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The object of this paper is to provide a formalism for the interpretation of the core-level pho-
toemission spectra of 3d+ ions embedded in a cubic environment. The formalism is first

developed in the general case of the photoemission of a n'I' electron from an inner shell of a
nl+ ion in arbitrary symmetry 6, This general formalism may be thought of as a coherent com-
bination of the theory of level splitting (for the determination of the position of the core photo-
peaks) and of the theory of the photoemission intensity (for the determination of the intensity

of the core photopeaks). The interactions taken into consideration here are the Coulomb, the
spin-orbit, and the crystal-field interactions both for the photoemission initial Hamiltonian and

the photoemission final Hamiltonian. General formulas for the matrix elements of the involved
I

interactions are given for the initial configuration nt and the final configuration n'I' ' +'nl+ in a

weak-field basis adapted to the group G. The determination of the photopeak position follows
I

from the diagonalization of the final Hamiltonian within the entire n'I' +'nl manifold. The
determination of the photopeak intensity requires the knowledge of the ground-state eigenvector
of the initial Hamiltonian and of (all) the eigenvectors of the final Hamiltonian. General for-

I
mulas are given for the intensity of the transitions nl n'I' '+'nl in a weak-field basis adapt-

ed to the group G. Finally, the general formalism is particularized to the case of iron-group ions

(nl =—3d) in octahedral symmetry (G =—0). Only those particular points which are specific to
the case of 3d+ ions in octahedral symmetry are examined. In particular, the ejection process

may concern the shells n'I' = n'p or n'I' = n's,

I. INTRODUCTION

In the recent years, a considerable amount of both
experimental and theoretical effort has gone into a
rene~ed investigation of the physical and chemical
structure of the iron-group ions in complexes and/or
solids. This undoubtedly is due to the important role
played by numerous iron-group compounds in tech-
nological applications. The photoemission spectros-
copies (using ultraviolet, x-ray, or synchrotron radia-
tion sources) may provide interesting experimental
results, especially in regard to the electronic proper-
ties' so that great emphasis is placed today on the
development of theoretical models for the interpreta-
tion of photoemission spectra. The first theoretical
model for determining the photoemission cross sec-
tions is due to Cox.' His model concerns the calcula-
tion of the position and intensity of photopeaks ap-
pearing in the photoionization of d~ and f~ config-
Urations. This pioneering work gave way to further

developments and to applications, particularly in the
case of the valence band for 3d oxides. ' For its
part, the present paper (the second of a series) main-

ly deals with the photoemission of a n'1'(= n's or-
n'It) electron from an inner shell of a 31~ ion em-
bedded in a cubical environment and thus turns out
to be a complementary part of a recently published
paper' (hereafter referred to as Part I) devoted to the
valence band of such an ion.

There are several approaches to the problem of the
photoemission of an electron from an inner shell.
The most general one lies on the theory of level split-
ting for the determination of the position of the pho-
topeaks coherently combined with a specific treat-
ment (an extension of the earlier work by Cox2) for
the corresponding intensities. In such an approach,
the structures observed in the photoemission spectra
are interpreted as being due to electric dipole transi-
tions from the ground state of the initial (before pho-

4

toemission) configuration n'I'4t +23d~ to all the states
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of the final (after photoemission) configuration
In'l' '+'3d . Therefore, in principle, one can obtain

the profile of an inner shell photoemission spectrum
from the knowledge of (i) the initial state, (ii) the
level splitting of the final configuration, and (iii) the
final states. As a matter of fact, the position of the
photopeaks follow from (ii) while (i) and (iii) are
needed to make the usual formula for dipole cross
sections work. However, the actual calculations are
not so straightforward to conduct as it might appear
at first glance. Indeed, the calculated position and in-

tensity of the photopeaks drastically depend on the
choice of the Hamiltonian to be diagonalized and on
the subspaces spanned by the state vectors of the ini-
tial and final configurations. One is thus confronted
with the alternative: either to choose a simplified
Hamiltonian which neglects important interactions
but proves to be quite simple to handle or to choose
a more sophisticated Hamiltonian which involves the
most relevant interactions but requires many parame-
ters to be adjusted, with the associated dramatic
dependence of the calculated photoemission shape on
their determination. With a view of getting around
the difficulty inherent to this alternative, the aim of
this paper is twofold: first, to develop a formalism
for the inner shell photoemission of a nl" ion in arbi-
trary G symmetry and, second, to apply it to the case
nl =—3dand G —= 0.

The pattern will be as follows. Section II deals
with the general case nl~ in G. The level splitting
theory of partly filled shell(s) ions in external fields
is adapted to the determination of the photoemission
initial state and the photoemission final states, in
Secs. II A and IIB, respectively. A general treatment
of the photoemission intensities is given in Sec. II C.
Section III is devoted to the case 31 in octahedral
symmetry. Only those aspects relative to the initial
state, final states, and intensities which are particular
to 3d" in 0 are discussed with some detail in Secs.
III A, III B, and III C, respectively.

II. CASE OF nl+IN 6

Before entering the subject of nl" ions in arbitrary
G symmetry, a word about the notation is in order.
To avoid confusion in a problem where both elec-
trons and holes are involved, we shall denote by l the
electron and by l the corresponding hole. In addi-

tion, it will prove convenient to use the abbreviated
I

form nl~n'1' for n'l' '+'nl~ since close relationships
exist between the configurations denoted by nPn'I',
nl n'l', nl"n'l', and nl n'l'. The completely closed
(n14'+'—= n~l) or completely empty (nl0—= nl4'+') con-
figurations will be specified only when necessary. All

other notations and/or symbols will have their usual
meaning.

