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Applying the Newman superposition model to the ligand-field splitting of tetrahedrally and oc-
tahedrally coordinated Fe + and Mn + ions in glass, we have obtained analytical expressions for
the dependence of the spin-Hamiltonian parameters b2 (D and E) on the distortion from cubic
symmetry of the nearest-neighbor oxygen ligands. Quantitative estimates are made of the mag-
nitude of the angular and/or radial distortion required to produce the frequently observed X-

band g =4.3 ESR signal from these ions. The results of the superposition model are compared
with those obtained using a point-charge model for the nuclear quadrupole splitting in the
Mossbauer spectra of dilute ~~Fe in oxide glasses,

I. INTRODUCTION

It is generally acknowledged' ' that the X-band

g =4.3 ESR signal from dilute S=
2

ions in glass

arises from a large second-order ligand-field (crystal-
field) splitting in which the ratio of coupling con-
stants )E/D ) lies in the vicinity of its maximum or

fully rhombic value of —,. Similarly, the Mossbauer

spectra of dilute "Fe'+ in most glasses exhibit large
quadrupole splittings (greater than 0.5 mm/s). 6 9

This implies that large electric field gradients exist at
the nuclei which is also consistent with highly distort-
ed environments about the S-state Fe'+ ions.

Several specific types of distortions from cubic
symmetry have been previously suggested to account
for the appearance of the g =4.3 ESR signal. For
example, in the case of Fe3+ ions that are octahedra1-

ly (sixfold) coordinated with oxygen ions, Castner
et al. ' have considered that an angular twist of a pair
of oxygens lying on an axis perpendicular to a cube
symmetry axis is a possible mechanism for giving rise
to the g =4.3 ESR signal. A similar type of angular
twist of an oxygen pair has been suggested by oth-
ers " for the case of Mn'+ and Fc'+ ions that are
tetrahedrally (fourfold) coordinated with oxygen ions.
Using group-theoretical techniques, Griffith has
shown" that certain environments that are more
symmetric than the overall symmetry group of the
site produce the three equally spaced Kramer's doub-
lets that are a prerequisite for the appearance of the

g =4.3 ESR signal. The possibility has also been
considered that monovalent cations such as Na+ and
Li+ in the vicinity of the paramagnetic ions in alkali-
rich glasses may be responsible for the distorted en-
vironments about the paramagnetic ions." None of
the above distortions, however, have been formulat-
ed in an analytical manner that permits a quantitative
comparison with the experimental data.

In the present paper we apply the recently

developed Newman superppsitipn model&2, i3 tp the
second-order ligand-field splitting of Fe'+ and Mn'+
ions that are octahedrally and tctrahedrally coordinat-
ed with oxygen ions in glass. This model has been
successfully ernplpyed by Newman and others" ' to
study the environment of oxygen-coordinated Fe'+
and Mn2+ ions in single crystals. Applying this model
to glass we have obtained analytical expressions for
the dependence of the spin-Hamiltonian parameters
b2 on the magnitude of the distortion from cubic
symmetry of the nearest-neighbor oxygens surround-
ing the paramagnetic ions. Several types of fully
rhombic distortions are treated: (1) those involving
an angular twist of an oxygen pair about a cube sym-
metry axis as suggested by Castner et al. ', (2) those
involving a radial displacement of two or three oxy-
gens along the symmetry axes of the ligands; and (3)
those involving a variation in the polar angles of an
oxygen pair along a cube symmetry axis. In addition,
a number of distortions resulting in an axial ligand-
field splitting are treated. Quantitative estimates are
made of the magnitude of the angular and/or radial
distortion required to produce the frequently ob-
served X-band g =4.3 ESR signal from Fe'+ and
Mn + ions. The results of the superposition model
are then compared with those obtained using a
point-charge model for the nuclear quadrupole split-
ting in the Mossbauer spectra of dilute "Fe'+ in ox-
ide glasses.

