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R center in KCl. II. Line-shape calculation of the R, band*
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The optical-absorption properties of the R center in KC1 are investigated theoretically. The single-phonon-sideband

line shapes associated with the creation ofA, - and E-symmetry phonons are simulated for the R, band, where self-

consistent-field molecular-orbital point-ion-model wave functions are employed. The electron-lattice interaction is

treated in two approximations: a Ritter and Markham approach appropriate to relatively diffuse wave functions,

and a Green's-function approach appropriate to relatively compact wave functions. The Green's-function method

admits a treatment of perturbed-lattice dynamics although such an extension is not possible in the Ritter and

Markham approach. The Green's-function method appropriate to the perfect-lattice spectrum gives results which

most closely agree with experiment. The calculated line shapes, Huang-Rhys factors, and effective Jahn-Teller

coupling constants and frequencies are presented.

I. INTRODUCTION

In the van Doom' model for the 8, center, three
electrons are trapped at the sites of three anion
vacancies forming an equilateral triangle in the
(ill) plane. In the preceding article' (hereafter
referred to as I), we treated the electronic struc-
ture and the magneto-optical parameters asso-
ciated with the ground electronic state of the R
center in KCl. The electronic structure was cal-
culated using molecular-orbital theory with con-
figuration mixing appropriate to a point-ion poten-
tial. The excited eleetronie states were corre-
lated with the observed optical-absorption bands.
The dominant configuration of the ground elec-
tronic state was employed in a calculation of the
magneto-optical parameters: spin-orbit constant
and orbital g value. A comparison was made with
these parameters as inferred from electron-spin
resonance (ESH) and magnetic circular dichroism
(MCD). In the present investigation, we return
to the optical-absorption properties and consider
the structure observed in the A, absorption band.
It is well known that this structure arises as a
consequence of the electron-lattice interaction. '

The R, band is of particul. ar interest since it
exhibits a zero-phonon line and attendant multi-
phonon structure. Giesecke et g/. have developed
a procedure for deconvoluting line shapes into n-
phonon contributions when the center exhibits re-
latively weak electron-lattice coupling. They have
applied this procedure to the 8 center in KCl, gen-
erating the single-phonon-sideband line shape and
the multiphonon contributions. Only the single-
phonon sideband need be considered since the
others may be developed from this. ' In the pre-
sent investigation, the multiconfigurational wave
functions from I, corresponding to the lowest
2A., and 'E states, are employed in a calculation
of the single-phonon-sideband line shape. This

line shape is associated with the 8, optical. -ab-
sorption band and is compared with the empirical
lihe shape inferred by Giesecke et pl. 4

The calculation of line shapes requires a treat-
ment of the defect electronic structure, the crys-
tal-lattice dynamics, and the electron-lattice in-
teraction. The electronic structure was discussed
in I. The breathing-shell model' is assumed to
provide an adequate description of the dynamics
of the perfect lattice. The theory of line shapes,
which incorporates the electron-lattice interac-
tion, is developed for linear coupling within the
framework of the adiabatic approximation, follow-
ing the formulation of O'Rourke. ' This treatment
is appropriate only when either the electronic
states or the normal modes of vibration are non-
degenerate. Since the defect has C,„symmetry,
electronic states and vibrational modes must
transform according to the A„g„orE irredu-
cible representations. The treatment described
above is appropriate to the absorption of photons
accompanied by the creation of A, -symmetry
phonons. This theory is extended by employing
the method of O' Brien' to include coupling to the
degenerate E vibrational modes. The coupling
of the 3E ground state to the E modes of vibration
gives rise to a dynamic Jahn- Teller effect. '"

The electron-lattice interaction is treated in two
approximations: a Hitter and Markham" approach
appropriate to relatively diffuse wave functions,
and a Green's-function approach"'3 appropriate
to relatively compact wave functions. In the first
approach, the lattice spectrum is assumed to be
unaltered by the presence of the defect and the
electron-lattice potential is effectively averaged
over each unit cell. The Green's-function ap-
proach is not limited to perfect-lattice dynamics
and the electron-lattice potential is not averaged.
The interaction is, however, restricted for prac-
tical reasons to a finite set of ions surrounding
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the geometrical center of the defect.
The theory of lattice dynamics is described in

Sec. II. The theory of line shapes is presented
in Sec. III. The methods used in evaluating line
shapes in the diffuse- and compact-wave-function
approximations are considered in Secs.'