A. Initial state

We start with the determination of the photoemis-
sion initial state ~I ). It is to be noted that ~i ) coin-
cides with the ground state of the initial configuration
nl~.

In the case where the nt~ ion remains a sufficiently
localized system when embedded in the crystalline en-
vironment, the most important interactions to be
considered are the Coulomb interelectronic interac-
tion Hc(nl"), the spin-orbit interaction H„(nl~), and
the crystal-field interaction H, (rnl"). So that a realis-

tic approximation for the initial Hamiltonian H, (nl")
is written

H, (nP) =H, (nP) +H,.(nP) +H„(nP) .

The matrix of H;(nl") within the nl~ inanifold can be
easily built up by using irreducible tensor methods.
Among the various irreducible tensor methods, those
methods that concern a chain of groups starting from
03, the three-dimensional rotation group, and ending
with G, the point symmetry group of the nl~ ion site,
greatly simplify both the construction and the diago-
nalization of the energy matrix of H;(nl") 6' Furth-.
ermore, as far as we want to fully take advantage of
classical tabulations' ' for the coefficients of frac-
tional parentage and the reduced matrix elements of
the Racah unit tensors, a weak-field basis adapted to
the chain 03 D G (or to the associated chain of dou-
ble groups) is the most suitable one from a practical
point of view. (It is to be noted that the use of a
weak-field basis does not necessarily imply a physical
situation where the strength of the crystal-field is
weak. ) A typical state belonging to a weak-field basis
adapted to the chain 03 0 G is written

~
nl~uSLJa I y )

where I stands for an irreduCible representations
class (IRC) of G (or of its double group G'), y
denotes a row index for I, and a is a multiplicity la-

bel indispensable when I occurs severa1 times in J.
(The identity IRC of G is specified by the notation
I'0.) Combining the symmetry-adapted weak-field ap-

proach developed in Refs. 6 and 7 with Racah's
methods, ' each term in Eq. (1) is first expressed in a
tensorial form adapted to 03 & G. Second, the
geometrical part associated with the group G is ex-
tracted from the matrix element of each component
of H;(nl ) in the

~
nl~nSLJaI y) basis owing to the

03 Z G Wigner-Eckart theorem. Third, the remain-
ing part is decomposed in turn into coefficients of
fractional parentage, standard reduced-matrix ele-
ments, and purely radial parameters. Hence, we get
(see Ref. 11) (a) for the Coulomb interaction
Hc(nP)
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(nf"n'S'L'J'a'I"y'IHc(n(")
~
nl nSLJa I'y)

=5(S'S)5(L, 'L, )5(J'J)5(a'a)5(1"I')5(y'y) (2(+1)'
2

(I" 'n, S,L, II}I" 'n, S2L2) (I 'u2S2L2I}('nSL)
k0(&S&L &S3L3

I ( I
a2S2L 2a2S2L2

x (I" 2n S)L,~}(n 'n2S2L2 ) (In 'u2S2L2 ~}}(nu'SL)( —1)

x (2S3+1)(2L3+ I) [(2S2+1)(2L2+1) (2S2 + 1)(2L,' +1)]'(2

1

2X'
S,

S S2

S3
1

S1

2

1S

S2 t( L L2, ( L L2 (( k (

S Lj I L3 [L) I L3 I I L3 0 0 0

(b) for the spin-orbit interaction H„(nl"):

(n(nn'S'L'J'a'I"y'
) H„(nl")

~
n(nnSLJa I'y)

(

= 5(J'J) 5(a'a ) 5(I"I')5(y'y) (—1) + + [I(l+1)(2( +1)1'(, ((nn'S'L'll V" ll(nuSL) („I
L L' J

(c) for the crystal-field interaction H,f(nl ):

(n(nu'S'L'J'a'I"y'~IH, r(n(N)
~
nl"uSLJa I'y)

J' J k
=5(S'S)5(I"I')5(y'y)( —1) + + [(2J+1)(2J'+I)]'( g' '(I n'S'L'IIU"III uSL)

k
LL'S

J' J kf 'I' I' I D [ ka]nola P 0 P Qp pPp

(4)

Equations (2)—(4) involve the Sister-Condon-
Shortley parameters F"(nl, nl), the spin-orbit parame-
ter („I, and the crystal-field parameters D [kao]„~. All
these parameters must be determined from ab initio
calculations or fitting procedures. Equations (2) —(4)
also involve standard reduced matrix elements
(IIU"II) and (II V"II) of the Racah unit tensors U"
and V", respectively, as we11 as coefficients of frac-
tional parentage (~}). For I —=p, d, and f, both the
reduced matrix elements and the coefficients of frac-
tional parentage may be taken from the tabulation by
Nielson and Koster. ~ The coefficients ( ) and [ } in
Eqs. (2)—(4) are 3 —jm and 6 —j coefficients, respec-
tively. There exist in current standard programs, in

addition to the tables by Rotenberg et al. ,
' the

means for calculating numerical values of 3 —jm and
6 —j symbols. Finally, the coefficient f( ) in Eq. (4)
is a coupling coefficient adapted to the chain 03 ~ G
(or the associated chain of double groups), as defined
in Ref. 7. Values of the f symbols in compact and/or
table form are available for numerous groups G (or
double groups G').'"