In our treatment, approximately equal emphases
are given to the two cases of tetrahedral and oc-
tahedral coordination since both cases have been fre-
quently inferred from experimental measurements.
For example, in sodium silicate glass, tetrahedral
coordination of Fe'+ with oxygen has been inferred
from optical and resonance absorption measurements
by Stcele and Douglas, "Kurkjian and Sigety, "and
Pargamin et a/. Ho~ever, in the same type of glass,
octahedral coordination of Fe'+ with oxygen has been
inferred from optical and resonance absorption mea-
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surements by Bamford, ' and Shat et al. ,
' as well as

from XPS (x-ray photoemission spectroscopy) and
EXAFS (extended x-ray absorption fine structure)
measurements by Lam et a/. ' Levy et al. 2 have em-
ployed a mixture of both tetrahedral and octahedral
coordinations of Fe3+ in calcium silicate glass in order
to account for their Mossbauer-effect data.

II. SUPERPOSITION MODEL; FORMALISM

The effect of the nearest-neighbor oxygen ligands
on the ESR properties of the Fe + or Mn'+ ions we
assume to be represented by a spin Hamiltonian of
the general form

K =g psH S + b2P [S2 ——S(S +1)]

+
6 bz (S„S,+S,S„)+

3 b2 (S„—Sy ), (1)

where g = 2, S = —,, and the parameters b2 are the
5

ligand-field (crystal-field) splitting constants related
to the symmetry of the ligand field. The Newman
superposition model" ' assumes that the parameters
b2 can be expressed as a linear superposition of
axially symmetric contributions from the individual
ligand ions of the form

components of the ligand-field splitting, respectively,
and are related to the usual spin-Hamiltonian cou-
pling constants D and E by

b2 =D, b =3E (4)

Thus the condition
I
bz2/b2p

I
=1 corresponds to

IE/D I

= 3, where the latter condition has been

shown ' to represent the maximum rhombic devia-
tion from axial symmetry in the second-order spin
Hamiltonian of Eq. (1). The structural distortion
corresponding to this condition is usually termed
"fully rhombic. "

If the parameters b2 are first calculated from Eqs.
(2) and (3) in an arbitrary xyz coordinate system, a
transformation of coordinates may be required to re-
late these b2 to the proper principal-axis set. A
transformation relation that we have frequently ap-'

plied in Secs. III and IV-of this paper is the following:
If bzp = b2 =0 and I b2 I )0 in an arbitrary xyz coordi-
nate system, then the proper set of parameters b2

'

are expressed in an x'y'z' coordinate system obtained
by a 90' rotation about the x or y axis, and are relat-
ed to the original b2 by

lb2p'I=lb'I=lb /21. b2 =0 .

In this case lb /z2b p'I 2=1 or IE/Dl = —.
t

bp = b2(Rp) X K2 (8(, $()
Rp 2

(2)

III. TETRAHEDRAL COORDINATION

Kzp = —,
' (3 cos28; —I)

K2 =3sin28;cos$;

K& = —, sin'8;cos2@;,

(3a)

(3b)

(3c)

where 8; and $; are the polar and azimuthal angles,
respectively, that specify the location of the ligand
ion i in an xyz coordinate system having the paramag-
netic ion at its center. ' The parameter Rp is a refer-
ence distance, and R; is the radial distance from the
paramagnetic ion to the ligand ion i. The intrinsic
parameter b, (Rp) and the power-law exponent t2 are
quantities that can be derived, for example, from
crystalline-strain data of Fe3+ and Mn2+ ions in single
crystals of Mgo. '4

For coordinations having rhombic symmetry or
greater, the spin-Hamiltonian parameters b2 of Eq.
(1) are properly expressed in a principal-axis coordi-
nate system defined such that b2 is zero and the ratio

I b2 /b2 I is minimized thereby specifying the z axis as
the main ESR symmetry axis. In such a coordinate
system, b2 and b2 represent the axial and rhombic

In this expression the summation is taken only over
those ligand ions involved in the local coordination of
the paramagnetic ion, that is, the nearest neighbors
of the paramagnetic ion. The K2 (8;, @;) are coordi-
nation factors given by

lbz I
= lb2 I =21»(Rp) lain'~, (6)

