correla-
tion functions of dynamical variables for the target
system. Thermal neutron scattering experiments en-
able one to measure quantities of interest to the
theory of condensed matter.

Resonant neutron scattering provides a new regime
for probing the properties of condensed matter. In
contrast with the nonresonant thermal regime, the
amplitude for resonant neutron scattering is strongly
dependent upon the energy of the incident neutron.
Consequently, as we shall show, the differential cross
section for the resonant scattering of neutrons is re-
lated to a four-point correlation function of target-
system dynamical variables.

The theory of neutron-nucleus resonance reactions
was fully developed in the period of time from the
1930's to the 1950's, beginning with the pioneering
work of Bohr and Breit and Wigner. " In the case of
a single epithermal neutron resonance, only s-wave
scattering is appreciable. In the vicinity of such a res-
onance the scattering amplitude is given by

r„/2f=f""E-E„+;rj2

where E is the energy of the (free) neutron-nucleus
system in the barycentric coordinate system, 2m%. is
the wavelength of the incident neutron, and fo is the
potential scattering amplitude, which is typically of
the order of the nuclear radius. ER is the center of
the resonance. I „ is the partial width for decay with

the emission of a neutron, and I' is the tota1 width of
the resonance.

%e shall be concerned with the scattering of epith-
ermal neutrons with energies less than a few electron
volts. A few heavy isotopes have resonances in this

energy range' and their widths are in the range of
several tens to several hundreds of millivolts (see
Table I). For example, 240Pu has a resonance in the
vicinity of Eg =1 eV, for which the widths are
I =0.03 and I „=0.002 eV. These widths are of the
order of typical therma1 vibrational energies of these
nuclei in condensed matter or molecules and we sha11

see that they effect a profound change in the neutron
cross section from that obtained in the potential
scattering regime as given, for example, by the Van
Hove formalism.

The differences which arise in the resonant regime
stem from two causes: (a) At resonance the scatter-
ing amplitude is quite large so that even for rather
small samples multiple scattering effects may become
important. (b) The resonant scattering amplitude ex-
hibits a Breit-Signer line shape as a function of in-
cident neutron energy. As an example of the former,
we consider the resonant scattering of neutrons
which are well collimated with an incident energy of
E =1 eV upon a single crystal of Pu. The planar
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TABLE I. Partial list of low-energy neutron resonances. ER is the resonant energy, 1" is the to-
tal width, and I'„ is the neutron partial width.

ER (ev) r (meV) 1 „(meV)

1570d
240pu

238U

Hf
1151n

113Cd

0.03
1

. 6.7
1,1
1.5
0.18

100
32
25
67
72

113

0.6
2.4
1.5
2
3
0.65

(1.2)

scattering amplitude is

&ol dfNfD(~)
sin&

where no is the atomic density, d is the lattice spac-
ing, 8 is the angle of incidence, and fD is the Debye-
Waller factor. The atomic density is of the order
no=4 x 10 '/A', the wavelength of the 1-eV neutron

js g = 3 x 10 ' A. We may use the value d = 3 A as
the order of magnitude estimate for the lattice
parameter. The single-site scattering amplitude is
given by Eq. (1.1) to be fN =3 x 10 ' A. The
Debye-Wailer factor at 1 eV is of the order
fo =0.16. Taking, for example 8=45', the planar
scattering amplitude is of the order

(4 x10 '/g')(3 x10 ' A)(3 A, )(3 x10 ' A)(0.16)/0.707=2 x10 '

If the crystal consists of a slab M layers thick and the
incident neutron satisfies the Bragg condition, then in
the Born approximation the scattering amplitude is
+F. Multiple scattering can only be neglected if
MF « 1 or M « 105 layers at a thickness
Md « 10 ' cm. For larger crystals, one must in
considering the Bragg scattering use the dynamical
theory, 7 which for the resonant scattering of y rays
has been fully developed; this theory has been ap-
plied to resonant neutron diffraction by Kagan and
Afaneslev et al. 8

We shall not go into the multiple-scattering regime
to any appreciable extent but we shall concentrate on
the scattering from small samples. In this case it is
the strong dependence of f~ (or the long "delay
time, "t/I', between the entrance and the emergence
of the neutron from a nucleus) which gives the in-

teresting new effects.
The resonant absorption of neutrons by nuclei in a

crystal was investigated by Lamb, 9 who showed how
target system relaxation gives rise to a Doppler
broadening of the resonance width. The elastic
scattering of neutrons at resonance from bound nu-
clei was investigated by Trammell, who demonstrat-
ed that information on target-system dynamics can be
obtained from the elastic cross section about reso-
nance. This result is remarkable in that the same in-
formation can be obtained from nonresonant neutron
scattering experiments only by looking at the inelastic
component. Trammell showed that the cross section
for the elastic scattering of neutrons at resonance
from nuclei bound in a crystal may be expressed in
terms of the same two-time correlation functions
which are related to the inelastic component of the

I

nonresonant case.
For many years, sources of epithermal neutrons

(such as conventional reactors) were of insufficiently
high flux to make resonant neutron scattering studies
of condensed matter a real possibility. More recently,
the arrival of spallation sources on the scene has
promised to give much higher neutron fluxes in the
epithermal region'; this arrival points to new vistas
in the field of experimental resonant neutron scatter-
ing.

Our purpose in this series of papers is to elucidate
the nature and properties of the correlation functions
which, in a manner analogous to Van Hove's result,
may be used to express the resonant scattering law;
we shall investigate precisely what information is con-
tained in them, in comparison with the information
which may be obtained from a study of Van Hove's
two-time correlation functions. Our principle interest
is to obtain phenomena which may be observed by
the use of resonant neutron scattering but which are
beyond the scope of nonresonant scattering.

II. RESONANT CORRELATION FUNCTION
FORMALISM; THE SHORT- AND LONG-

COLLISION-TIME LIMITS; THE DYNAMICAL
DUAL ASYMPTOTIC EXPANSION

In order to describe resonant epithermal neutron
scattering from condensed matter target systems in
terms of correlation functions for the target system,
we begin with Lamb's formula for the amplitude
for the resonant scattering of a neutron from an in-
cident state of wave vector ko to a final state of wave
vector kf
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&x.fle
' "

'Ix„& &x„l(w, +a,s, s)e'"' 'Ix„.)
fg(kp, kt) =

(E„—E ) —(e„—e„)+ir/2 (2.1)

where the spin dependence is included. The symbol
r I denotes the position operator for the ith scatter-

ing nucleus. Ek is the energy of the scattered neu-

tron, ~„and e„are the energies of the intermediate

and final target collective states IX„) and I X„),
respectively ( IX„) is the initial target collective"l
state), the summation in n is over a basis of target-
system states in which the target-system Hamiltonian
is diagonal. SI and s are, respectively, the spin of
the target nucleus in its ground state and the spin of
the neutron; thus, matrix elements between incident
and final neutron spin states must still be taken.
Provided that S ~ 0, the spin-independent part of the
projection operator is

S(S+1)+s(s+1) —J'(J'+1)
J(J+1) —J'(J'+1)

[

while the coefficient Bg is given by

2

J(J +1)—J'(J'+1) (2.3)

J'=2S —J (2.4)

In the case that S =0, the amplitudes AR and Bg are,
respectively, unity and zero.