The use of an 03 ~ G symmetry-adapted basis al-
lows us to arrange the matrix of H;(n(n) into the
direct sum of submatrices, each submatrix being as-
sociated with an IRC I of G (or G'). Thus, we may
classify the eigenvectors of H;(nl") (in addition to
the associated eigenvalues IV) with IRC's of G (or
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G'). The initial photoemission state ~/ )—= ~nl" W, I';y, ) we are looking for is then given by
specializing (W= W;, I'=I'„y—= y;) the relation

~n/" WI'y) = X (nl nSLJaI'y~n/"WI'y)
aSLJa

x
~
n/'~SLJa I y ),

where the coefficients (l) are nothing but the matrix
elements of the unitary transformation between the
symmetry adapted weak-field state vectors
~n/"nSLJai'y) and the eigenvectors ~n/"WI'y).

B. Final states

When a hole n'I' is created by the photoemission
of a n'I' electron from an inner shell of the nl~ ion
under consideration, three new interactions need to
be added to the previously introduced ones, namely,
the Coulomb interaction Hc(n/~, n'I') between the N

electrons nl and the hole n'I', the spin-orbit interac-

tion H„(n'I') for the hole n'I', and the crystal-field
interaction H,r(n'I') between the hole n'I' and the
surrounding. We are thus left with the (more com-
plex) final Hamiltonian

Hf(nlrb, n'I') =Hc(n/ ) +H„(nl ) +H,r(nP)

+Hc(nlN, n'I')+H„(n'I') +H, r(n'I')

(6)
the matrix of which has to be constructed within the
(more complex) nlnn'I' manifold. By making use of
the complementary nature of electrons and holes, the
matrix elements of Hf(nl", n'I') between the state
vectors of the configuration nl~n'I' can be related to
the corresponding matrix elements of Hf(nl, n'I'),
Hf(n~/, n'I'), and Hf(nlrb, n'I') between the state vec-
tors of the configurations nl"n'I', n~ln'I', and
n~ln'I', respectively. Especially, the matrices of
H~(n/~, n'I') and Hf(nlrb, n'I') within the n/nn'I' and
nl n'I' manifold, respectively, are very similar' ':
The matrices for the Coulomb interaction appear to
be the same apart from a constant term on the diago-
nals, while the matrices for the spin-orbit and
the crystal-field interactions have opposite signs, viz. ,

(n/n(u'S'L'), n'/'( ' I')St'L~'J~'a—~'I Iy~ ~Hf(n/, n'/') ~n/"{oSL),n'I'{ '
I')S&L&J&a—tI ty))

= (nl (a'S'L'), n'I'( I')S&'L~'Jt'at'I'[y—I~H&(nl ) —H„(nl ) —H,q(nlrb)

+Hc(nl~, n'/') H„(nl') H,—„(n'I') ~inly(a—SL),n'I'(
z

I')
S, Lt&J a&I ty~)

+8(n'o) 5(S'S)8(L'L ) 5(S~'S~) 5(L ~L~) 8( J~'J~) 8(at'a~) 8(I'Il ~) 8(y[y~)

&& [2(2!'+1)(N —2/ —1) +41'(2l +1)]F (nl, n'I')

I k I
+ $(2/+I)'(N —21 —I)[25(ko) —(2/+1)-']

0 0 0 F"(nl, nl)

I' k 1'
+ g2/ (2/ +1) [25(k0) —(21'+1) ']

0 0 0
F"(n'I', n'I')

k

I k I'
+ $[(2/'+I)(2/+I —N) —21'(2/+1)] 0 0 0 6"(nl, n'I') . (7)

k

This clearly indicates that one can obtain with ease
the matrix of Hi{nil, n'I') from that of
Hj(n/ '+2, n'I') The latter rema. rk allows us to
focus our attention on the configuration nl~n'I' and
then to only consider Hf(nl, n'I'). Moreover, it
proves convenient to use a basis for the final config-
uration nl n'1' which resembles the one for the ini-
tial configuration nl with the aim of yielding as easy

a calculation as possible of the photoemission transi-
tion intensities. In this respect, an 03 D G symmetry
adapted weak-field basis with state vectors of the type

~
n/ (aSL),n'I'(

2
I') StLt Jta ~ i'tyt ) is the most suit-

able. The matrix elements of Hf(nl, n'I') are there-
fore obtainable in a straightforward fashion by com-
bining Racah's methods with the 03 ~ G weak-field
approach. "Hence, we get (see Ref. 11 ) (a) for the
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Coulomb interaction Hc(nil):

(nl (u'S'L'), n'I'( I')—St'LiJt'ai'I |yI)Hg( nl ))nl"(aSL),n'I'( I')S—iLt JtaiI'tyt)

= 5(S'S)5(L'L) 5(SiS&)5(LiLi) 5(Ji'Ji) 5(aIa&) 5(I'II't) 5(yIyi) (2I +1)3
2

(In 2a2S3L2)}P 'u, s L ) (P-'a S3L3)}IN'uSL)
ka2S2L2S4L4

I I I
a3$3L 3a3$3 L 3

x (I 2aqS2L3) }I a3S3L3 ) (I 'a'S3L3
) }I~a'SL ) (—1) 4

x (2S4+1)(2L4+1)[(2S,+1)(2L, +1)(2S3 +1)(2L3 +1)]'I'

1 1S S32 2

X
S2 2 S4 S2

I

(b) for the spin-orbit interaction H„(nil):

'r

SS3 I LL3 I LL3 II k I k I

000
2 4 2 t r

(ni"(u'S'I, '), n'i'( ,
' I') S,'L—,'J,'a,' I",yI ) H,.(nP)