As a reference we first consider that the local sur-
roundings of the paramagnetic ion consist of four ox-
ygens located on alternate corners of a cube giving
rise to point symmetry Tq as shown in Fig 1(a). .In
this cubic complex the vertical plane formed by the
oxygens above the basal (xy) plane and the paramag-
netic ion is perpendicular to the vertical plane formed
by the oxygens below the basal plane and the
paramagnetic ion. The polar angle of the upper pair
of oxygens is cos '(I/v3), and that of the lower pair
of oxygens is cos '( —I/v3). Application of Eqs.
(2) and (3) to this comPlex gives b2P =bzz ——bz =0;
hence and ESR line at g =2 is expected.

Two distortions of the above complex that are in-
dependently fully rhombic as well as fully rhombic
when combined are the following: The first is an an-
gular twist [Fig. 1(b)] produced by rotating the verti-
cal plane containing the upper pair of oxygens with
respect to the vertical plane containing the lower pair
of oxygens about the z axis, while maintaining the
same polar angles as for Td symmetry. Denoting the
angle of rotation as o., and the radial distance of all
oxygens from the paramagnetic ion as Rp, the follow-
ing relationships are obtained from Eqs. (2) and (3)
and the transformation relation (5):
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r t2, RpRo, 2lbo
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paramagnetic ion as Ro, and taking P to be positive
for a compression and negative for an elongation, the
magnitudes of b2 obtained from Eqs. (2) and (3) are
given by

[b2 [ =2(b2(R0) [ [sin P —2' 2sin2P[, b =b2 ——0

(11)

Here [b2 [ is just twice )b20 ) in Eq. (9), but the rhom-
bic term b2 vanishes. The latter result reflects the
increase in symmetry that occurs if the compression
or elongation is applied to both pairs of oxygens in-
stead of one pair as represented by Eq. (9).

(c)

4'= 904 $=9Q4+ ct

IV. OCTAHEDRAL COORDINATION

lb2 I

= lb~ I
=3lb2(Ro)

I
sin~a, b2' ——0 . (12)

Again it is seen that the magnitudes of b2 and b2 in-

crease with increasing degrees of twist and that
)b2/b20~ =1 or [E/D( = —for any a AO. A second

fully rhombic distortion is the radial displacement of
three oxygens lying in one vertical planae. In Fig.
2(c) is shown, for example, the outward radiai dis-

placement of the three oxygens lying in the "upper"
vertical plane along the +z and +y axes. It is noted
that the polar and azimuthal angles of all oxygens are
the same as those for Oq symmetry in Fig. 2(a).
Denoting the radial distance of the three displaced

The local surroundings of the paramagnetic ion in
an octahedral cubic complex consist of six oxygens lo-
cated on three mutually perpendicular axes at + x,
+y, and + z, all equidistant from the origin, giving
rise to point symmetry Oq as shown in Fig. 2(a). It is

again useful to visualize the oxygens as lying in two
different vertical planes; one plane containing two
oxygens in the basal plane and the single oxygen
above the basal plane; and a second vertical plane
containing the two remaining oxygens in the basal
plane and the single oxygen below the basal plane.
For Oq symmetry, these vertical planes are perpen-
dicular. In this case Eqs. (2) and (3) yield

b2 = b2 = b2 =0; hence an ESR line at g =2 is ex-
pected.

Similar to the case of tetrahedral coordination,
there are two distortions of the above complex that
are independently fully rhombic as well as fully
rhombic when combined. The first is an angular
twist [Fig. 2(b)] produced by rotating one vertical
plane of oxygens with respect to the other about the z

axis, while maintaining the same polar angles as for
Oq symmetry. Denoting the angle of rotation as o.,
and the radial distance of all oxygens from the
paramagnetic ion as Ro, the following relationships
are obtained from Eqs. (2) and (3) and the transfor-
mation relation (5):