For the purposes of the present development, we
consider only the coherent part of Eq. (2.1), which is
obtained in a well-known manner. 2' Taking the in-
cident beam to be unpolarized, and the nuclear spins
to be random, the coherent part of the amplitude
(2.1) becomes

J is the spin corresponding to the resonant part of the
interaction, J' is the spin corresponding to the non-
resonant part of the interaction; the latter is ex-
pressed by the relation

&x„le'"f ''Ix„)&x„le' ' "'lx„.)
fthm

=
2kp „; (Ek ER) (eg e. ) + ii'/2 (2.5)

where ~ is a weighting factor for the spin multiplicity given roughly by
r &/2

(2J+ I)
(2S +1)(2s +1) (2.6)

The energy dependence of the resonance denominator in Eq. (2.5) prevents the summation over the intermediate
states by means of closure. This obstacle may be removed by representing the denominator in the integral form

1
~ OO

= —'J dtexp '[(Ek Ett) —(e„——e„)+t—I/2]t
Ek Es — e —e +—iI 2II /if

so that the scattering amplitude becomes

(2.7)

«n l
fg =w "

X dt exp [(EI, —Es) +ir/2]t-
2Ak,

~n n n
l

I'I'„ t' I
dt exp —[(E„ER)+ il /2]t-

2hko

1

x X„exp Ht e '—exp Ht X„(X„le ' 'IX„)n n nI (2.g)

where His the Hamiltonian for the target system. Writing the Heisenberg operator

r;( t) = exp —'Ht r; exp —'Ht— (2.9)
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the summation over the intermediate states may now be performed by closure to give
'

Ir„f„=w
" $ dt exp —'[(E„E—s) +iI'/2lt (x le f ' e ' ' IX)2hko ~ "o

(2.io)

dQ kp
(2.11)

The differential scattering cross section for inelastic

The scattering cross section, which is the quantity
directly measured in the experiment, contains in-
terference terms associated with the scattering from
different sites; this gives rise to higher orders of
correlation of nuclear motion. The scattering cross
section is given by the absolute square of the scatter-
ing amplitude'

scattering is the scattering cross section per unit in-

terval of energy transfer

,"„„=-' lf. l'g(E+«),
d AdE kp

(2.12)

where the Dirac 5 factor is required in order to ex-
press conservation of energy, E is the quantity of en-

ergy transferred to the neutron upon scattering, and
A~ is the difference in energy between initial and fi-
nal target system states.

Substituting the result (2.10) for resonant scatter-
ing, we obtain

( (

goo foo

$J dt J dt'exp —'[(Ek Es) +iI'—/2]t
)

( )

&&exp '[(E„E,)+tr/2]t' —(x„ le ' e ' ' Ixp)
)

(2.13)

fo m

8( „e—p+eE) = J dTexp (e„ep+E)T
2m'

k )

(2.14)

the differential scattering cross section takes the form
i I [ r ( e

d2 goo f+oo

w' "
XJ dTexp ET dt exp AEt „' dt'ex—p /[kE't'

d 0dE 0' p k() 2hkp Jpf jp l e [

x (Xplexp[ —i kp r . (0) ] exp[i k~ ~ r, (t') ] I X„)8(e„—ep+E)

'fhe total scattering cross section is the sum of Eq. (2.13) over all possible initial and final target sI)stem states
weighted by the statistical probabilities for the initial states. Writing the Dirac 5 function in terms of its Fourier
trans r

&& (X„ lexp[ —ikf r, (t)] exp [ikp r, (0)]IXp)

r ) p

~
~ ~xoexp eop exp[ —ik, r, ,(0)]exp[ikr —r, (r )[exp ~ „, T'x„)

a
)

(2.iS)

where /[kE =Ek Et(+il /2 Once —ag.ain substituting the Heisenberg representation for the operators, the sum-

mation over the final target system states may be performed by closure, while the summation over the initial
states yields a statistical mechanical expectation of the operators in question

( ( (

2 k r goo goof w' "
X dTexp ET dtexp — t dt'exp E't'
j,j )

x (exp[ —ikp r, ,(T)]exp[ikf r, r(T+t')] exp[ —ikf r [(t)]exp[ikp r [(0)]).
(2.16)
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Equation (2.16) is the basic result for resonant epithermal neutron scattering; it shows that the requisite corre-
lation functions are four-time correlation functions involving the correlated motion of two different position
operators indexed by i and i'.

The cross section for elastic scattering is obtained by setting E =0

d 0' = lim I dT dt dt'exp ET exp (AE—t —AE't')
604EE 0 E 0 fl )0

&& (exp[ —ikp r, (T)]exp[ikt r, (T+t')] exp[ —ikt r, (t)] exp[ikp r I(0)])

(2.17)

The integrals in t and t' are effectively restricted above by the presence of the decay width; the integral in T
suffers no such restriction. Hence, the only significant contribution to the integral in T arises from values of T
which are so large that the operators at this time have become uncorrelated with the operators on the right

(exp[ —ikp ~ r, (T)]exp[ikt r, .(T+t')] exp[ —ikt r;(t)] exp[ikp r &(0)])

= (exp[ —ikp' r, (T)] e xp[ik t' r, (T+t')l) (exp[ iky' r;(t)]exp[ikp' r;(0)]) . (218)

But the two-time correlation function depends only upon the difference in the respective times, so that T can be
removed from the correlation function to the left

(exp[ —i k p r, ( T) ] exp[i kt r, , ( T + t') ] ) = (exp[ —i kp r, ,(0) ] exp [i kI r, ( t') ] )

Thus, the total elastic cross section becomes
1 2

do- ( —/k~ ~ r (f) i k ~ r (0)

dA 2Ak0 +0 A' ~ 2
= w

"
N„'~~ dt exp —(Et, ER) +i t (e——t e p )

(2.19)

(2.20)

where N is the total number of scattering centers.
The presence of nonresonant contributions to the

scattering interaction, such as nuclear potential
scattering, will give rise to interference contributions
to the scattering cross section. For sufficiently small
concentrations of the resonant isotope, the interfer-
ence terms will be the largest resonant contribution;
their form depends upon the correlation of resonant
and nonresonant atoms, and since a lower order of
correlation is involved, their interpretation is of a
lower order of complexity.