) nP(uSL), n'I'( ,
' i') S, L, —J, a, I», )

x [ I ( I +1)(2i +1)(2S + I ) (2L, + 1)(2S,' + 1)(2L,' +1)] 'I'

L}
S}'

r

\

L}' 1 S} S}' 1 L} L}' 1

Ii
'(i~a'S'L'II VttllPuSL) g„g, (9)

S} J} S' S —',L ' L I'

(c) for the crystal-field interaction H«(nin):

(nil(u'S'L'), n'I'(
&

I') SLttJattI IyI)H«(nlN))nlN(aSL), n'I'( I')StLiJ&a—iI'iyi)
2

= 5(S'S)5(S,'S, )5(rIr, ) 5(yIyi) ( —1) ' '[(2L i+1)(2L i + I) (2J, +1)(2J'+ I) ]'I

r

L}' L} k J}' J} k J}' J} k
x X'I

L L I
' 'L L, S

'(Ina'S'L'IIU"IIInaSL) f ~ ~ ~ D[kap]zr
kg l I, 1 1 1 a } I }y} a }I }y} apFpyp

(a') for the Coulomb interaction Hc(nil, n'I'):

(nil(a'S'L'), n'I'( , I')Si'Li Jtat'—I'IyI)Hc(nil, n'I') )nil(aSL), n'I'( , I' )S,L Jiat—I'iy|i)

= 5(S&'S|)5(Li'L1) 5( Ji'Ji) 5(ai'at) 5(I'Il"i) 5(yIyl) N (2I + 1)(2l'+1) [(2S +1)(2L +1)(2S'+1)(2L'+ 1)]'I3

x g (2S3+1)(2L3+1) (In 'a2S&L&)}PaSL ) (i" 'a&S2L&) }Ina'S'L')
ka2$2L

$3L3

X '

r

S, S —, S, S''I L, L tl' L, L

S3 — S3 S2 — S3 IL& I L3 LL2 I L3

t r

r T

I I'L3, I k I I' kI" I I' L3 I k('
(—1) 3', ' F"(nl, n'I') + (—1) 3'

i
'

0 6"(nl, n'I'), (11)
k 000,000



2354 G. GRENET, Y. JUGNET, TRAN MINH DUC, AND M. KIBLER 24

(b') for the spin-orbit interaction H„(n'I'):

(nil(u'S'L'), n'I'( —I' )S,'Lt J~'a, '
rIyI~ H„(n'I') ~nl (asL), n'I'(

2
I')S~Lt Jta~rty~)

= S(~'a) S(S'S)S(L'L )S(J,'J, ) S(a,'a, )S(r', r, ) S(y', y, ) (-1)'"""""'"'"'
x [I'(I'+1)(2I'+1)(2S,+1)(2L, +1)(2S,' +1)(2L,' +1)]'I'

S1

L 1 1 S1 S1 1 L 1 L 1 1

S' J —' —' I' I' L
2 2

(12)

(c') for the crystal-field interaction H,r(nl'):

(nln(a'S'L'), n'I'( I') S&'L &'J—&a&' rIyI ~H,r(n'I')
~
nl (nSL), n'I'(

2
I') S~L ~ J~a ~

1"tyt)

= s(~'~) s(s's) s(L'L )s(s,'s, )s(r', r, ) s(y', y ) (-1) '

x [(2L~+1)(2Lt' +1)(2Jt+1)(2Jt' +1)]'

L)' Lt k IJ)' J) k
x X', , i S

'(I llu"III') f, r r r D[kao] i
1Y1 &1 1 Y1 O OVO

(13)

Equations (8)—(13) can then be transformed to
pass from the just considered Hamiltonian
Hf(nl", n'I') to the photoemission final Hamiitonian
Hf( nlrb, n'I') owing to the aforementioned remark [cf.
Eq. (7)]. The so-transformed equations involve the
Slater-Condon-Shortiey parameters Fk( nl, nl),
F"(n'I', n'I'), F"(nl, n'I'), and G"(nl, n'I'), the spin-
orbit parameters f„l and j, and the crystal-field

parameters D[kao]„I and D[kao], Here again all

these parameters must be determined from ab initio
calculations or fitting procedures. The various other
ingredients in the transformed equations bear the
same significance as in Eqs. (2) —(4).

In exactly the same way as for the initial Hamil-
tonian H;(nl"), the use of an 03 & G symmetry
adapted basis makes it possible to label the eigenvec-
tors of Hf(nl, n'I') (in addition to the associated
eigenvalues Wf) with IRC's of G (or G'), a fact of
considerable importance for the calculation of the
photoemission intensities. The eigenvalues Wf
directly give the position of the photopeaks while the
eigenvectors ~nl 'I'nWfrfyf) serve to construct the
photoemission final states. To be more explicit, the
eigenvectors ~nl n'I'WfI'fyf) can be expressed in
terms of the symmetry adapted weak-field state vec-
tors ~nl"(nsL), n'I'(

2
I')StL~J&a&r~y~) as

(14)

~nl n'I'Wfifyf) = X (nl (uSL), n'I'( I')S~L&Jta&r—fyf~nl n'I'Wfrfyf)~nl (asL), n'I'( I' )S,L,J&atrfyf)—
aSL

1111

where the coefficients (, ~ ) are obtained from the di-
agonaiization of Hf(nl", n'I') Then, a gi.ven photo-
emission final state

~f ) corresponds to the coupling
of a given eigenvector inl"n'I'Wfi'fyf) with a state
~C) of the continuum into which the photoemitted
electron n'I' is raised, i.e,

(15)

C. Intensities

After having found the eigenvector ~nl" W;i, y;) of
H, (nl") which describes the photoemission initial
state ~i ), the eigenvalues Wf of Hf(nil, n'I') which
provide an estimate of the photopeak position, and
the eigenvectors (nl"n'I'Wfi'fyf) of Hf(nl", n'I')
which are necessary for constructing the photoemis-
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f& = X IN'"(flTII &I' (16)

sion final'states
lf ), the next step is to deal with the

photoemission transitions themselves.
The determination of the photoemission intensities

for the core levels depends exactly on the same first
principles as for the valence band. 4' Hence, we start
from the general formula (cf. Part I)

greater than 1, so that in our case we have m; = y;
and mf ff.