)=co 4=90O+ 4

)=co' f~ 90'+ N

FIG. 2. Octahedral complex of oxygens exhibiting (a) cu-
bic symmetry, (b) an angular twist, (c) a radial displace-
ment, and (d) an angular twist combined with a radial dis-
placement of oxygens lying in one vertical plane, (e) a radial
displacement of three oxygens not lying in one vertical
plane, and (f) an angular twist of oxygens lying in one verti-
cal plane combined with a radial displacement of three oxy-
gens not lying in one vertical plane,

oxygens from the paramagnetic ion as R ~, and the ra-

dial distance of the three remaining oxygens from the
paramagnetic ion as Ro, the following relationships
are obtained from Eqs. (2) and (3) and the transfor-
mation relation (5):

'f2

lb& I=lb21=21»«0)ll — — ', b2 =0 . (»)
1

Hence [ b22/b20
~

=1 or [E/D) = —for any R~ & Ro.
In Fig. 2(d) is shown the simultaneous effect of an

angular twist of one vertical plane of oxygens with
respect to the other through an angle o. about the z

axis, combined with the radial displacernent of three
oxygens in one vertical plane along their respective
ligand axes. For these combined distortions the fol-
lowing expressions for

~ b2 ~
are obtained from Eqs.
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(2), (3), and (5):
t

Ib'
I

= lb'1=3lb2(Ro) I
»n'u+-, I- „Rp . , ) Rp

11 1

bl P (14)

Again ~bzz/bzo~ =1 or [E/D~ = 3. Also Eq. (14) is

not simply the algebraic sum of Eqs. (12) and (13)
but reduces to Eq. (12) or Eq. (13), respectiveiy, for
the indicated angular twist or radial displacement ap-
plied separately. It is noted that the absolute values
of b20 in Eqs. (12)—(14) for octahedral coordination
are all —of their counterparts in Eqs. (6) —(S) for

tetrahedral coordination.
The radial displacement of three oxygens that do

not lie in one vertical plane results in no ligand field
splitting. For example, in Fig. 1(e) is shown the out-
ward radial displacement of three oxygens lying along
the +x, +y, and +z axes. The point symmetry of this
distorted complex is C3„with a threefold axis along
the [111]direction. Application of Eqs. (2) and (3)
to this complex yields b2 = b2 = b2 =0. Ho~ever, if
this distortion is combined with an angular twist of a
vertical plane of oxygens through an angle o. about
the z axis as shown in Fig. 2(f), the following expres-
sions are obtained from Eqs. (2), (3), and (5):

jacent oxygens. The point symmetry resulting from
this distortion is C2„where the twofold axis contains

, the origin and the point midway between the two dis-
placed oxygens. Denoting the radial distance of the
two displaced oxygens from the paramagnetic ion as
R&, and the radial distance of the four remaining ox-
ygens from the paramagnetic ion as Ro, Eqs. (2) and
(3) yield

= —/b2(RO) f 1+ sinzu, b) =0 . (15)

/ib20 /

= n
/ b2(R p) [

1—Rp

Ri
b2 =b2 =0 (i6)

where n = 1 for one oxygen and n = 2 for two oxy-
gens. A second distortion resulting in axial sym-
metry is the radial displacement of two oxygens that
do not lie on opposite ends of the same cube sym-
rnetry axis, that is, the radial displacement of two ad-

The combined effect is fully rhombic since
~

b 2/bo
~

=1 or ~E/D ~

= —.It is noted that Eq. (15) reduces

to the pure angular twist of Eq. (12) if R
~
= Ro.