The amplitude for nuclear potential scattering is
given by

(2.21)

where Ak is the difference between the respective

I

wave vectors of the final state and the incident state
of the neutron, R( is the position operator for the
nonresonant scattering site indexed by I, and b( is the
scattering length operator

b =b+b'S( i (2.22)

Making the previous substitutions, we may express
the interference contribution in terms of a three-time
correlation function depending upon correlation in
space and. time between the motions of the resonant
and nonresonant scattering centers

The interference term arising from the presence of
the nonresonant scattering amplitude (2.22) is given
by

(2.23)2Re (fzfg )
kp

1

k iI" OO

=2Re bw
"

g& dTexp ET

1

oo

&& J dt exp —'AEt (exp[ihk Rt(T)] exp[ —ikt r;(t)] exp[ikp r;(0)]) (2.24)

Interference between resonant nuclear and magnetic scattering may be developed in a similar fashion. Ignoring
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relativistic and other higher order effects, the amplitude for scattering which is due to the interaction between the
neutron pnd the atomic spin may be written

r

2f = 2E—(~k)&„„', $(X„~e 's [Skx(S, xh, k)]IX„,),""
m, c' (2.2S)

where F(hk) is the usual form factor for magnetic scattering, y„„is the neutron's gyromagnetic ratio, and rtt, is
the mass of the electron; the vector 4k is a unit vector with the same direction as hk. Performing polarization
analysis (summing over the spin coordinates of the neutron), the magnetic interference contribution to the
scattering cross section is obtained to be, provided p =0:

d cr

dOdE z

1

E(&k)y„t 2
—dT exp ET dt exp AEt-kf E 5 —I

kp
""

pyg, g2 2tkp ~- h
i

x (exp[ —iAk Kt(T) ] p Qk x [$~(T) x 8k]]exp[ —i kf r;(t)] exp[iko r,(0)]), (2.26)

where P is the polarization of the incident state of the neutron.
More generally, the formula (2.16) may be extended to resonances of arbitrary energy dependence in the single

collision approximation. " Representing the energy dependence of the rigidly bound scattering amplitude in terms
of its Fourier components

f+oo
l

dt exp Et ((t) (2.27)

the differential scattering cross section becomes'2

d2 Woo goo goo

dTexp ET dt exp Ept $(t) dt'exp 'Eot' f(t')"—
dQdE 2m@, kp, 4- t A ~p h

t,i t t t

x (exp[ —iko r, (T+t')] exp[ikf r . (T)]exp[—
ikey r ~(0)] exp[i ko r ~(t)]), (2 28)

where Ep is the energy of the incident neutron, and p, is the reduced mass of the neutron and the target nucleus.
If the duration of the scattering interaction is very short compared with the target system relaxation time for

the condensed matter process in question (the short collision time limit), then the spectral component f(t) may

be replaced with a Dirac 5 function in Eq. (2.28) to yield

t

d2 oo 0

dTexp ET (exp[ihk r, (T)] exp[ —ihk , r &(0)])
I

i, i

(2.29)

which reproduces Van Hove's result. Similarly, if the duration of the scattering interaction is very long compared
with the target-system relaxation time (the long collision time limit), $(t) becomes flat; then the only contribu-
tions arise from large values of t, so that we may set

(exp[ —iko r . (T+t')] exp[ikf r, (T)]exp[ —ik fr ( t)0]e px[ik or &(t)])

= (exp[ —i ko r, ,(0)])(exp[iko r;(0)]) (exp[ikf r;(T)]exp[ —ikf r, (0)]) . (230)

Hence, the cross section may then be written

d20.

„ lf(EO) I' X (exp[ —iko. r, ,(0)]) (exp[iko r, (0)])
2m' kp I

i, i

oo

x J dTexp ET (exp[ i kf r t( T) ]exp[ —i kf r, ,(0) ] ) . (2.31)
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oo
'n 'n

is defined to be a dual asymptotic development of the
analytic function W(z) provided that the generalized
Poincare-Watson convergence criterion' ' is satis-
fied:

Formula (2.31) is the appropriate time-correlation
function representation describing the Mossbauer ef-
fect." Resonant epithermal neutron scattering typi-
cally lies in a region intermediate between the two
limiting cases of Eqs. (2.29) and (2.31). The inter-
mediate status of resonant epithermal neutron
scattering between the short- and long-collision-time
limits is one of the unique features of this regime,
the various facets of which will be illuminated in sub-
sequent papers of this series.

In the present paper, we concentrate on an analog
to the Placzek development, '" which may be most
conveniently obtained in the case of an isotropic tar-
get by considering an asymptotic expansion for the
scattering law in inverse powers of AE = Ek —Ezf
+i I'/2; since the scattering law develops a resonance
only over a limited and well-defined region of in-
cident state energies, it is more useful to work with
the leading order moments of the scattering law (and
the associated asymptotic expansion) in the case of
resonant neutron scattering than the corresponding
development in thermal neutron scattering (which is
made in the parameter E rather than AE). Owing to
the motions of the target-system nuclei, the resonant
line shape is Doppler broadened in a fashion which is
not independent of the energy and momentum
transfer to the neutron upon scattering; the precise
nature of the functional dependence of the broaden-
ing parameters (which can be measured experimen-
tally) contains useful information about target-system
dynamics, as we will show.

The resonant scattering law (i.e., the resonant cross
section with the omission of some unimportant fac-
tors) varies as a function of six independent, exter-
nally adjustable parameters, which we choose to exhi-
bit explicitly in the form W(E, b, k, Ek, Pk), where

yak is the angle of the kokf plane about the axis hk;
alternatively, we employ z =Ek —E~ in place of Ekf f
as one of the six independent variables. The expres-
sion

Vniimz"
g ~oo

goo.
1

2m
t

W(z')
(z —z') —i r/2

I
n b, ( i)"—

—X I
&n

(2.33b)

f

n

I/nlim z" W(z) — X a ~

z z+il /2
~ n

n

+br
z —ir/2

. (2.33c)

The simple Poincare-Watson convergence criterion
(2.33c) alone does not suffice to determine the dual
asymptotic expansion coefficients uniquely. Howev-
er, the theorem of Stieltjes" may be applied to the
theory of dual asymptotic developments to show that
the greatest error incurred in Eq. (2.33c) is in the last
term. Moreover, by virtue of the imaginary part of
the resonant denominators in Eq. (2.33c), there is an
upper bound on the greatest error incurred for any
value of z (which occurs at the center of the reso-
nance). Thus, one of the local minima in a least-
squares fit of the function with a dual asymptotic ex-
pansion chopped off at a suitable point provides a
good estimate of the coefficients (a„,b„) provided
that the effect of Doppler broadening is not too
severe.

The asymptotic coefficients (a„,b„) may be ob-
tained from the functional variation of W(z) without
recourse to approximation by employing a well-
known Fourier technique' for obtaining the asymp-
totic expansion of a function in terms of its width
parameters. Thus, the term by term Fourier
transform of Eq. (2.32) is an exact equation

W(r) =
II dze '"W(z)

2m "—oo

It is readily shown that a function W(z) has at most
one dual asymptotic development for a fixed value of
the width parameter I', thus, the coefficients (a„,b„)
are uniquely determined by the variation of W(z). It
is also seen that the dual asymptotic development of
a function W(z) must necessarily satisfy the simple
Poincare-Watson convergence criterion

0 n lim z" dz'i i', W z')
2~ ~ -- (z -z') + i I /2

= $ a„~) r"e '"'8(r)1

n-O nt

-X
I n

n -1
=0 (2.33a)

+ b„+, (-—r ) "e'"i'O( r)—1

Pl.
(2.34)

Writing W(7) for small r &0 in terms of the power
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series width parameters, which are given by

W(r) = $ C) r"O(r) + C( 7 "0(—7), (2.35)
n p

1
C& =lim

~-p 2mn' "
a~p

dz (—iz) "e [Ixlke In*I W(z)

