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Explanation of quantized-Hall-resistance plateaus in heterojunction inversion layers
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A self-consistent calculation of n/8 (inversion layer carrier density divided by magnetic field

strength) vs 1/8 exhibits quantized values over finite ranges of 8 (plateaus), just as seen in .the
Hall-resistance measurements of Tsui and Gossard. Electrons here in the inversion layer come
from the ionized donors which, because of band bending, have a continuous energy density of
states. These states fill or empty as the energy of Landau levels sweeps past them, producing
the plateaus.

Quantization of the Hall resistance of the two-
dimensional electron gas (2DEG) has recently been
observed in the inversion layers of Si MOSFET's
(metal-oxide-semiconductor field-effect transistors)'
and GaAs-Al„Ga~ „As heterojunctions. This new
quantum effect has its origin in the fact that magnetic
quantization splits the energy spectrum of the 2DEG
into discrete Landau levels, each having a degeneracy

P = eB/h (Her. e, B is the magnetic field perpendicu-
lar to the 2DEG, h/e is the flux quantum, and we
neglect spin and valley degeneracies. ) When an in-

tegral number No of Landau levels are filled, scatter-
ing cannot take place, owing to the presence of a gap
between the filled and empty Landau levels. Under
this condition the diagonal conductivity cr vanishes
and the off-diagonal Hall conductivity o.~ = ne/B.
Since n = NOP is the total number of electrons need-
ed to fill the No Landau levels, a.~ = Noe'/l'r, and the
Hall resistance is p~ = h/Noe' The Hall res. istance
has this special value only when there is no partially
occupied Landau level in the system, i.e., when there
is no Landau level at the Fermi energy.

This zero-order explanation is incomplete: It con-
ceals two unresolved and unrelated problems. First,
why does o.~ equal Noe'/h to such high accuracy in

the presence of, e.g. , electron-electron interactions,
edge effects, potential fluctuations, etc. ~ Several
theoretical models deal with this aspect of the prob-
lem. ' 6 The present work does not. The second
problem, which we address here, is why the quan-
tized value of a-~ is observed to persist over finite
ranges of n or 8, i.e., to exhibit a plateau, It is clear
that for o.~ = ne/B to exhibit a plateau as a function
of 8, n must vary with 8; i.e., there must be a reser-
voir to supply particles to the 2DEG.

In this Communication, we show that for the
heterojunctions where the 2DEG is supposedly isolat-
ed, there are ionized donors at the right distance to
serve as a reservoir. Our calculation of the potential
at GaAs-Al„Ga~ „As heterojunctions, such as those
studied in Ref. 2, shows that at doping concentrations
appropriate for producing a 2DEG, the potential bar-

rier on the n side of the junction is so low and thin
that tunneling between the ionized donors and the
inversion layer is rapid. These two systems are in
equilibrium with each other even at low temperature.
The number of carriers in the inversion layer then
depends on 8 as the energy of the Landau levels
sweeps past that of the donors, and it must be calcu-
lated self-consistently. This we do, first using Har-
tree theory. The calculated n/B exhibits the finite
plateaus seen in the experiments.