IV and

V, respectively. These procedures are applied
to the A center in Kcl and the results are com-
pared with experiment. A summary of results
and discussion is presented in Sec. VI.

II. THEORY OF LATTICE DYNAMICS

A. Perfect lattice

Lo(OO'}u = 0, (2)

where Lo(&'} is defined for the perfect lattice by

Lo(u)') =- Mo(u' —C'.

The set of eigenvalues ~',. and eigenveetors X& re-
sulting from the solution of this set of equations
satisfy orthonormality and closure rel.ations of
the form

and

Xo~~oXoj j' jj' (4)

~OXOXot-I

The motion of the perfect lattice is completely
determined by the matrix Lo(v') and a set of initial
conditions. The perfect- lattice Green's- function
matrix, which is defined as the inverse of the ma-
trix L (uP}, may be expressed in terms of the lat-
tice eigenmodes,

In the harmonic approximation, the Hamiltonian
for the perfect point-ion (no atomic polarization)
solid is"

H =
& p~Mop+ 2u~C u .

The vectors u and p represent displacements from
equilibrium and conjugate momenta, respectively.
The elements of the vectors are labeled led,
where l denotes the lattice site, & the ion type,
and o. the direction of displacement (x, y, z). M'
is a diagonal matrix containing the ion masses
and 4 is the force-constant matrix. If the dis-
placements are assumed to have a time depen-
dence of the form e '"', then the amplitudes satis-
fy

g~g)(lKo) =A' '+e (K;kp) exp[ik x(lz)],

where the kj pair now replaces j. The displace-
ment vector between an arbitrary origin and ion
lK is denoted x(lv); the wave vector and branch
index are k and j, respectively; the number of
unit cells and therefore the number of wave vec-
tors in the first Brillouin zone is ¹ The polariza-
tion vectors satisfy

M„(e';qe„(z; kj) =QD(vu; v'Pik)e8(v'; kj),

where D(k) is the Fourier-transformed dynamical
matrix with elements given by

(8)

D(KA K'p
i

k') =Q C,„., „.o exp(-ik [x(l&) —x(l'&')] ),
l

ImGo((o' —ic) = Q y'. y'. ~r ((u —(u,.) .
2(d

The symbol P denotes the Cauchy principal value
and (d is the maximum lattice frequency.

'The point-ion treatment described above ignores
the effects of atomic polarizability which are
known to be important in ionic solids, particularly
for the longitudinal vibrations. A shell model,
developed by Dick and Overhauser, "separates
each ion into a massive core and a massless
shell. The displacement of the shell relative to
the core gives rise to atomic pol.arization. The
shells are connected to the cores by strong iso-
tropic springs in this model. A refinement of the
shell model to incorporate atomic dilatations is
due to Schroder. ' This is the breathing-shell
model for lattice dynamics. In this model, Eq.
(8) is replaced by the set of equations

M o&u„&eo(kj) = [R(k) +R'(k)+ ZC(k)Z]ec (kj)

+ [R(k)+ ZC(k) Y]ee (kj)+ Q(k)es(kj),

(12a)

A more useful. form of the Green's function re-
sults from its continuation onto the complex plane.
In the limit as z goes to zero, ge real and ima-
ginary parts become

Ca) l 1

HeGo(~'- i&) = v 'P lmGo(~"- ie)
0

(10)

According to Bloeh's theorem, the eigenvectors
of the perfect lattice may be expressed in terms
of the polarization vectors, e (v;kj), as

0= [R(k)~+ YC(k)Z]e (kj)

+ [R(k)+ G+ YC(k) Y]e~ (kj)+ Q(k) ea(k j), (12b)
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e~ w; kj e~& v'; kj2(dk(dÃ g,.
™t

(13)

where the sum is restricted by co —2&co & ~,. ~ ~
+2&~. As a consequence of cubic symmetry, the
sum over k is required only for the unique ~
of the first Brillouin zone. Equation (10) for
the real part is now replaced by"

m~x 0 &2 . 2 d
=m 'P ImG ((u"—if) B,2+ W.