(-1)"n! — C,1
n

= Xa, — (—1)"
n +1 n

n p ) (

n! —C(
I"

n

r
i

n I
-n , n

( 1)n
n +1 n'

n «p t i

(2.36)

the solution of which is given by

a„+]

i
)
n-n

n'! — C)n, n
n «0

n n —n

b.„= X (-1)",n'!—n'
n 0 [

C(, . (2.37)

Equation (2.37) is an exact relation between the
asymptotic coefficients (a„,b„) and the generalized

Eq. (2.34) implies that the coefficients (a„,b„) satisfy
the summation equation

'-n

C& = lim ' dz (—iz) "e' '!'e '!W(z)1
n &~p 2~n I 4 —oo

a~p
(2.38)

The dual asymptotic coefficients (a„,b„) bear an
exact relation to experiment which is defined by the
Eqs. (2.37) and (2.38); the approximation for the
scattering law (2.32) is itself not wholly useless for
the purpose of obtaining these quantities experimen-
tally. The interpretation of (a„,b„) in terms of mi-

croscopic dynamical correlation functions of target
system variables is obtained by writing the position
operator r ](t) in power series of t in Eq. (2.16), ex-
panding the integrand in powers of t, and integrating
term by term, which yields the requisite dual asymp-
totic expansion. The leading order terms in a 1/t]kE

expansion of the scattering law 8'I corresponding to
the interference between resonant and potential
scattering [as it is obtained from Eq. (2.24)] are more
compact, simple, and direct of interpretation than the
corresponding expansion for the purely resonant
scattering law corresponding to Eq. (2.16), and it is
the former only which we exhibit explicitly here

[
i r

Qoo

W[ —2Re i X dTexp 'ET, (e px[ibk R[(T)~]exp[ —ibk r [(0)])
4 —oo i hE'

k

,2 exp i4k RI T i pI 0 exp —ib, k r ~ 0
! i

'2
ih+ e exP[ikk R (T)t] — Pt(0) + kx Pt(0) exP[ —ikk r, (0)])AE'3 4 m 4m

The symbol p~ denotes the momentum of the ith
scattering center, while F& is the force acting on it.
The nonvanishing of the commutator [r[,p[] which

occurs in the derivation of the asymptotic series has

required the redefinition of the resonant parameter
4E to

1 )

8 ky m, IhE'= — 1 ———Eg +i-
2m M 2

(2.40)

where M is the mass of the resonantly scattering tar-

get nucleus.
The various relations derived above raise the possi-

bility that the several dynamical correlation functions
occurring in Eq. (2.39) can be separated and mea-

sured by experiment. This possibility will be taken

up and considered more carefully in Sec. IV below.

(2.39)

I

III. SPACE-SPACE COMPONENT OF THE RESONANT
SCATTERING LA%: KINEMATICAL

CONSIDERATIONS

The Fourier-like integral (2.16) obviously cannot
be inverted in the usual way to obtain the full four-
point dynamical correlation function, since the
parameters kp, kf, E, and bE are not all indepen-

dent; if this is attempted, one obtains at best a
"blurred" version of the full four-point dynamical
correlation function. The question of how this blurri-

ness can be precisely characterized is quite distinct
from a consideration of the physical content of the
four-point dynamical correlation functions, or from

any attempt to compute them in a specific model;
yet, it is an essential facet of the problem. We shall
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consider the second two questions in Sec. IV, and
more fully, in future papers in this series. For the
present, we shall consider the nature of the blurriness
inherent in the interpretation of Eq. (2.16) as the
Fourier transform of a four-point dynamical correla-
tion function, rather than probe its physical content.

The formula (2.29) shows that in the short-
collision time limit, the information which is con-
tained in the resonant scattering cross section be-
comes identical with the information which can be
obtained in thermal neutron scattering experiments,
and that the information is extracted in an identical
fashion in both cases. In this limit, the differential
scattering cross section exhibits four degrees of free-
dom: three degrees associated with the three com-
ponents of the momentum transfer to the scattered
neutron, and one degree of freedom associated with
the corresponding energy transfer.

On the contrary, the general resonant scattering
formula depends fully upon the variation in each of
the components of ko and kf, the general differential

p;(r)=5(r —r;) (3.1)

so that the resonant scattering law takes the form

cross section for resonant scattering exhibits six de-
grees of freedom. The additional information which
can be obtained from its study concerning microscop-
ic correlations is bound up with the presence of two
further degrees of freedom. The short-collision time
limit yields information on microscopic correlations in
a four-dimensional space-time parameter space; the
resonant case contains information on microscopic
correlations in a six-dimensional parameter space.
But the four-point dynamical correlation function in
Eq. (2.16) spans a 15-dimensional parameter space,
so that the blurriness associated with Eq. (2.16)
arises from the integration of 9 of the 15 degrees of
freedom.

The latter point is clearly seen by writing the four-
point dynamical correlation function in terms of par-
ticle densities

t 'I

foo foo oo 4

W(kp kf) =XJ dTexp ET J dtexp /Et J dt'—exp /E't' Jt—'d'r~d'r2d'r3d r4
oo a

f, l t !

&& exp [ikp ' ( r 4
—r ~) ] exp[ —ik f ' ( r 3 r 2) ]

x (p, ( r i, T)p, ( r &, T+t')pI( r 3, t)p;( r 4, 0))8(t)8(t') . (3.2)

The most straightforward transformation of Eq. (3.2) to microscopic target system variables is given by the
space-space Fourier transform

8'(r, r ) = I JI d kpd kf 8'(kp, kf)e P e (3.3)

The variation of the parameters E and AE in Eq. (3.2) is given by their dependence on kf and kp:

E = (kf kp ), LIE =—kf —Ea +i. I2~ 281 2
(3.4)

Substituting Eq. (3.2) into Eq. (3.3) and using the relations (3.4), the integrations are easily performed to yield

~( r, r ) = g J dT dt dt' d r~ d r2 d r3 d r4exp[it(i I/2 —Ea) ]'exp[it'(ER +i&/2) ]
, .I

~ Gp( r —r ~,
—T) Gp( r r 2, t'+ T —t)

x (p,. ( r i+ r 4, T)p, ( r 2+ r 3, T+t')pt( r 3 t)p( r 4, 0))O(t)O(t') (3.5)
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where 6() is the free propagator for the neutron

Gp( r —r, t) =
2m. if t

'312 —)r —r)m
exp . .(3.6)

2if t

Equation (3.5) is the requisite formulation which
shows that the "blurriness" associated with the
Fourier-like integral (2.16) is given explicitly by an
integration of the coordinates of the four-point
dynamical correlation function with the neutron pro-

pagator function involved as an integral kernal.
Another suggestive form is obtained by absorbing

the oscillatory part of the exponentials in Eq. (3.5),
defining the neutron propagator for motion in a con-
stant potential

R( r, t) =e "Gp( r, t) (3.7)

bringing the propagators inside the expectation brack-
ets, and performing the spatial integrals over the den-

sity operators

W( r, r ) = g dTdt dt'd r3d r4exp[( —iI'/2)(t+t')]
I, I

&& (R ( r + r 4
—r, i( T), —T)R ( r + r 3

—r, i( T + t'), t'+ T —t)

+ pl( r 3 t) p, ( r 4 ~ 0) )8(t)8(t') (3.8)