Similar to the case of tetrahedral coordination, we

consider several distortions of the octahedral complex
that result in axial symmetry in the spin Hamiltonian
of Eq. (1). The first is a tetragonal distortion pro-
duced if only one oxygen in Fig. 2(a) is radially dis-

placed along its ligand axis, or if two oxygens lying
on opposite ends of the same cube symmetry axis are
radially displaced the same amount from the
paramagnetic ion. Denoting the radial distance of the
displaced oxygen(s) from the paramagnetic ion as R, ,
and the radial distance of the remaining oxygens
from the paramagnetic ion as Ro, Eqs. (2) and (3)
yield

lb201= lb2«o)11—
Ri

b22 = b2 =0, (17)

V. QUANTITATIVE ESTIMATES: ESR

The effect of the fully rhombic distortions
represented by Eqs. (6)—(9) and (12)—(15) on the
ESR spectra of ions with S = —, will vary depending

on the relative magnitudes of b2 and h v, where v is
the microwave frequency in an ESR experiment. In
general, any value of bz &0 (under the constraint
~b2 /b2

~

=I) will give an isotropic resonance associat-
ed with transitions within the middle Kramer's doub-
let. ' However, this isotropic resonance will have an
effective g value substantially less than 4.3 unless

b2 & 0.6 h v. '6 For small ligand-field splittings,
b2p (( h v, resonances only in the vicinity of g = 2

are expected. In a sample where there is a spread in
the magnitude of b2 ranging from zero to —0.6 h v or
greater, the overall spectrum is expected to display
resonances in the vicinity of both g = 2 and g = 4.3.
Hence, we consider that the fully rhombic distortions
of Eqs. (6) —(9) and (12)—(15) must satisfy the rela-
tion

~
b2

~

& 0.6 h v in order to account for the isotro-
pic g =4.3 ESR signal in glass. At a typical L-band
microwave frequency of 9.0 6Hz, this relation is

which is the same as Eq. (16) with n =1. A third
distortion resulting in axial symmetry is a trigonal
distortion corresponding to a compression or elonga-
tion of the entire complex of Fig. 2(a) along the
threefold [111]direction. In this case the angles
between the [111]direction and the ligand axes of all
six oxygens are simultaneously increased or de-
creased by the same amount P. Denoting the radial
distance of all oxygens from the paramagnetic ion as
Ro, and taking P to be positive for a compression and
negative for an elongation, the magnitudes of b2 ob-
tained from Eqs. (2) and (3) are given by

~b
~
=3~b2(Ro) [ ~sin P —2' sin2P~, b =b2 =0

(is)
Similarly, axial symmetry results if a uniform com-
pression or elongation is applied along the [111]
direction to half of the octahedral complex (three ox-
ygens mutually adjacent to the [111]direction). In
this case the magnitude of b2 is half of that given in
Eq. (Is).
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given by ~ b2 ~
& 0.18 cm '.

In the Newman superposition model, the critical
parameters are the intrinsic parameter b2(R p) and
the power-law exponent t2. These parameters depend
not only on the paramagnetic ion and its distance
from the ligand anions, but also on the ligand anion
and cation species of the host matrix. For rare-earth
Gd'+ ions contained in MO4 host matrices, it has
been shown'7 that there is an empirical correlation
between the values of b2(Rp) and the electronega-
tivities (Allred-Rochow) of the matrix cations M. As
yet no such correlation can be determined for Fe3+

and Mn'+ in oxide matrices due to the sparsity of ex-
perirnental data. The most reliable current estimates
of bq(R p) and t2 in these systems, with R p in the
range 1.9 A & Ro & 2.1 A, are derived from
crystalline-strain data of Fe + and Mn'+ in MgO. '

These depend on Ro and t2 in the following manner:
for Fe3+

parameter 0. associated with an angular twist. It is

also noted that the minimum distortion parameters
for Fe'+ are considerably smaller than the corre-
sponding ones for Mn2+. This is a consequence of
the larger intrinsic parameter ~b2(1.9 A) ) employed
for Fe'+ compared with that employed for Mn +.

VI. NUCLEAR QUADRUPOLE SPLITTING: Fe

Eos = —V„eQ (1 + g~/3) 't2 (21)

The magnitude of the quadrupole splitting (Eos) in

the Mossbauer spectrum is proportional to the elec-
tric field gradient (EFG) which interacts with the
quadrupole moment of the nucleus. Since I = —, for

the "Fe nucleus, the E&s can be expressed as"

0 't2

l,b (R )[=(0157 -') "' A

Rp(A)
t2 7. (20)——

As a quantitative estimate of the smallest separation
between the paramagnetic ion and its nearest oxygen
neighbors in glass, we take Ro =1.9 A. Then Eqs.
(19) and (20) reduce to

~
b2(1.9 A) (

=0.921 cm ' for
Fe +, and (b, (1.9 A)

~
=0.317 cm ' for Mn2+.