0
(14)

In calculating the real part by Eq. (14), the ima-
ginary part is approximated by a series of straight-
line segments, and the integral is evaluated ex-
actly within each frequency interval ~&. 'The

frequency-independent matrix W is given in terms
of the force- constant matrix by"

(@SS @S @B BOBBS
)

ASS@,SB@BB-&

C BB"i@,BS grS S

(i5a.)

(15b)

(15c)

O=q(k)t[e (kj)+ee(kj)]+H(k)eB(kj), (12c)

where ec(kj) and ee(kj) are the core and shell
(measured relative to the core) polarization vec-
tors and eB(kj) has two components describing
the dilatations of cation and anion shells. 'The

C(k) matrix incorporates the electrostatic inter-
actions, M is a mass matrix, Z is an ionic-charge
matrix, and F is a shell-charge matrix. The
symbol G denotes the diagonal matrix which repre-
sents the isotropic core-shell force constants.
The other matrices are associated with short-
range repulsive interactions.

Copley et al."have solved the breathing-shell-
model equations for the perfect KCl lattice. The
adjustable parameters were determined by fitting
the dispersion curves to those generated from in-
elastic neutron scattering. We use their model-
IV parameters, from which the following are

. inferred: Gy 965 0 Gp 480 9 F'y 5 758, and

Y,= -4.205. The G„are in units of e'/v where v
is the unit-cell volume and Z, = -Z, = 0.928 are the
total ionic charges. We employ this set of pa-
rameters in a calculation of the eigenmodes of the
perfect KC1 lattice using approximately 66 000
wave vectors in the first Brillouin zone.

'The perfect- lattice Green's function is extended
to accommodate the shell and breathing degrees
of freedom. The imaginary part is calculated by
averaging over a frequency interval » about ~,
ImG™"'(le~&I'~ P

~

+' —ie)

and

EBB ~BS @SB@BB ~ @33 -&
(15d)

Products and inverses of very large force-con-
stant matrices are required, but these operations
become tractable when performed in reciprocal
space.

B. Defect lattice

8+) Ke
V(x), (16)

where V(x) is the adiabatic potential energy The.
changes in the force-constant matrix are given
by

a2
lKOil ICB s Q

( ) llCSil K B
lKC 1KB

(17)

In the present treatment, Eqs. (16) and (17) are
evaluated for a breathing- shell model within the
framework of the fully adiabatic" approximation.
This means that the shells and cores both follow
the averaged positions of the trapped electrons
while the shells follow the instantaneous positions
of the cores. 'The adiabatic potential energy may
be written as follows:

V(x)= V (x)+(4(r, x), [T,+V„(r)+ V, (r, x)]4(r, x)).

The set of excess-electron coordinates is denoted
by x and the set of core and shell coordinates by
x. The kinetic and electron-el. ectron- interaction
energies are denoted 7 and V„(r), respectively.
The term V,~(r, x) describes the Coulomb interac-
tion between the excess electrons and the cores
and shells. The ion-ion energy is denoted V&I(x)
and includes a Born-Mayer" part and a Coulomb
part. 'The Born-Mayer exponential parameter is
chosen as 0.33 A after Tosi" and the pre-expon-.
ential factor is chosen so that the second deriva;
tive is consistent with the corresponding shell-
model parameter. " The electronic state is de-
scribed by the wave function 4(r, x), which de-
pends parametrically on the core and shell co-
ordinates.

The dynamics of the lathce containing the defect
is described by a perturbed-lattice Green's-func-
tion matrix,

When a point defect is introduced, the ions sur-
rounding the defect experience static forces tend-
ing to move them toward new equilibrium positions.
In addition, the force-constant matrix elements
which describe the restoring forces are altered.
In a point-ion solid, the force on ion lI(: in direc-
tions is
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G(~') =L(~') ',
where

L((d') =Mes'- C .