The formulation (3.8) may be brought into a symmetric expression by introducing the propagator function for a

particle of twice the mass of a neutron moving in a constant potential equal to half the energy of the excited nu-

clear state

~E, ~t2' m
—

) r) m
/

R~t2(r t) =e . exp
4mif t 4ih t

(3.9)

Then it is seen by performing the requisite integrations that

W( r, r ) = X~
dT dt dt' d3r3 d3r4 exp[( —tr/2) (t + t') ]

l, l

x (R~t2(r + r 4
—r, i(T), —T)R~t2(r + r 3

—r,I(T+t'), T+t' —t)

&& R~t2(r 3
—r, (t), T+ t' —t)R~t2(r 4

—r t(0), —T))8(t)0(t') (3.10)

Equations (3.8) and (3.10) show that the blurriness is

characterized by replacing propagator function densi-

ties (integrated over all times) for sharp Dirac 8

function densities.
The connection between the space-space Fourier

transform (3.3) and the more familiar space-time
Fourier transform in thermal neutron scattering is

found by letting Eq. (3.3) develop a time depen-

dence. ' Let the spherical harmonic component of

Eq. (3.3) be given by

Rp( r kf) =

&& J dOkW(kp, kf) I'p (8 (jhk)k
(3.11)

where &k and Qk are the angular coordinates of kr.
Then Eq. (3.3) develops the time dependence

W( r, r, t) = g „de4n ( i)j't( kg) r —r )
—) Yp( 0, , y, )IIt ( r, t kf, yg)

Im

in such a way that in the short-collision-time limit,

(3.12)

W( r, r, t) = (2vr) 83( r —r )
&

dE d hk e '~" ' " exp Et W'(kp, kf)— (3.13)
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t

Zt(r, t, kf, k)= ~ d3hke ' "'"Zt t
al fPl

g2
x —(kfb, k) e

m
(3.17)

The above discussion shows how a certain blurri-
ness enters the measurement of the four-point
dynamical correlation functions, which is an impor-
tant consideration quite apart from the physical inter-
pretation and information content of the resonant
correlation functions. The connection between the
microscopic resonant space-space correlation func-
tions (3.10) and the space-time correlation functions
introduced by Van Hove is exhibited in Eq. (3.13);
that the former span a six-dimensional parameter
space implicitly suggests that they contain additional
information about target-system dynamics; the physi-
cal content of the four-point dynamical correlation

The solution (3.12) is unique, and it involves a
spherical harmonic analysis of the scattering law,
rather than the scattering amplitude, which is more
usual in scattering theory; the propagated spherical
harmonic components in Eq. (3.12) are defined by

11t"( r, t, kf, $k)

= J d r"Rt ( r, kf)gt ( r —r, t, kf, gk), (3.14)

where the propagator, Qt is given by the convolution
with the neutron propagator

Qt(r tkf 4'k)

-m
d r" Zt ( r, t, kf, $k) Gp( r —r, t) (3.15)

and the convolution kernel Z is given in terms of the
Fourier transform of the Legendre function of the
second kind

n —m&~
Zm(t) ( I)m2n+1 " ~)

dE pm(E)eiE~
47r ( n + nt)! "-

(3.16)

functions will be examined in the next section, and
more fully, in succeeding papers in this series.

IV. INFORMATION CONTENT OF THE RESONANT
WIDTH PARAMETERS; THE DETERMINATION OF
THE INTERATOMIC FORCE DENSITY LINE SHAPE

VIA RESONANT NEUTRON SCATTERING

Wj(E, hk, AE', pk)

1

—2 Re X a„(E,Ak, $k)
n I

'n

(4.1)

Thus, the coefficients a„vary independently of the
resonant parameter BE', so that they are analogous
to the ordinary time correlation functions useful in

thermal neutron scattering. For example, using the
relations (2.37), (2.38), and (2.39), one finds that

As we have shown in Sec. II, the resonant scatter-
ing law may be developed in a I/AE asymptotic ex-
pansion (i.e., a dual asymptotic expansion), the coef-
ficients of which are related exactly to the resonant
width parameters (2.38). The interpretation of the
asymptotic coefficients is given by the theory in

terms of microscopic dynamical correlation functions
of target-system variables, It is most convenient to
consider the dual asymptotic development of the
scattering law 8'; corresponding to the interference
between resonant and potential scattering; the purely
resonant asymptotic coefficients have more compli-
cated time correlation function expressions which still

involve higher orders of correlation. %e may consid-

er, for example, the determination of the interatomic
force density time correlation function via the
analysis of the interference term.

The deviation of the associated scattering law

Wt( kp kf) from a strict Breit-Wigner line shape of
width I'/2 owing to Doppler broadening arising from
the motions of the target nuclei can be expressed by

writing the scattering law in a power series

OO goo

J dz' W, (E, b, k, hE', $k) =2mil Re X Jl dT exp ET (exp[iitk K((T)] exp[ —ihk r, (0)])
l,i

(4.2)

(where z' = AE' —iI'/2); thus, the total area under
the resonance as a function of E and b, k (for the in-

terference term) simply reproduces the nonresonant
(interference) scattering law.

However, owing to kinematical considerations of
the kind considered in Sec. III, the coefficients a„ in
Eq. (4.1) are not correctly obtained by superficially

equating them with the corresponding coefficients of
powers of I/AE' in Eq. (2.39); indeed, the study of
anisotropic samples requires some generalization of
the asymptotic development (4.1) to account for odd
powers of kf in Eq. (2.39), which we do not consider
here. The variable Hk (the angle between Ak and

kf) is not independent of E, b, k, or kf, it satisfies
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the relation

2mE/t +]hk)
(4.3)

The variation of Hk must be extracted from the coef-
ficients in Eq. (2.39) in order to obtain their correct
placement in Eq. (4.1); this extraction may be accom-
plished by introducing the spherical harmonic com-
ponents of the various dynamical correlation func-
tions.

Consider, for example, the term in Eq. (2.39) in-
volving the force, which may be written in the form

( exp[i b k Rl( T) 1 [kf F;(0)] exp[ —i b k r I(0) ] )

d r~ d r2exp[i4k ( r ~
—r 2)]

&& (p, ( r, , T) [kg FI(0)]p,( r 2, 0)),(4.4)

which is the Fourier transform of the dynamical force
density correlation function. By virtue of the as-
sumption of spatial isotropy, the latter quantity must

satisfy the symmetry conditions

(pl( r q, T) [kf'Fg(0)]pq( r 2, 0) )

= (p~(. r ~
—r 2, T)[kf F;(0)]p~(0,0)), (4.5a)

(pI( r ~, T) [kf ~ F~(0)]pq(0, 0) )

=—(pI( —r ~, T)[kf F((0)]p/(0, 0)) . (4.5b)

The symmetry condition (4.5b) requires that the
Fourier transform (4.4) must be purely imaginary [so
that its contribution to Eq. (2.39) is purely real];
clearly it is in general nonzero. The isotropy of the
sample requires that Eq. (4.5) must transform as an
1=1 spherical harmonic with m =0 along the kf
axis; i.e., it may be written in the form

(p~( r, T) [kf F~(0)]p~(0, 0)) =Z(r, T) cos8, , (4.6)

where 8, is the angie between r and kf. Expanding
plane waves in terms of spherical harmonics and
spherical Bessel functions, the Fourier transform of
Eq. (5.4) becomes