In view of preparing the calculation below, it is
convenient as a first step to express the photoemis-
sion initial state li ) in a form paralleling the one ob-
tained for the photoemission final state

l f). This
may be achieved by introducing the completely closed
shell n'I'4'+2—= n'I'0 into li ). Thus, we have

li ) -=lnlnn'I'OW;I';y;) (17)
which gives the (relative) intensity l(i f) of the
transition i f via the operator T In E. q. (16), N;
denotes the number of electrons of the initial level
concerned with the transition, so that in our case we
have N; =4l'+2. The labels m; and mf are to be
used when the degeneracies of the levels i and f are

Therefore, the initial state vector li ) can be regarded
as resulting from the coupling of all the state vectors

l nl"n'I'WfI'fyf) of the configuration nl n'I' with all

the state vectors (n'I'( —,
' I') J2a2I 2y2) of the outgoing

electron n'I'. More precisely, we have

ll) = g (nI"n'I'Wf1'fyf, n'I'( , I') J2a—2I'2y2lnl n'I' Wl;y, ) lnl n'I'WfI'fyf) jm ln'I'( —,
' I')J2a2I', y2) (18)

Equations (15) and (18) allow us to specialize the starting formula [Eq. (16)) as

1(n( W;I'; ~nl n ( WJI'I)

(4I'+2) 'i2 (nlnn'I' WfI'fyf, n'I'( I') J2a—2I"&yql nl"n'I' W I;y;) (C l T l
n'I'( I') J2a2—I'2y2)

&/~f

(19)

The coupling coefficient (, l) in Eq. (19) may be developed with the help of Eqs. (5) and (14). This yields

l(nil W I;nil'n'I' Wfl'f)

(4I'+2) ' (nl"n'I' Wf1'fyfl nl (u'S'L'), n'I'(
2

I') S~LtJ~atI'fy f)
I f 2222

aSLJaa S L
S)L)J(a)

x (nl"nSLJa I'Iy J nl W;I;y;)

x (nil(n'S'L'), n'I'( , I') S,L, Jta—~I'fyf ',

'2

x n'I'( , I') Jqa21 2y2l nln—(aSL),n'I'('»SLJ«; y; &(& I T In'I'( —,
' I'»2a21 2y2)

(20)

The next step consists, as in the case of the valence band, ' to transfer to operators the properties first thought
of as being characteristics of state vectors by using second quantization techniques. Then, the coupling coefficient
(; l) in Eq. (20) becomes

(nIN(~'S'L'), n'I'( I')S~L&J~a&I'fyf ,n—'I'( I') J2a2I 2'y~lnl —(nSL), n'I' ('S)SLJ«;y;)

J J) J2

r

x (nl"(a'S'L'), n'I'( —I')S~Lt Julia 'Ilnl (aSL),n'I' ('S)SLJ), (21)
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(I /2) J2where the reduced matrix element (II II) of 'the annihilation operator a 2 can be obtained from the master
formula

(n]l] '(u', S]'L]'),n2I2 (u2S2L2)S3L3J3 lla ' lln]I] ( u]S]L]) n212 ( u2SJL 2) S3L3 J3)

=S(u'u )g(S'S )S(L'L )(—I) '

(22)

In the case being studied, Eq. (22) specializes to

I

(nl (u'S'L'), n'I'( I')S]L]—J]!la 'Iirnl"(uSL), n'I'0(]S)SLJ)
Si S 1

2

=8( ' )8(S'S)5(L'L) [(2S, +1)(2L,+1)(2J,+1)(2J +1)(2J+1)]'I2
1

J) J J2

x [I]]]2(2S2+1)(2L2+I) (2S3+ I) (2L3+ I) (2J3+I) (2S3 +I) (2L] +1)(2J3 +1)(2J, +1)]' '
1

1
1 S3 S3

1 I I' I 2 3 2 3 L3 t2 L3
(I2 u2S2L2 l]12 u2S2L2), ', ' ' L ' L I

S2 S) S2 L2 L) L2,
J3 J3 J2

It is then a simple matter to calculate 1(nlnWr, nlnn'I'WfI'f) by collecting together all the above results.