(19)

(20)

III. THEORY OF LINE SHAPES IN THE LINEAR
COUPLING APPROXIMATION

A. Nondegenerste states

5L =—-5Mw2+&4 . (22)

Since the shells are assumed to be massless,
Eqs. (12) can be exploited to eliminate the shell
and breathing coordinates in favor of the core
coordinates. 'The effective Hamiltonian can then
be written in the form

pc~~cc pC + +C~@cct~c gc fyCt (23)

where the effective force vector F ' and force-
constant matrix C

' are given, respectively, by

F =E+(4 —C C s Cs)W E (24)

@ccI Ccc gcB@,BB @Bc

+ (pcs C)cB@BB ic,B s )gpss (c,sc @sB@B8 i@Bc )

(25)

Equation (24) incorporates the assumption that the
defect introduces no force acting directly on the
breathing coordinate. It is important to retain the
linear terms in Eq. (23), since the equilibrium-
lattice conformation depends on the electronic
state of the defect. A transformation to normal
coordinates Q~ can be effected by expanding uo

in the form

(25)

ere ~xc is an eigenvector of jcc The resulting
form for the Hamiltonian, useful for subsequent
developments, is

If 5M is taken to represent the change in the mass
matrix, then"

G(~') = [f —G'(~')5L] 'G'(~')

where

A theory of optical line shapes for defects in
solids was developed by Huang and Rhys" on the
basis of the Franck-Condon principle, in which
linear coupling to only a single effective mode
of vibration was considered. The theory was sub-
sequently reformulated and extended to encompass
both linear and quadratic couplipg to many modes
of different frequencies. '~"

The Born-Oppenheimer approximation is as-
sumed in these theories; i.e., the vibronic wave

. function is written as a product of electronic and
vibrational factors:

Accordingly, they are strictly applicable only to
transitions between nondegene rate electronic
states. With the additional assumption of the mean-
value and Condon approximations, "the absorp-
tion coefficient associated with a transition between
electronic states g and b is proportional to the nor-
malized line- shape function

I(„(&)=» Z ~(X(,(),X, )~'~(&(,()-&, -&), (3o)

where Av denotes a thermal. average over initial
vibrational states.

In the case of linear coupling, the Fourier
transform of the line- shape function can be ex-
pressed as'

G„(t)=— exp
@

fI„(&)&= exp[ S+g,(t)] . —i&t&(

a Ix)

The line-shape function can be recovered by in-
verse Fourier transformation of G„,(t) and can be
expressed in terms of n-phonon contributions by
expanding exp[g, (t)7 in a power series""

I, (E) e~(il(E)+Q.=s„{E}).
n= 1

The single-phonon sideband s,(E) is then

H= Q [—,'(Pq+ (djQ~2)+ VqQJ],
s,(E) = (2') ' exp I g,(t)dt, (33)

and, from the convolution theorem, "s„'(&) satis-
fies the recursion relation

where V,. is given by

V — Xc~~~ (28)
s„(E)=n ' js,(Z, )s ,(E —R,)dR, . „ (34)

'The second equality is readily demonstrated from
Eqs. (24) and (25), and provides an expression for
V~ in which shell and breathing coordinates are
explicitly retained. S= s, E cK, (35)

Note that E is measured with respect to the zero-
phonon line. The Huang-Hhys factor S and single-
phonon sideband s,(E) are simply related by"
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and s, (E) is given, in the limit & = 0, by

s,(E)= g 8, 5(E —K&@,). (36)

Here, 8& is the per-mode Huang-Hhys factor, re-
lated to the coupling constant V,. of Eq. (28) by

3'& ——
~
V,'. —V;. &~'/2K' &. (37)

Giesecke et al. 4 have employed E&ls. (31) and (33)
to construct s,(E) at low temperature, with 8 de-
termined by the relative intensity of the zero-
phonon line. Thus the single-phonon sideband

s,(E) provides a suitable point of contact for com-
parison of theory with experiment.

Although the foregoing theory was derived with
the assumption of nondegenerate electronic states,
it is applicable to transitions between degenerate
states, as well, provided that the coupling is
restricted to fully symmetrical. modes of vibra-
tion which do not mix degenerate states.