447r/3 d r Z(r, T) X4rrij'i(re k) X Yp (8k, @k) Yt"(8„,$,) Y~ (8„,@,) =4rri cos8k dr Z(r, T)j ~(rhk)
I 0 m —l

(4.7)

Hence, it is seen that Eq. (4.4) may be rewritten in the form

(exp[i4k KI(T)l[kf F;(0)]exp[—ihk r ~(0)])= „d'r~ d'r2exp[ihk (r ~
—r 2)]

(4.8)

Thus, it is seen that the dynamical force density correlation function is indeed given its correct placement in a3,
by virtue of the relations (4.7) and (4.8), in which the variation of 8k has been extracted. An identical argument
may be applied to the second term in Eq. (2.39) (which is a dynamical momentum density term). But the square
momentum density correlation function must be handled somewhat differently, since it may contain Yo and Y2

components. Although the more general formulation may be easily written out, for the sake of simplicity, we
will assume that equipartition among the various components of momentum is perfect, so that only the Yo com-
ponent occurs; (by virtue of the equipartition theorem, this should be an excellent approximation). Then the
dynamical square momentum density correlation function can be written

4
it (exp[ihk—Ri(T)][ki/M p;(0)l exp[ —i4k r, (0)])

= —
2

ithE'm (exp[iAk RI(T)] [p, (0)/M] exp[ —ihk r t(0)])

——,(Es+iI/2)itm(exp[ihk RI(T)][p; (0)/M]2exp[ —iAk r ~(0)]), (49)

where p, is any component of the momentum p;. The equation (4.9) shows that the dynamical square momen-
a

turn density correlation function contributes to both a2 and a3. Hence, the three leading-order coefficients of Eq.
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(4.1) may be written in the form

Q] =—
1

dTexp ET Jl J d r) d r2exp[ihk ( r )
—r z)] (pl( r ), T) p;( r 2, 0) )

I, i

)

goo fO

dTexp ET „J d r) d rqexp[ii))k ( r )
—r 2)]

2mE +i'[hk ['
T) i ~ p, (O) i,(r, , O)

r

goo

a3= X~ dTexp ET J &td'r~ d'r 2exp[ihk ( r) —r 2)]
l,i

f3
x — (pl(r ), T)[ikf F;(0)]p;( r 2, 0))

r

Pi
2~~ Ep+& pl r &, T p; r 2, 0

) )
)

(4.1o)

The assumption of spatial isotropy requires that the
coefficient a~ in the above expression must be purely

imaginary; the information in it is fully extracted
from the scattering law by the use of the relation
(4.2); i.e., the area under the resonance as a function

of E and 4k is proportional to the Fourier transform

of the usual two time correlation functions. More
generally, for anisotropic samples, a~ must have both

a real and an imaginary part, owing to quantum-

mechanical effects; the imaginary part is then exactly

given once again by the relation (4.2), but the real

part of a) is given exactly by the limit of zW~(z) as z

goes to infinity. Alternatively, it is obtained by re-

taining only the leading order term in the asymptotic

approximation to the scattering law (4.1); the latter

point of view may be visualized by noting that the

phase of the Breit-signer scattering amplitude varies

rapidly from 0 to m through the resonance, so that

the interference term gives the phase of the two time

correlation function (4.2). Thus, for example, the

phase problem in neutron crystallography may be
solved by chemically attaching resonant scatterers,
and measuring the intensity of Bragg reflections as a

function of z; however, this simple picture is not ex-

I

act [since the first term in Eq. (4.1) is only an ap-
proximation to the scattering law]. An exact mea-
surement of the phase of the static structure factor by
this method requires more careful consideration,
which we will take up elsewhere. Again, this ap-
proach promises to yield phase information about
phonon eigenmodes, and we will treat this problem
carefully in the next paper in this series. For the
present, we consider isotropic samples only.

The quantities a2 and a3 have both real and ima-
ginary parts [which are obtained experimentally from
the generalized width parameters (2.38) by virtue of
the relation (2.37), or by using an asymptotic approx-
imation (4.1)]. The real part of a2 and the imaginary
part of a3 are both simply proportional to the dynam-
ical square momentum density correlation function;
thus, its determination may be doubly checked. The
subtraction of the real contribution of the dynamical
square momentum density correlation function to a3
then yields the dynamical force density correlation
function. The Fourier transform [which by virtue of
the extraction (4.8) may be performed in the usual
way] of the latter quantity to microscopic target sys-
tem variables is given by

) 4
1

Fd( r, T) = d ei~T ~ d 4k e-i4 k ~ r

J

XJI' dT'e '" '
J) d r'e' " ' " '(p)(r, T')[ibk ~ F;(0)]p (0, 0))

l,i
t

= V X (pl( r, T)F;(0)p, (0, 0) )
l,i

(4.11)
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where co is E/li. The formula (4.11) is analogous to
a result obtained by de Gennes' " for thermal neu-
tron scattering, who sho~ed that the fourth moment
(in the parameter E) in a Placzek expansion of the
scattering law contains a term proportional to the
second derivative of the interatomic interaction po-
tential. De Gennes made the approximation of inter-
preting the quantum-mechanical operators as classical
random variables; if the same approximation is ap-
plied to Eq. (4.11), it becomes identical at T =0 to
the quantity found by de Gennes; but since we con-
sider the interference scattering law, it is found in the
second moment of the resonant line shape [as given
by Eqs. (2.37) and (2.38)]. Epithermal resonances
typically have widths of the order 0.1 eV, hence the
determination of the quantity (4.11) is not plagued
by the difficulties associated with the resolution of
the quasielastic line shape which is required for the
corresponding measurement in thermal neutron
scattering. Moreover, Eq. (4.11) is a more general
quantity, since it has a T dependence: the associated
correlation may be followed in time; this is an in-
teresting result, since the interatomic motion is in
large measure due to the pair interaction potential.
Since the wave vector of the epithermal neutron is of
the order 10 A ', Eq. (4.11) shows that resonant
neutron scattering studies hold the promise of prob-
ing the nature of the chemical bond in its correlations
with interatomic motion. We note in passing that the
real part of a3 (with the subtraction of the square
momentum part) is convoluted as shown in Eq.
(4.g):

where Vis the volume of the sample. Thus, the
second moment of W;(z) also has a contribution pro-

portional to the second term in Eq. (4.12); but the
deconvolution is easily performed by extracting the
factor cos(8k) from a3 (hk, E), which upon transfor-
mation gives directly the force density (4.11}.

The dynamical momentum density correlation
function may be measured in experiment by taking

the real part of a~, as given in the formula (4.10).
The Fourier properties of this quantity are exactly the

same as those for the force density, which are shown

in Eqs. (4.11) and (4.12). The coefficient Re(az) is

seen to be a quantity of interest in transport theory,
but we shall not dwell further on. it here.

Next, we shall consider the practical feasibility of
measuring the force density correlation function in an

experiment by computing its contribution to the

scattering law relative to a~ in a simple model. Let
us take, for example, the case of Pu0~, in which the

chief contribution to the interatomic force density

arises from the chemical bond between the plutoni-
um and oxygen atoms.