The minimum values of the distortion parameters

n, R ~/R p ) 1, and P that are consistent with the
above intrinsic parameters, po~er laws and the rela-

tion ~b2P
~
~0.18 cm ' applied to Eqs. (6), (7), (9),

(12), and (13) are listed in Table I. These values
represent the smallest distortions able to account for
the isotropic g =4.3 ESR signal at 9.0 GHz employ-

ing the currently available quantities pertinent to the
superposition model. It is noted that some of the
distortion parameters are quite large, particularly the

2101A' 2

lb2(Rp) I
=(0.412cm ') ' . , t, =8, (19)

Rp(A)

and for Mn'+

where e is the protonic charge, g is the quadrupole
moment of "Fe (0.21 b),"q is the asymmetry
parameter given by

q = ( V~ —V~)/V„ (22)

and

V„=e(1—y„) X ', (3cos'8, —1)
i i

e(1 —y„) Z;
'3 (3 sin'll; cos2&t)

R

(23)

and V, V~, and V„are the three components of the
diagonal EFG tensor.

For the S-state Fe + ion, the contribution to the
EFG from uncompensated valence electrons will be
negligibly small compared with that arising from
external charges. In this case the EFG may be ex-
pressed as a linear sum of contributions from exter-
nal monopoles, dipoles, and quadrupoles. For simpli-
city, we shall assume that only monopole (point-
charge) contributions are important. Hence, V„and
q can be written as28

TABLE I. The minimum values of the distortion parameters n, R~/Ro ) 1, and J8 that are con-

sistent with an isotropic g = 4.3 ESR signal from Fe + and Mn2+ ions at 9.0 6Hz, calculated from
the Newman superposition model with R0=1.9 A.

Ion Eq. (6}

Tetrahedral
R )/Ro
Eq. (7)

p
Eq. (9) Eq. (12)

R &/Ro

Eq. (13)

Octahedral

Fe'+
Mn2+

18.2'
32.2'

1.03
1,13

4.08'
12.9'

14.8'
25.8'

1.02
1.07
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where y is the Sternheimer antishielding factor
( —9.14 for '7Fe3+), 3c and Z, = —2 for the neighbor-
ing oxygen ions.

The parameters V„and q are conveniently written
in terms of the superposition-model reference dis-
tance Rc and coordination factors E2 (8;, P;) of Eq.
(3) as

f 1 3

Vr, =2Ze(1 —y ) —, $ E2 (9;, P;)
p i

(25)

and

It. ,'(8, , y, )
R;

3

SC,'(e, , d, )
i

(26)

r r 3

It 2 (e„@,)
i

(27)

It is noted that the summation in square brackets in

Eq. (27) is identical to that in Eq. (2) with m =0 and
t2=3. Hence, the magnitude of the EQs resulting
from the distortions treated in Secs. III and IV can be
readily evaluated by substituting the ratios
(b2 /b2(Rc)

~
previously determined in Eqs. (6)—(18)

with t, =3 for the summation in Eq. (27).
In Table II are shown the minimum values of the

distortion parameters n, Rt/Rc & I and P calculated
from Eq. (27) with Re =1.9 A and ri =1 that are con-
sistent with

~ Eos~ «0.5 mm/s due to the nearest-
neighbor oxygens. It is noted that the angular
minimum distortion parameters a and P in Table II

A comparison of ri of Eq. (26) with the ratio ~b2 /b2
~

obtained from Eq. (2) with m =2, 0 and t2 =3, shows
that the condition ri= I corresponds to ~b22/b2

~

= I
or [iF/D [

= 3; and that ri =0 corresponds to ~b2/62 ~

= (E/D( =0. Insertion of V„of Eq. (25) into Eq.
(21) yields

r 't ]i2
2 j~ s Ze'0=(1 —y„) 1+ "Q= "