O' Brien' employs the Hamiltonian of Eq. (38) in
second- quantized form. An orthogonal transfor-
mation of the many-mode Hamiltonian is effected,
resulting in a new set of creation and annihilation
operators, e&~ and n&, satisfying the same com-
mutation rules as the usual set. A single effective
mode (say, number one) is singled out and coup-
ling to this mode is maximized. In the lowest
order of approximation, the many-mode problem
is reduced to an effective single-mode problem
with effective frequency &,«and effective coupling
constant k,«,' hence,

&„,=@&„,Q [o. , &&. ",I+ 2 '~ k„,(o.",+ o.", )U'"'j . (39)

The effective coupling constant and effective fre-
quency are given by O' Brien as

(40)

B. Dynamic Jahn-Teller effect

The defect normal coordinates and electronic
wave functions of the 8 center in KCl transform
like g„A„or E irreducible representations of
point group C„. Since the ground electronic state
has been identified as 2E, and the A2 band as-
sociated with the transition 'A,- 'E, ' " it is clear
that the line-shape theory described above is ap-
plicable only for modes of A. , symmetry. Coupling
of the 'E state to modes of & symmetry is of par-
ticular interest as an example of the dynamic Jahn-
Teller effect. ' ' Although most treatments of the
Jahn- Teller effect have employed a cluster model,
with coupling to a single set of degenerate modes, "
the many-mode Jahn- Teller problem ha. s been con-
sidered by several investigators. """ We have
adopted the approach advocated by O' Brien, '
which is particularly expedient for computation.

The Hamiltonian of E&l. (27) can be generalized
to accommodate coupl. ing of degenerate el.ectronic
states to degenerate modes of vibration. It may
be represented as a matrix within the manifold
of degenerate electronic states,

where y labels degenerate modes (corresponding
to the rows of an irreducible representation), f
is the identity matrix, and the U"' are noncom-
muting matrices determined solely by symmetry. "
The coupling constants V& are still given by Eq.
(28), except that E is replaced by a vector —V

whose elements are off-diagonal matrix elements
of potential derivatives between degenerate
electronic state s.

(41)

2
y« ' (42)

Optical-absorption bands with distinctive struc-
tural features are associated with transitions to
degenerate final states. """" However, bands
associated with transltlons from degenerate initial
states to nondegenerate final states are expected
to be relatively featureless in the strong-coupling
limit. ' Accordingly, the first two moments of the
band may provide an adequate representation for
the conb ibution of coupling to E modes in the pre-
sent application.

In the present treatment, it is assumed that the
line-shape contributions from A, and E modes are
independent of each other. This is probably not
rigorously true; however, it is assumed to be
an adequate approximation. The contribution of

In the present investigation, an estimate is made
of the line shape associated with the creation of
single E-mode phonons. The effective frequency
given by O'Brien's method serves to locate the
center of the band with respect to the zero-phonon
line. A measure of the intensity of the transition
(area, under the curve) is determined by k~„ /2.
The single effective mode to which the electronic
system is coupled is not a true normal mode of
the system, but is in turn coupled to other effec-
tive modes, with consequent broadening of the ab-
sorption band. O' Brien' has shown that the appli-
cation of second-order perturbation theory to the
higher-order terms of the Hamiltonian gives a
second moment for the band,
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A2 modes to the line shape has not been con-
sidered.

IV. DIFFUSE-W'AVE-FUNCTION APPROXIMATION
FOR OPTICAL-ABSORPTION CALCULATIONS:

RITTER AND MARKHAM APPROACH

Ritter and Markham" have developed an ap-
proximate form for the electron-lattice interac-
tion potential. Linear electron- lattice coupling
was assumed in their model with the lattice spec-
trum taken to be unaltered by the presence of the
defect. A further simplification was introduced
by essentially averaging the potential over each
unit cell. The detailed structure of the field is
neglected; hence, the treatment is most appro-
priate to diffuse wave functions which remain rel-
atively constant over a unit cell.