Thus, the combination of Eqs. (20), (21), and (23) leads to the final expression

1(nl W;r; nl n'I'Wfr, )

(nl n'I'WfI'fyflnl (uSL), n'I'(
2

I')S]L]J]a]rfyf)

aSLJa

x (nl uSLJar]y]l«W]r]y])(

x [(2S,+ 1)(2L, + 1)(2J, + 1)(2J2+1)(2J +1)]]»

x'L, (24)

The just derived photoemission intensity formula
[Eq. (24)] involves the transformation coefficients

(ninusLJa r, y, l
ninw;r, y, )

and

(nl (uSL), n'I'( —I')S]L]J]a]I'fyfl nl n'I'WII'fyf)

which arise from the diagonalization of H;(nP) and
Hf(n!",n'I'), respectively (cf. Secs. II A and IIB).
These coefficients give an account of the mixing of
the state vectors of the configurations nIN and nl~n'I'

under the action of H, (nln) and Hf(nln, n'I'), respec-
tively. Equation (24) also involves the monoelec-
tronic transition amplitude (C l T l n 'I' ( 2

I') J2a2rqyq)
between a state vector of the outgoing electron and a
state density of the continuum. Needless to say ab

initio calculation of such an amplitude is far from

easy. Indeed, in actual calculations we may consider,
at least in a first approximation, the various transi-

tion amplitudes (C l Tl n'I'( —,I') J2a212y2) as in-

dependent of J2a2I"2y2. With this approximation
disposed of, the transition amplitudes

(C l
T l

n'I'( I')J,a2r, yq—) may be taken to be equal

to 1 in the relative intensity formula [Eq. (24)]. Fi-

nally, the selection rules of the transitions between
the (pure) symmetry adapted weak-field state vectors

l
nl "uSLJa r;y )]

and

l
nl'(usL), n'I'( ,

' I')s]L]J]a]rf—yf) Ic)

via the operator T clearly appear in Eq. (24) from the
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product of the 9 —j coefficient { } with the coeffi-
cient f( )": the product { }f( )' is zero if one of
the six triads (S~,L tJ t), ( z, l', Jq), (S,L,J),
(S~,—,S), (Lt, l', L), and (J,,J2,J) does not satisfy

the triangular rules or if the IRC I is not contained
in the internal Kronecker product I"~ |E I 2.

III. CASE OF 3dNIN O

In order to facilitate subsequent applications of the
formalism developed in Sec. II to the case of iron-
group ions (l —= d) in octahedral symmetry (G =—0),
we now discuss those aspects which are particular to
3d~in O.

A. Initial state

In accordance with the usual practice, the matrix
elements of the Coulomb interaction Hc(3d~) are
written in terms of the Racah parameters A, B, and
C. In the same vein, the matrix elements of the
crystal-field interaction H,r(3d") are usually
parametrized in terms of the Schlapp and Penney
parameter 10Dq when the symmetry is cubic. This

i

parameter is connected to the parameter D [413(/,
which corresponds to the general parameter D[kap]„~
of Sec. IIA, by

Dq = D [4))d/(6~30) (25)

Appropriate values of the parameters A, B, C, (qq,
and Dq necessary for diagonalizing the photoemission
initial Hamiltonian H(3 d~) may be actually deter-
mined from experimental data (e.g. , absorption spec-
tra data) scattered in the literature. Another possibil-
ity may be to assume the Racah parameters A, B, and
C to have values resulting from self-consistent-field
calculations. " In this case, a good agreement
between theory and experiment is generally reached
when the self-consistent-field values are brought
down by a factor p (p —20% for divalent 3d~ ions),
the so-called nephelauxetic factor. '

To close this section, it is perhaps worthwhile to
note that Eqs. (2) —(4) may be worked out only for
N ~5 when applied to 3d~. In fact, the complemen-
tary nature of electrons and holes enables us to pass
from the 3d" configuration to the 3d'0 "(—= 3d")
configuration owing to the following correspondence
rules (a) for the Coulomb interaction H~(3d"):

(3dNu'S'L 'J'a'I"y'I H~(3d") I3d"v SLJa I'y )
= (3d' u'S'L'J'a'F'y'IH~(3d' ~) I3d' uSLJa I'y)

+ 5(u'v) 5(S'S)5(L'L )5(J J)5(a'a) 5(I"I') 5(y'y) (N —5) (9A —14B +7C), (26)

(b) for the spin-orbit interaction H„(3d"):

(3d v'S'L'J & F'y'IH ( d ) I3d vSLJ&I'y)= (3d u'S'L'J'a'I"'y'IH, (3d ) I3d vSLJaI'y)

(c) for the crystal-field interaction H,r(3d~):

(3d u'S'L'J'a'I'y'IH, r(3d )I3d+vSLJal y)= —(3d' u'S'L'J'a'1'y'IH, r(3d'o )I3d' vSLJal y)

(27)

(28)

In Eqs. (26) —(28), the well-known seniority number
v introduced by Racah for ndN configurations re-
places the general label o. of Sec. II.

B. Final states

%e now consider the photoemission of a n't' elec-
tron from an inner shell of a 3d~ ion in octahedral
symmetry. %e shall confine ourselves to the cases
n'l'=—n's and n'p which are among the most relevant
ones for 3d~ ions photoemission purposes. It is then
immediate from Eqs. (12) and (13) that H„(n's) =0
and H,r(n's) =H,r(n'p)=0, respectively. Concomi-
tantly with the matrix elements of Hc(3d") in terms
of the parameters 2, B, and C (cf. Sec. III A), the
matrix elements of H~(3d~, n's) are commonly writ-

ten in terms of the parameters Fo(3d, n's) and
G2(3d, n's) 'Similar. ly, the matrix elements of
H&(3dN, n'p) are more conveniently written in terms
of the parameters Fo(3p, n'p), F2(3p, n'p),
Fo(3d, n'p), F2(3d, n'p), G~(3d, n'p), and
Gq(3d, n'p) 8" '0 The (r.elative) positions of the
photopeaks thus depend on five parameters
[B,C, G2(3d, n's), f&&,Dq] for the photoemission of a
n's electron and on eight parameters [B,C, F2(3d, n'p),
G~(3d, n'p), Gq(3d, n'p), $3d, j, , Dq] for the pho-

toemission of a n'p electron. In this regard, self-
consistent calculations may provide useful starting
values for the various involved interelectronic and
spin-orbit parameters.