3 R30

are in good agreement with those obtained from the
superposition model for Fe + in Table I, indicating
that for angular distortions the observation of a
prominent g = 4.3 Fe + ESR signal at 9.0 GHz is
consistent with a ~Eos~ & 0.5 mm/s in the Mossbauer
spectrum. The radial minimum distortion parameters
R t/Rc in Table II are substantially larger than their
ESR counterparts for Fe'+ in Table I. It should be
remembered that distortions involving radial displace-
ments produce different effects on the magnitude of
EQs compared with b2 due to the different power-law
exponents employed for the two splittings (t2=3 for
[ Eos ~

and t2 = 8 for [ bq ) ) . It can be concluded from
the formal similarity between Eqs. (2) and (27) that
if the same ligand-field power-law exponent is em-
ployed for both splittings, then ~Eos~ would be direct-
ly proportional to

~
b2

~
for all types of constant-ri dis-

tortions.

VII. DISCUSSION

A comparison of the minimum distortion parame-
ters for the two types of ions Fe'+ and Mn'+ in Table
I indicates that there is a wide range in the magnitude
of the distortion parameters over which the condition
for the appearance of the isotropic g =4.3 resonance
is satisfied by Fe'+ ions but not by Mn'+ ions. From
this it can be inferred that if two samples of the same
host glass are prepared, one containing dilute Fe +

ions and the other dilute Mn + ions, and if both sam-

ples contain approximately the same broad distribu-
tion of fully-rhombic distortions at the sites of the
paramagnetic ions, then the relative intensity of the

g -—4.3 resonance compared with the g =2 reso-
nance should be larger for Fe'+ than for Mn'+. The
paramagnetic ions are here assumed to be so dilute
that one may neglect any g ——2 resonance arising
from pairs, triplets and higher-order clusters of
paramagnetic ions via spin-spin interactions. "
Under this assumption, the results of the superposi-
tion model are in good agreement with the experi-
mental spectra of dilute Fe + and Mn'+ ions given by
Loveridge and Parke, Griscom and Griscom, ' and
Schreurs. ~ These spectra all indicate that for a given

TABLE II. The minimum values of the distortion parameters o., R&/Rp ) 1, and P that are con-
sistent with ~Eos~ «0.5 mm/s due to nearest-neighbor oxygens, calculated from a point-charge

0
model for the EQs in the Mossbauer sPectrum of Fe with Rp=1.9 A.

Nucleus Eq. (6)

Tetrahedral
R )/Rp
Eq. (7)

p
Eq. (9) Eq. (12)

R i/Rp
Eq. (13)

Octahedral

"Fe 19.9' 1.09 4.88' 16,2' 1.06
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type of host glass the relative intensity of the g =4.3
resonance compared with the g = 2 resonance is
larger for Fe + than for-Mn +.

As previously mentioned, the frequency depen-
dence of the isotropic g =4.3 resonance is governed
by the relation )b2O) «0.6/tv. This relation may not
be satisfied over the full range of the distortion
parameters if the microwave frequency v is very
large. For example, at the 0-band microwave fre-
quency of 36 GHz, the relation )b20) «0.6 h v (=0.72
cm ') is not satisfied by the radial distortion of Eq.
(7) over the full range of the distortion parameter
R ~/Ro (1 ~ R ~/Ro ~ ~) for Fe~+ ions with nearest
oxygens at R0=1.9S A. In general the relation
)b20) «0.6 h v readily precludes the observation of the
g =4.3 resonance as the microwave frequency is in-
creased. This result also agrees with the experimen-
tal observation that the g =4.3 resonance disappears
when the microwave frequency is increased from X
band to 0 band. 2 4

The magnitude of the nuclear EQ$ of "Fe may also
be investigated for extreme values of the distortion

0
parameters. For example, taking R0=1.9 A, the an-
gular twist of a pair of oxygens in a tetrahedral com-
plex represented by Eq. (6) results in a planar con-
figuration of oxygens for the extreme value n =90',
The resultant magnitude of the EQ$ obtained from
Eq. (27) is 4.3 mm/s. Since quadrupole splittings of
this magnitude are not observed experimentally, 6 it
is reasonable to conclude that the distortion parame-
ters are distributed closer to the values given in
Tables I and II. This conclusion is still consistent
with the disappearance of the g =4.3 ESR signal
when the microwave frequency is increased.