The electron- lattice interaction energy derived
by Ritter and Markham is given by

V,~(r, Q) = v2i, Z— g~qe'"'Q„~,
Rj

where

(43)

(44)

The sum in Eq. (43) runs over the branch indices
and the N wave vectors of the first Brillouin zone.
The Z„ in Eq. (44) represent the ionic charges in
a point-ion model and the Q & are complex normal
coordinates defined by Eq. (26). A transformation
to real normal coordinates is effected by

@fy =~2(Wig)+feig2) ~ (45)

It is useful to decompose V, (x, Q) into symmetry-
adapted contributions by employing the projection
operator"

P„„=—"+1K„„*(R)Oa, (46)

where g is the dimensionality of the symmetry
group, d~ is the dimensionality of the irreducible
representation D"(R), and Oa is the rotation oper-
ator in wave-vector space. In terms of symme-
try-adapted real normal coordinates, the interac-
tion potential is

1/2

V, (r, Q) =v 2 Q g~ QqI~" P „
1"7

sin(k ~ r)

cos(k. r)

(47)

where sink. r (cosk - r) applies when X = 1 (2). The
wave-vector sum is over one-half of the first
Brillouin zone. When the defect contains more than
a single electron, then a sum over electron co-
ordinates is included.

The single-phonon-sideband line shape asso-
ciated with the 'A2 2E transition (R2 band) ac-
companied by the creation of single A, phonons is,
from Eqs. (36) and (37),

1 2 2

s", '(he) =(25 )
' g (4V„-.'„)', "~, (48)

(d A, g

where

O'Vq;))= V~fy))( A2) V~)"~x( E)

V „1(2 S+1fr)

2s+1 P W ( )) 2s+1r .
cos(k ~ r,.)

(50)

The kets ~'~"I') represent the R-center electronic
states (multiconfigurational) described in I. In
practice, the delta function is eliminated by
averaging over a finite frequency interval A~.

The Jahn- Teller parameters are similar in
form and describe the coupling between the 'E
ground electronic state and the E-symmetry vi-
brational modes. The coupling to the 2A, state
vanishes by symmetry. The optical spectrum ap-
propriate to E vibrational modes is characterized
by

1/2 2

V& 'E ' cu'-

)t=].

V- E jeff &

(51)

(52)

( 53)

where

VFg) ('E)

(54)

for U77 nonv ani shing
The quantities described by Eqs. (48), (51), (52),

and (53) were evaluated for the R center in KC1
using the appropriate wave functions from I. The
set of lattice eigenmodes was extended to include
core and shell motions as described in Sec. II;
hence, the effects of atomic polarizability are in-
cluded. It is noted that the 8-center functions are
defined in a local coordinate system having a g

( 1/2 2

(& ) =I )r ZQ [V; ,)'E)]*/rd;,)/ k:„, . .

)7~ )t=1
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axis along the [111]direction. Therefore, the
wave vectors appearing as arguments of the sine
and cosine functions are rotated to the local sys-
tem.

The calculated single-phonon- sideband line
shape s, '(I~) is shown as a histogram in Fig. l.
This corresponds to a transition from the 'E
ground state to the first 'A, excited state accom-
panied by the creation of single A, phonons. The
corresponding Huang-Hhys factor is 2.62 and
represents the area under the curve. The single-
phonon- sideband line shape as inferred from opti-
cal-absorption measurements is also shown in the
figure as a smooth curve. The deconvolution is
due to Giesecke et gl. and has been normalized
to a Huang-Rhys factor of 3.5.'

The effective coupling constant for E-vibrational
modes interacting with the 'E ground state, 0',«,
is calculated as 5.22. The associated effective
frequency cu,«and the second moment, (&') are
25.1& 10" sec ' and 6.73&& 10" sec ', respectively.
For a Gaussian line shape, these correspond to a
full width half maximum (FWHM) of 15.4 x 10"
sec '. The absorption curve associated with the
creation of single E-mode phonons is shown in

Fig. 2, where it is taken to be Gaussian and nor-
malized to k', «/2. The single-phonon-sideband
line shape inferred from experiment is also shown
in the figure. It is important to note, however,
that the deconvolution is rigorously correct only
for nondegenerate modes of vibration; hence,
this method is only approximate. It is not a bad
approximation for the case of an electronic transi-
tion to a nondegenerate state and it becomes a good
approximation in the strong- coupling limit. A

discussion of these results and those for the sym-
metrical vibrations is presented in Sec. VI.