The most important property of the re'servoir in-
fluencing the width of the plateau is its spatial dis-
tance from the 2DEG. This is because motion of a
Landau level relative to the Fermi energy E~ occurs
for two reasons: Firstly, its magnetic energy
(No+ —, )tcu, relative to the potential in the 2DEG
rises with 8. Secondly, the potential in the 2DEG re-
lative to EF also changes with 8 because the electrons
needed to keep the levels full transfer in or out from
the reservoir which establishes EF. The more distant
is that reservoir, the more rapidly does the potential
in the 2DEG change for each electron transferred.
When there is a Landau level at EI:, then an increase
in 8 raises its magnetic energy and causes it to emp-
ty, transferring electrons back to the reservoir and
lowering thereby the potential in the 2DEG. This po-
tential lowering holds the partially filled level exactly
at EF, until the emptying is complete, whereupon the
empty level rises above EF. There are now no par-
tially filled Landau levels and a new plateau starts.
An increase of 8 now increases the number of car-
riers each filled Landau level can hold, and carriers
transfer into the 2DEG from the reservoirs. The po-
tential in the 2DEG rises, the magnetic energy of
each Landau level also arises, and the topmost filled
Landau level reaches EF, which puts an end to the
plateau. The cycle can then repeat. When one as-
sumes that the ionized donors provide the only reser-
voir to the heterojunctions, the plateau widths, for
reasonable values of the material parameters, are
about 22% less than what is observed in the hetero-
junctions.
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Other effects can alter the width of the plateaus.
For example, a mobility edge within the broadened
Landau levels can provide a reservoir of localized
states. These would be an especially useful reservoir
because, being located at the 2DEG, its emptying and
filling would not alter the potential in the 2DEG. We
shall not complicate the model by considering this
reservoir even though it may well be present.

Another plausible process which can affect the pla-
teau width is the dependence of the self-energy of
the topmost filled Landau level on its occupation.
This will change the rate at which that level empties
when the field is increased. We postulate that the
self-energy of the electrons in the partially filled Lan-
dau level, although influenced by the number of elec-
trons in the lower filled levels, depends strongly on
the degree to which the topmost level is filled,
becoming more negative as that level fills. This is
reminiscent of the explanation of the high-field oscil-
latory exchange enhancement of the g factor, and
indeed, the self-energy used by Ando and Uemura7
can be regarded as showing such a dependence. We
propose a simple one-parameter form to express this
dependence on filling. Including this self-energy in
our calculation enhances the plateau width.

We now describe the model and the calculations.
The heterojunction is depicted in Fig. 1. On the
GaAs side (x & 0), the net acceptor concentration
N& is low. When the junction is in equilibrium, the
Fermi energy E+ is near the bulk GaAs valence band
edge. Band bending fills some acceptors, establishing
an immobile charge density Nq (in units of the elec-
tron charge —e) for 0 & x & L„In the inv. ersion
layer, the mobile charge density is pi(x). The areal

density of inversion charge, Qr = ' pi(x) dx, isJp
determined directly from the Shubnikov —de Haas
periodicity.

At the interface (x =0), the conduction band
discontinuity 6 is known. 8 There can also be true lo-
calized states at the interface, such as broken bonds,
whose energy is tied to the band structure and not to
the Landau levels. These states are not describable

within the effective-mass formalism used for the
inversion-layer carriers, and it is not correct to regard
them as having been removed from the Landau lev-
els. Nonetheless, they can provide a reservoir of
electrons to supply carriers to the inversion layer and
thus produce plateaus. Not knowing their energy
density, we ignore their reservoir consequences here
by assuming that they all lie beneath the inversion
layer, and are always filled, giving rise to a charge
density Qsg(x). Qs must be adjusted for compatibil-
ity with the other measured parameters, since their
values were, in fact, physically determined by Qq.

On the AI„Gat „As side (x & 0), the donor con-
centration ND is high. It is nominally uniform up to
a distance L from the interface, and zero closer than

0
that. L is typically 0 to 100 A in modulation-doped
samples. When the junction is in equilibrium, EF is
near the bulk A1„Gai „As conduction-band edge.
Band bending empties some donors, establishing a
charge density —ND for —LD & x & —L. When we
ignore the small difference between the dielectric
constant e in the two semiconductors, the following
conditions (the depletion layer approximation) relate
charge densities and energies

(4rre /e) [
q

ND(Ld —L ) + QIJI +
2 NA LA j ~ + +G

ND (LD —L ) = QI + Na La + Qs

where

X, = I xp (x)dx Q,

(2)

~, = ea/nt',

T+ 4F
For one occupied subband, QI =

&
p(e) de. eF '