The ratio between the interference term and the
coherent potential scattering term in the differential
scattering cross section is given by

I„
5E' 2k0 X(

with neglect of the difference in variation of the
respective correlation functions, where W; and N~ are,
respectively, the molar concentrations of the resonant
and nonresonant scattering centers. If we use for the
value of the coherent scattering length of oxygen
b =0.58 x 10 "cm, we find that with a 1 at. '/o con-
centration of the resonantly scattering isotope of plu-

tonium that the interference and purely resonant
terms contribute, respectively, about 10% and 1% of
the scattering cross section at the center of the reso-
nance. The variation of the cross section with molar
concentration of the respective isotopes is given by

'

5,—N f +N(fp +N(N f, +N fP+N f&&

(4.13)

where n and P refer to resonant and nonresonant
scattering, respectively, and a and b refer to coherent
and incoherent scattering, respectively; the % 's are
molar concentrations, and the f 's refer to the respec-
tive scattering laws for which separation is desired.
Thus, concentration analysis easily suffices to
separate the terms of interest; hereafter, we shall
refer only to the nonresonant (potential scattering)
and resonant plutonium interference terms.

We consider molten PuOq so that the dynamical
structure factor is characterized by diffusive motions
of the PuOq molecule. (PuOq melts at about
2390'C.~~) From the experimental point of view,
this material is a poor choice to consider in view of
the difficulty of maintaining the sample in the liquid

state; but it is useful for the purpose of a theoretical
feasibihty estimate, since the force density is typical
of that of any chemically bonded compound, while

the square momentum density, which tends to spoil
the feasibility of measuring the force density, is taken
in a worst case example.

We compute the correlation functions in the con-
volution approximation first introduced by Vine-
yard. ' It is difficult to know the error in this approx-
imation without recourse to experiment, but it should
suffice for the purpose of our feasibility estimate. Of
course, the requisite correlation functions can be
computed (for some assumed interaction potential)
via computer-generated molecular-dynamics simula-

tions, ~4 but such an effort is not required for our pur-

pose here. In the convolution approximation, the
time correlation functions are propagated forward in

time via the self diffusive propagator w( r, T) for the
PuO~ molecule
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(pI ( r, T) p, (0, 0) ) =
&t d r' w ( r —r, T) (pI ( r, 0)pI (0, 0) ) (4.14)

(pI( r, T)F;(0)p&(0, 0)) = Jtd r' W( r —r, T) (pI( r, 0)F;(0)p;(0, 0) ) (4.1 S)

By the consideration of time reversal invariance, the
momentum density correlation function is necessarily
zero at T =0, and in the convolution approximation,
it can develop no subsequent correlation; thus, it is
set equal to zero in our model. Next we assume that
the square momentum is decoupled in its correlation
function, and that it takes on the canonical value

M/P associated with the kinetic energy of the plu-
tonium nucleus, so that g (i i) = c( i, i)

I

(4.18)

l

tonium atoms in the sample, and n is the atomic den-
sity of plutonium. If I and i denote a chemically
bonded pair, then all the direct correlations c(i,j) on
the right-hand side of Eq. (4.17) are between un-
bonded pairs, and hence they are negligible. There-
fore, for a bonded pair, the static density correlation
function is given to an excellent approximation by

r ~
pI

pI r T —

pI 0 0

(pI(r T)k(0.0)) . (4.16)

Thus, the static density-density correlation function is

given to an excellent approximation by the lowest-
order term in a cluster expansion (corresponding to
the direct correlation):

g(ii) =c(ii) + $ —
J 1 r, g(i j)c(ij)

J~( Pl

(4.17)

where the summation in j is over the remaining plu-

The approximation (4.16) is equivalent to treating
the momentum as a classical random variable, and
assigning the square momentum its equipartition
value; thus, it should be an excellent approximation
for the system under consideration.

The static pair distribution function in the convolu-
tion integral on the right-hand side of Eq. (4.14)
[which we will denote without exhibiting the func-
tional arguments explicitly by the notation g (i,i)) may

be expressed in terms of the direct correlation c(i,i)
between the two atoms, where c ( l, i) is the intera-

tomic correlation in the absence of the remaining
atoms '

$(p,(r, 0)p, (0, 0)) —e ~ ", (4.19)

where Uis the interatomic potential between the plu-
tonium and oxygen atoms.

The classical interpretation of the static force densi-
ty correlation function is given by

(pI( r, 0)F;p,(0,0))
= P, (P,( r, o) P, (0, 0)), (4.20)

where E; is an effective screened force arising from
the remaining interactions in the fluid. Here t and i
refer once again to a bonded pair, and in accordance
with the above discussion, we substitute the direct in-

teraction for the screened force.
Utilizing the convolution theorem, the interference

term (4.1) is given to leading orders of 1/bE' by

m 1 &k i
&

m &+i&/22I ak I'Dc, c,
, (E/ir)'+(I ~kl'D) ' i&E' ' iM p aE' ' m/3 zE

it' 2mE/g'+ l~kl' 1

4m 2 I&kl ~E' P' (4.21)

where D is the diffusion constant for the Pu02 molecule, CI and CI are the atomic concentrations of 0 and Pu2



24 INVESTIGATION OF CONDENSED MATTER VIA RESONANT. . . 2445

respectively, and the Fourier transforms are 'given by

p(Ak) =X d'r (p((r, 0)p, (0,0))e'a"' "

l, i

pw(() )k= X„d r(p~( r, 0)F&(0) p, (0, 0))e'
l,i Ik

(4.22)

In accordance with the theorem of Stieltjes, thc error
in Eq. (4.21) is in the last term, so that it is a poor
approximation just when the force density effect for
which extraction is sought is large; but in spite of
this, it is clearly useful for the purpose of estimating
the relative order of magnitude of the contributions
of the respective effects. [When the force density
term is much larger than the leading order terms in
Eq. (4.21), it is necessary to include succeeding terms
in the asymptotic expansion in a least-squares fit
against experimental data; or, if this fails, one must
generate the width parameters of the resonant line
shape, which bear an exact relation to the force den-
sity contribution, as previously indicated. l We note
also that the quasielastic peak is considerably
broadened for the large momentum transfers hk re-
quired to probe the interatomic variation. Thus, as-
suming the same degree of absolute resolution in the
epithermal region as in the thermal region, it is easier
to obtain information on the T variation in the
resonant epithermal regime than in the case of the
thermal regime. (But the resolution of the energy of
the epithermal neutron is a nontrivial problem on
which progress is still being made; it is to be hoped
that high resolutions in the epithermal region will ul-
timately be obtainable. )

We fit the oxygen-plutonium interaction with a
Morse potential

(4.23)

IXo —X,„('=4/96, Xo=3.50, Xp„=1.22 (4.24)

where Xo and Xp„are the electronegativities of the
oxygen and plutonium atoms, respectively, and b is

the dissociation energy in kJ per mole of bond, we

may estimate the value D =2.6 cV, which requires
a =3.04 A ' in order to fit Eq. (4.23) to the value of
the force constant. We may estimate ro by the sum
of the respective ionic radii of plutonium and oxygen
to be 2.21 A. In our model, the ratio of the density
contributions to Wi in a~ and a3 to that of the
leading-order term depends only upon AE'; hence we

do not plot these quantities but we caption them as

The force constant for PuO~ has been measured to be
about 675 && 10' dynes/cm. ~' Using the empirical
chemical relation
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FIG. 1, Plot of oxygen-plutonium density-density (bro-
ken) and force-density (solid) line shapes in PuO~ as a func-
tion of r measured in angstroms, The computation was per-
formed for a temperature of 2400'C.