In at least two instances the superposition model
predicts a dependence of ) b20 ) and )

b22
) on the distor-

tion that is different from that considered by other
authors. First, in the case of an angular twist of a
pair of oxygens about a cube symmetry axis in an oc-
tahedral complex as shown in Fig. 2(b), Eq. (12)
yields a dependence of ) b2 ) on the twist angle n that
is proportional to the second po~er of sino. . This
result differs from that of Castner et al. (see footnote
8 of Ref. 1), who suggest that ) b2 ) is proportional to
the first power of sinn [) cos(a+90')) =)sinn)].
Secondly, in the case of a radial displacement of two
adjacent oxygens in an octahedral complex resulting
in C2„symmetry, Eq. (17) yields axial symmetry for
the spin Hamiltonian of Eq. (1), )b2 ) &0, b2 =bq
=0. This result differs from that of Loveridge and
Parke (see Table 1 of Ref. 2) who classify this type of
distortion as fully rhombic ()D) =0, )E) » 0).

It is pointed out that the analytical expressions for
) bq ) [Eqs. (6)—(18)j are applicable to S-state ions
other than Fe'+ and Mn'+, and to situations where

the ligands are other than oxygens. - These expres-
sions are also not restricted in principle to glassy net-
works and hence may be applied to crystalline materi-
als where the distortions at the sites of the paramag-
netic ions are similar to those treated here. In all
cases, however, the reliability of quantitative esti-
mates will depend on the accuracy of the values em-
ployed for ) b2(Ro) ) and t2 It s. hould be mentioned
that the choice of fully rhombic distortions treated in
the present paper was made primarily for ease of cal-
culation and is not intended to exhaust the possibili-
ties of distortions satisfying )

b22/b20
)
= 1. We specifi-

cally mention that the g = 4.3 resonance observed
from Fe'+ in ferrichrome A, "which is known to be
associated with an octahedral oxygen complex with an
apparent threefold symmetry axis, may not be gener-
able from the particular types of distortions treated
here.

VIII. SUMMARY

Employing the Newman superposition model for
the ligand-field splitting of paramagnetic S-state ions,
we have obtained analytical expressions for the spin-
Hamiltonian parameters

) b20) and )
b22

) as a function
of several fully rhombic and axial distortions from
cubic symmetry at the sites of the paramagnetic ions.
These expressions are then applied to Fe + and Mn +

ions in oxide glasses using the intrinsic param'eters
)b2(RO) ) and power-law exponents t2 derived from
crystalline-strain data of MgO:Fe +; Mn +. It is
found that the magnitudes of the fully-rhombic dis-
tortions required to account for the g =4.3 reso-
nance in glass are consistent with experimental data
regarding: (1) the relative intensity of the g = 4.3
versus g = 2 resonance for Fe + ions compared with
Mn + ions at an I-band microwave frequency of 9.0
GHz, and (2) the disappearance of the g =4.3 reso-
nance at 0-band microwave frequencies.

The nuclear quadrupole splitting in the Mossbauer
spectra of ' Fe is formulated using a point-charge
model that permits direct substitution of the results
obtained from the superposition model. The magni-
tudes of the fully rhombic distortions are then calcu-
lated assuming that the quadrupole splitting from the
nearest-neighbor oxygens is at least 0.5 mm/s. The
point-charge model yields angular minimum distor-
tion parameters that are in good agreement with
those obtained from the superposition model. How-
ever, the radial minimum distortion parameters
behave substantially different than their ESR coun-
terparts due to the different power-law exponents
used for the two types of splittings.
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