Jp
is the filling energy and p(e) is the transverse density
of states. Taking spin degeneracy, but not spin ener-

gy, into account

p(e) = ptcu, QS(e —(n ——,
' )t(o,)

and

p = (27r) '(2m'/t')
EG

0 0'(

If there is no magnetic field, then p(e) = p, a con-
stant. Thus

pKF, no field (3a)

QI = Npfco„(N ——)t~, & ~F & (N + —,
' )iI~, (3b)

(N + n) pf o)„(N + )t«), =eF- (3c)

I

FIG. 1. Diagram of the heterojunction at equilibrium in

zero magnetic field.
Equation (3c) applies when level N is at EF. In such
case, the fractional filling o, lies between 1 and zero.
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Since e+ is determined by E& in bulk,

(4me /e)ND(LD —L )/2=5 —e(( ee (4)

A(N+n) +(B+C)(N+u)y

e(( and X( depend in detail on the potential $(x) (see
below), but they are typically 100 mV and 100 A.
Treating them for the the moment as known, we

solve Eqs. (1), (2), (3a), and (4) to determine gs,
Lg, ee, and LD. If necessary, we recompute $(x),
recompute e~ and Xi, and iterate. Choosing

Q( =4.2 x. 10"/cm', L =100 A, ND =7 x 10"/cm',
Nz =10' /cm3, and 5 =315 mV gives gs =3.8
x 10"/cm and L„=1.5 x 10 A.

The barrier to tunneling is roughly parabolic, with

6 —ez = 245 mV and LD =236 A. Using
m =0.068mp, we estimate the equilibration time
between the two systems to be about 10 ' sec.

Now we discuss the effect of B. The sample is

cooled and the semiconductors become insulating.
As a result, acceptors do not adjust, g„=N„L„ is

frozen at the value just found, the Fermi energy in

the bulk, GaAs is irrelevant, and we ignore Eq. (1).
The donors and the inversion layer are still in com-
munication, however, and the LD, g(, and ee are still

related. %e first consider magnetic fields where
there is a partially filled Landau level. Then Eqs.
(2), (3c), and (4) must be solved for g(, LD, ee, and
(N + n). Combining these four equations so as to
eliminate Q(, ee, and LD, and putting y —= e(/to(, and
Q„'= Q„0+ Qs, we obtain

face. For them, there are exactly A'p filled Landau
levels, and Eq. (3b) applies. These are the plateaus
where p~ would be quantized.

Now consider the variation of e~. Ultimately, 6g
depends on Q„and g(, but in the present situation,

Q„ is fixed. If the fractional variation in g( is not
great, we can expand to first order in Q( to obtain

es = [1+(m —1)G]e('(
f i p

Q( de((

e(( dg(

m =g, /g, '=(N+n)/y .

(7a)

(7b)

(7c)

Although the evaluation of ~8 and of 6 requires, in

principle, the self-consistent solution of the
Schrodinger equation, a simple analytic approxima-
tion, used first by Fang and Howard' and studied
systematically by Stern, has been shown to be quite
good. " One notes that for the wave function Qq(z)
= (b'/2) '('ze ~(', the charge density N~ + Pb(z)'Q(,
and the resulting Q(z), depend on b. The expectation
value of the Hamiltonian taken with respect to the
trial wave function P(((z) = (P'/2)'('ze ~* z depends
on b and P, and is to be minimized by varying P.
Then the whole procedure is made self-consistent by
setting P = b. The resulting equation determines P,
and one obtains eq, Xi, and 6 as analytic functions of
g( and Qg.