Finally, to pass from the matrices of Hf(3d", n's)
and Hf(3d", n'p) obtainable from Eqs. (8) —(13), to
the desired matrices of Hf(3d", n's) and
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Hf(3d, n p), respectively, it is sufficient to specialize Eq. (7). This yields (a) for the Coulomb interaction:

(3d (u'S'L'), n's('$)$, 'L,'J,'a,'I'IyI~Hc(3d )+Hc(3d",n's)~3d (vSL),n's('$)S, L,j,a, I', y, )

= (3d' n( vS'L'), n' s( $)$~'L~'jt'at'I IyI~Hc(3d' )

+Hc(3d'o ",n's) ~3d'0 "(uSL),n's('$)StL~jtati'tyt)

+5(v'v) 5(S'S)5(L'L )5($,'St) 5(L t'L() 5(j('Jt) 5(a)'a)) 5(1'Ii', )5(ylyt)

x (W —5) [9A —148 +7C +2FO(3d, n's) —G2(3d, n's) ] (29)

and

(3d"(u'S'L'), n'ps(2P)$)'Lt'Jt'a)' I'IyI]Hc(3d") +Hr (n'ps) +Hc(3dn, n'ps) ~3d"( uSL), n'p s(2P)S~Ljta &I'&y&)

= (3d'0 (u'S'L'), n'p( P)St'Lt'Jt'at'I'IyI~HC(3d' ) +Hc(3d', n'p) ~3d' (uSL), n'p( P)S L~j&a&I &y&)

+5(v'v) 5(S'S)5(L'L )5(St'$~) 5(Lt'L ~) 5( J~Jt) 5(a~'ai) 5(I', I', ) 5(y', y, )

x (& —5) [9A —148 +7C +6FO(3d, n'p) —6G~(3d, n'p) 63—G3(3d, n'p) ]

+10FO(n'p, n'p) 20F2(n'p—, n'p) +20FO(3d, n'p) 20G, (—3d, n'p) 210—G3(3d, n'p) (30)

(b) for the spin-orbit interaction:

(3dn(u'S'L'), n's(2$)$~'L~'J~'a~'I ty~~H„(3d") ~3d (uSL), n's('S)S~L~j~a~i'~y~)

= —(3d'0 n(v'S'L'), n's(2$)$~'L~'Jt'at'I'IyI~H„(3d'0 n)~3d' "(uSL),n's( $)S~L&j&a&1"~yt), (31)

and

(3dn(u'S'L'), n'p'('P)$, 'L,'J,'at'I Iyt ~H,.(3dn)+H, .(n'p') ~3d"(vSL), n'p'('P)$&L~j~atI'&y~)

= —(3d' (uSL), n'p( P)St'L~'J~'at'I'IyI~H„(3d' N)+H„(n'p) ~3d' (uSL), n'p( P)StLt jta~i'ty, ), (32)

(c) for the crystal-field interaction:

(3d (u'S'L'), n's( S)$)'Lt'J)'a I I'tyt~Hr(3d") ~3d (uSL), n's( $)StLt j)atI'ty))

= —(3d'0 (u'S'L'), n's(2$)$&'L~'J&'a&'I IyI ~H,r(3d' ) I3d'0 n(uSL), n's(2$)$&L&j&a&I"ty, ), (33)

and

(3dn(u'S'L'), n'ps(2P)$/'Lt'J/at I IyI ~Hgf(3d ) ~3dn(uSL), n'p5(2P)StL)jta)I')yt)

= —(3d'o n(v'S'L'), n'p( P)St'L~'Jtat'I IyI ~H, r(3d'o n) ~3d'0 N(uSL), n'p(2P)StLt jtatI ty&) . (34)

C. Intensities

We have seen in the general case [cf. Eq. (24)] how the selection rules for the 9 —j and f symbols control
those for the photoemission transitions between the pure symmetry adapted weak-field state vectors. In this

respect, the particular case n'I' = n's deserves special attention. Indeed, one of the arguments of the 9 —j symbol

is zero in this case so that the 9 —j symbol reduces to a 6 —j symbol up to a multiplicative factor. Hence, for the

photoemission of a n's electron Eq. (21) is written

(3d (vSL),n's( $)$&L,J&a~ifynf' ('sS) J2a2I'2y2~3d"vSLjaI';y;)

J J
st+L+Ji+1 t

1

=5(LiL)5(J2—)5(I'2E')( —1) ' ' '
i ":[(2$i+1)(2ji+1)(2J+I)/2]'2f

S, j, —, ] ~]~fff

(35)
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where the 6 —j symbol may be calculated from the following formulas:

J S
( I)s+j,+J (L +S+J+1)(J+S—L)

i/2

Is —
3

J —
3

-' 2S(2S+1)2J(2J+1)

(L +S —J) (L +J —S +1)
S —

3
J+

3 3
2S(2S+l)(2J+1)(2J+2)

J S I
)$+L+j (L +J —S)(L +S —J +1)

i/2

is+ 3
J —

3 3 (2S+1)(2S+2)2J(2J+1)

S L i/2

I)s+1+J+3 (L +S+J+2)(J+S—L +1)
S+—J+- (2S +1)(2S +2) (2J +1)(2J +2)

For the photoemission of a n'p electron no simplifica-
tion arises and the general expression given by Eq.
(24) has to be considered.