I

the parameters dq(b, E') and d3(AE'), respectively.
Figure 1 is a plot of the density-density and force-

density correlation functions in our mode1. Figures
2(a) and 2(b) are plots of the Fourier transforms of
these quantities. Figure 3 contains a number of con-
stant E, 4E' plots of the respective contributions to
the double differential scattering cross section of the
two terms as a function of 4k. Figure 4 is a constant
E, 4k plot as a function of E'; it 'shows the variation
in the magnitudes of the density-density and force-
density contributions which must be used to separate
the two kinds of terms.
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8—
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(a)

Our computations show that the ratio of the contri-
bution of the force density term to that of the
density-density term in Eq. (4.1) varies between 10'
and 10 depending upon the values of the parame-
ters E, 4k, and 4E'. This is a large effect, and it
should be worthwhile to investigate it experimentally;
the square momentum contribution to Eq. (4.1) is

never larger than 10% of the leading order term in

this worst case example, so that its presence clearly
does not interfere with the measurement of the
force-density correlation function.

Experiments of this type require good high-flux
sources of epithermal neutrons, such as will be pro-
vided by the pulsed neutron sources in planning. '
The IPNS-II and the %NR+PSR-II are designed to
produce a flux of 10' n/cm2seceV, so that in spite
of the additional resolution of the independent
parameter hE required for resonant epithermal neu-
tron scattering experiments, the availability of the
pulsed sources should make possible the rapid perfor-
mance of the resonant experiments.

j400 500 600 700
(32.54) Q

(b)

I—
M 8—
Z
hJ 5—
O

2—

h.

I400
I l

{52.54}Q

FIG, 2. Plots of the Fourier transforms of the correlation
functions as a function of Q

' measured in units of
(1l32.S4) inverse angstroms, (a) Fourier transform of the

density-density correlation function, (b) Fourier transform

of the force-density correlation function.

V. CONCLUSION

Resonant neutron scattering represents a new re-

gime for the study of the properties of condensed
matter. The arrival of spallation sources on the scene
opens up the real possibility of doing experiments
along these lines.

The resonant neutron scattering cross section in-

volves orders of correlation for target-system vari-

ables which are of higher order than the two-time
correlation functions which are related to the thermal
neutron scattering law. These resonant correlation
functions span a six-dimensional parameter space, in

distinction from the two-time correlation functions,
which span a four-dimensional parameter space. A

certain blurriness enters the transformation of the
resonant scattering law to microscopic target-system
variables, which is characterized by the substitution
of propagator densities for sharp Dirac 8 densities in

the requisite four-point dynamical correlation func-
tion. But the higher dimensionality of the resonant
correlation functions suggests that they contain infor-
mation beyond that which is contained in the familiar
two-time correlation functions.

Resonant neutron scattering is a process in which

the target nucleus executes dynamical motions under
the influence, of its environment for the finite dura-
tion of the scattering interaction. In the limit of in-

finitely short lifetime of the excited nuclear state, the
resonant result goes over to the Van Hove formula;
an asymptotic expansion for the resonant scattering
law (the coefficients of which are related exactly to
the resonant width parameters which characterize
Doppler broadening) about the short-collision-time
limit shows that the resonant correlation functions in-



24 INVESTIGATION OF CONDENSED MATTER VIA RESONANT. . . 2447

I=8-
6-

3-

E~ 0.05
AE ~0.03

I—8=
6—
4—
3—

E = 0.05
aE'= 03

0
I-

3-O
CO 2—

CO

CO 8—8:
O

3-

I—
8—I

X 4.

O
2.

O
LLI

CO

CO

O 4—
3

I—8—
6—

Z 4—
0

2—
O
LLI

CO
I—8—
8—

CO

COo
K

(a)
I—8—
6—
4—
3—

(b)
I—8—
6—

3.0 4.5 6.0 7.5 9.0
I I I

Q

13.0 4.5 6.0 7.5 9.0

Q

I I I I3.0 4.6 6.0 7.6 9.0
Q

I L I 1 l ~ I4 LI &I I l
Ll

L ~
t-J L

2 I

5— h,4—
I g /

2—ii' plx( & l
)I )t ll

&J 1I V

W 4
CO 3

CO
CO
O

Io

2

X
O
I-
O
LLL

CO

CO

CO0 I=8—
O . $—

4—
3—

I—
8

3.0 4.5 6.0 7.5 9.0
l l l I l

Q

3.0 4.5 6.0 7.5 9.0
I I I I I

Q

plots «cons«nt E, ~E scans of the contributions of the density-density (broken) and the force-density (solid) con-
tributions to the cross section in arbitrary units as a function of 'I dk) = Q measured in units of inverse angstroms. The energies
are given in eV; the real part of AE' is tabulated. (a) E=0.05, AE'=0.03, d2=1.78%, d3=5.48%. (b) E=0.0, bE'=0.03,
d2 =1.78%, d3 =5.48%. (c) E =0.05, hE'=0.30, d2=3.18/o, d3=.0.526%. (d) E =0.0, bE'=0.50, d2=0.191%, d3 =0.191%.
(e) E =0.0, bE'=2.0, d2=0.048%, d3=0.012%,

volve additional dynamical variables. In particular,
the second moment of the scattering law correspond-
ing to interference between resonar, t and potential
scattering involves a time-dependent force density
correlation function (which is analogous to a result
obtained by de Gennes in thermal neutron scatter-

ing). The typical resonant neutron interaction time is
an interval over which many typical microscopic con-
densed matter processes occur; thus, the resonant
modifications of the Van Hove result give rise to
large effects which enable one to probe more deeply
into condensed matter. For example, in Pu02, the
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force density contribution to the scattering cross sec-
tion varies between 10 and 10 of the magnitude of
the leading-order density-density contribution with
adjustment of external parameters; the time-
dependent force density correlation function may be
easily separated from the remaining contributions to
the scattering law. This is a large effect, and it
should be worthwhile to investigate it experimentally.

In future papers in this series, we shall show that it
is possible to obtain the amplitudes of specific pho-
non anharmonic processes of cubic order via resonant
neutron studies. ' In the case of diffusion, we shall
show that it is possible to obtain information on
higher order diffusive propagators associated with the
conditional diffusion of a particle over distinct inter-
vals of space and time. In the case of molecular dif-
fusion, the novel result which we shall show is that
one may obtain information on the diffusion of those
molecules which are selected to be in some definite
state of vibrational excitation.

I I t I t I t I I

1 1 I 1 I 1 I l . 1

O. f O, Z 0.3 0.+ 0.6 0.6 0.7 0.8 0.9 1.0

ZE'

FIG. 4. Constant E, lhkl scan of the respective contribu-
tions to the scattering cross section as a function of 4E' in

eV; E=0.03 eV, Q=1 A t.
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