Inserting Eq. (7) into Eq. (Se) allows us to separate
out the equilibrium part, and we have

D =D' —[(N +n)/y —1]F (F=—CGeao/ceo)

+ C( —,
' —a) y Dy'=0, —

(go)2

B = 2Q(o(gg'+ NDL )

C =(2me /e) 'NDe(

(Sa)

(sb)

(Sc)

(sd)

By making use of the 8 =0 solution, we show that
D =3 +8+C. Using this, we find that for o/= —,,

the solution isy=N+n, and Q(=Q(0. For general
values of n, we write y = N + n +K, and to first or-
der in K/(N +u), we find

g(/pie), = (N + u)

eF/tcu, =y

(6a)

(6b)

For (N + a) noninteger, u is uniquely determined,
and for this value of n, there is one positive solution
y. For (N +u) =No an integer, two values of a,
o. =0 and 1, must be used, and for each, there is a
positive solution y. Values of y between the two do
not satisfy Eq. (5) because they do not correspond to
fields where there is a partially filled level at the sur-

D =(2me /e) ND(b —e(() —Qz (gz +2NoL) . (Se)

The superscript zero refers to 8 =0 values found
above.

Ignoring for the moment the Q( dependence of e((,
we see that Eq. (5) exhibits the essential features of
the solution. We regard (N +u) as a parameter, and
consider the resulting values of

K =(—, —n)1 C

[2A +B+C+F—(z —u)C/(N+n)]

This is single valued when (N +n) is not integer and
has two values, because there are two values of o,

when (N + u) =No. The plateau width, expressed as
a fraction of the Shubnikov —de Haas period is

C/(2A +B + C + F). It arises solely because of the
donors acting as a reservior.

The results obtained to this point are qualitatively
identical to what is shown in Fig. 2. The slight
difference arises because we have not yet considered
the self-energy X of an electron in the topmost Lan-
dau level. X depends on N, on u, on Q(, and on
Ace„but since these last two are determined by A and
n, we write X = X~(a). To include its effect, we

modify Eq. (4), replacing es by e((+X. The solu-
tions are modified in form somewhat: D, as modi-
fied, is still equal to A +8 + C, and e~ —e& is aug-
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FIG. 2, Q(/phcu vs 6p./A6)„calculated for sample 1, Ref.
2, using parameters given in the text.

mented by SX(u) = X~(u) —Xo. Xo is the self-
energy of an electron at the Fermi energy of a 2DEG
at 8 =0.

Although SX is not known a priori, we can make
reasonable guesses about its form. Because we found
that n = —, gave the B =0 value of density, we con-1

jecture that SX will vanish at o. = —.The difference

SX(0) —SX(l) is the energy associated with g-factor
enhancement, and the appropriate scale of energy is
tee, . A simple form which satisfies these conjectures,
varies strongly with u (the electrons in a partially
filled level should be quite polarizable), and fits easi-
ly into our method of computation, is SX(u)
= ( —, —u)g&o, ( By analo. gy with the g-factor situa-

tion, we expect the parameter g to be positive, and in

a better theory, to depend on Landau level width.

The analysis is easily repeated with 8X. The final
result is that in calculating K, (-, —u) is multiplied

by the factor (1+g). In Fig. 2, we exhibit (W + u)
vs y, calculated using / =0.22 and using parameters
describing sample 1 in Ref. 2. Field values shown
correspond to having Ace, = eF at 8 =8.4 T. The ar-
rows are at the edges of the a~ plateaus reported in
Table II, Ref. 2. In the absence of ( (our only fitting
parameter), the plateaus are 22'/o narrower. Our cal-

culations demonstrate that self-consistency alone can
account for much of, and inclusion of self-energy the
entirety of, the experimental results from GaAs-
A1„6a& „As heterojunctions.

In Si MOSFET's, there is no known donor in the
Si02 to act as an electron reservoir. The acceptors in

Si are separated by too wide a depletion layer to be
effective. Similarly„ the gate electrode, which acts as
a reservoir via the wires which connect it to the
2DEG, is so far away that the plateau it produces
would have virtually no width. However, the inter-
face states included in our calculation can be present
in the energy range of interest and act as a reservoir.
The localized states lying outside the mobility edges
of each Landau level may also act as a reservoir.
Clearly, all these effects must be properly taken into
account before quantitative conclusions about mobili-

ty edges and localization can be drawn.
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