D. Concluding remarks

At this point, it is necessary to establish a connec-
tion between the formalism developed here for the
core levels and the formalism developed in the first
part5 of this series for the valence band. One may
ask why the strong-field formalism ' was adopted
in Part I in contradistinction with the weak-field for-
malism employed in the present work. Indeed, the
reason for using the strong-field formalism in the
description of the valence-band photoemission spec-
tra of first-row transition-metal ions in cubic sym-
metry is twofold. First, the strong-field formalism
mostly parallels the physical situation H,r(3d )
& Hc(3d") » H„(3d"). Thus, it is clear that the
physical adequacy of the strong-field formalism may
provide a useful starting point for an approximation
procedure as, for example, a truncation of the Hamil-
tonian [cf. H„(3d") =0 in Part I] or of the basis in
the framework of a perturbation approach. Second,
from a physical vie~point it is realistic to assume that
the threefold degenerate subshell t2 and the twofold
degenerate subshell e, between which the N electrons
of the configuration 3d" are shared, are not spanned
merely by pure d-metal orbitals but rather by linear
combinations of metal and ligand orbitals. Such an
assumption makes it possible to take into account co-
valency effects in a simple way by using the Koide-
Pryce model, ' a model based upon the strong-field
formalism. Therefore, the description of the valence
band of 3d" complexes naturally calls upon the

strong-field formalism.
We may now briefly examine the complications

that would arise when using the strong-field formal-
ism in the description of the core levels. For the
photoemission initial configuration 3d", a typical state
vector in the strong-field basis would be

N) N-N
1

~r, '(s, r, ) e '(s, r, )S3r3pry),

where Strt(S3r3) specifies the spin and orbital parts
lV

j
IV-N )of a state of the configuration t3 '(e '), S3I 3

specifies the total spin and orbital parts of a state of
Ni N-N)

the configuration t2 'e ', and 1 is obtained from
the coupling of S3 and I 3. The construction of the
matrix of H;(3d") within the strong-field basis is less
easy to achieve than within a symmetry adapted
weak-field basis since, on the one hand, the quantum
numbers L and J do not appear in the strong-field
states, and on the other hand, the coefficients of
fractional parentage, the V(or 3 —ry), W(or
6 —I'), and X (or 9 —I') symbols for the (not simply
reducible) group 0' are not so well standardized than
the corresponding quantities for the (simply reduci-
ble) group SU3.34 37 Nevertheless, the strong-field
matrix elements of H, (3d") are now available for any
d~ configuration although within various notations
and phase conventions. ' ' To treat the pho-
toemission final configuration 3d~n't' on the same
footing as the initial one, we should consider in the
strong-field formalism the coupling of three config-
urations, namely, the previously discussed config-

Ni N-N
urations t2

' and e ', and the configuration ai or ti
according to whether as n'I'=—n's or n'I'—= n'p. For
the photoemission final configuration 3d"n'I', a typi-
cal state vector in the strong-field basis would be
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then

if n'I'=n's or

if n'I'=—n'p. Of course, the construction of the ma-
trices of H~(3d, n's) and Hf(3d, n'Ir) within the
strong-field basis would be a rather formidable task
(cf. Refs. 23 and 34), This clearly justifies our choice
to use a (symmetry adapted) weak-field basis in our
treatment of the core levels. In addition, in spite of
the fact that the explicit introduction of covalency ef-
fects is hardly possible with such a basis, the spin-
orbit interactions H„(3d ) and H„(n'p), which turn
out to be more relevant than the covalency effects in
the case of the core levels, may be restored [cf. Eqs.
(3), (9), and (12)] without any difficulty in a sym-
metry adapted weak-field basis.

To end up with the connection between the core
levels and the valence band it is to be emphasized
that the photoemission initial state is the same in the
ejection of a valence-band electron or of an inner-
shell electron. As a consequence, it is necessary at
some level of the numerical applications to transform
the photoemission initial-state vector from the
strong-field coupling scheme to the weak-field cou-
pling scheme or conversely. Along this line, the
equivalence between the generalized strong-field
model and the generalized symmetry adapted weak-
field model recently investigated by two of us35 may

provide some useful information.
To close this paper, some comments about previ-

ous works dealing with similar subjects are in order.
As already mentioned in the Introduction, the
present study as well as Part I take their origin in the
work by Cox' on the intensities of photoemission
transitions of type nl" nl" ' for l =d and f. In
Ref. 2, the intensities are calculated in the strong-
field coupling scheme (including mainly Hc and H, r)
for I = d and in the Russell-Saunders coupling
scheme (including mainly Hc and H„) for I = d and
f. Furthermore, it is assumed in both coupling
schemes that the photoemission initial state and the
photoemission final states only consist of pure
(strong-field or Russell-Saunders) state vectors. In
this respect, .our contribution here and in Part I
essentially concerns a more realistic description of the
involved Hamiltonians and the consideration of the
mixing, under the action of the various interactions
considered, between the relevant (strong-field or
weak-field) state vectors. Finally, we have also to
mention the work by Gupta and Sen" that is devoted
to the calculation of the position and the intensity of
the photopeaks corresponding to the transitions
3d5(6S) 3d53p(5Por 7P). The peculiarity of the
configuration 31' and the severe truncation of the fi-
nal Hamiltonian Hf(3d5, 3p) allow them to take a
pure (Russell-Saunders) initial state and to consider a
limited set of final states. Another important differ-
ence between their specific treatment and the general
formalism presented here is the absence of a geome-
trical factor of the form [ ]f ( )' [cf. Eq. (24)] in
their intensity calculation.
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