4
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I I I I I I I I I I i I I I I I I

IO 20 30
4o (10 sec )

FIG. 1. Single-phonon-sideband line shape for &&

modes calculated by the Bitter and Markham (Bef. 11)
method (histogram) and inferred from experiment (Ref.
4) (smooth curve; see text).

4—
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I i i I I
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u (IO sec )

FIG. 2. Single-phonon-sideband line shape for E
modes calculated by the Bitter and Markham (Bef. 11)
method (dashed line) .

V. COMPACT-WAVE-FUNCTION APPROXIMATION
FOR OPTICAL-ABSORPTION CALCULATIONS:

GREEN'S-FUNCTION APPROACH

The Hitter and Markham" approach, described
in the preceding section, incorporates a number
of approximations. It neglects the details of the
electron-lattice coupling in the region near the
defect. Also, the normal-lattice spectrum is
assumed to be unaltered by the presence of the
defect. In the present treatment, an alternative
procedure is developed which is not restricted by
this set of simplifying assumptions. A transfor-
mation from normal coordinates is performed in
such a way that each new coordinate is symmetry
adapted and denotes a set of ions which are at the
same distance from the center of the defect. This
method is made tractable by assuming that the
change in the coupling constants associated with
the electronic transition vanishes for ions beyond
a certain distance from the defect. A perturbed-
lattice Green's function is generated from Eq. (21)
where it is assumed that the change in the force-
constant matrix also vanishes outside of this same
set of ions.

Equation (36) for the single-phonon sideband
s, (Z) may be combined with Eqs. (37) and (28) to
obtain

s, (E) = Q (b, E~y qy JaF/2AIdq)5(Z hu)q), (55)-

where AE is the change in the force vector as-
sociated with the transition between electronic
states. By analogy with Eq. (11), the imaginary
part of the perturbed-lattice Green's-function
matrix is given by

ImG(Id —fE)=—~ )'( y Q(E —@Id,)
7I'A

2(d f
j
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Both G and AF may be referred to real, sym-
metry-adapted combinations of displacements,
with concomitant partitioning of G. Since Eg. (55)
is valid only for coupling to modes of A, symme-
try, we obtain for their contribution to the single-
phonon sideband

s"~(g~) = b P"& 1m[[i Go~,(~2;~)5I,~,]-x1
1 ~A'e'

x G'"~(&u' —ie)}b.I""~,

(57)

where we have exploited Eq. (21). The contribu-
tion of A., modes to the Huang-Rhys factor S"& is
then given in terms of s", &(h~) by Eq. (35). The
Jahn-Teller parameters, analogous to those of
Eqs. (51), (52), and (53), are given by

k2 = V~& — Im[[I —Go~(&u' —ie)5L, ~] ~y2
nh

X G (CO —iC)} 2V
40

(58)

(u„, =I~V~~~ — 1m[[&- G'~((o' —ie)5I.s] '

xG (td' —ie)) —V &) /k,'~,

(59)

and

electron-lattice coupling to displacements which
represent rigid translations, since displacement
of all the ions with respect to the electronic wave
function violates the adiabatic approximation. This
is accomplished by first effecting a unitary trans-
formation to a new set of symmetry-adapted co-
ordinates with one element representing a rigid
translation. The elements of V~& and 5L"& as-
sociated with this displacement are set to zero.
The inverse transformation is applied and s,"&(k&u)

is now evaluated according to Eq. (57) where the
undesired elements are no longer present. A
translational coordinate associated with F dis-
placements is eliminated by the same procedure.

The resulting single-phonon-sideband line shape
is shown in Fig. 3 for 6L j = 0 and in Fig. 4 for
5L~~W 0. The first case is appropriate to perfect-
lattice modes of vibration. The calculated Huang-
Rhys factors for the perfect- and perturbed-lattice
cases are 5.14 and 7.45, respectively.

The effective Z-mode coupling constants for the
perfect- and perturbed-lattice cases are 3.44
and 8.72, respectively. The corresponding ef-
fective frequencies are 17.0&10" sec ' and 12.1
&& 10" sec ', and the second moments are 3.27
&&10" sec ' and 1.65X10" sec '. For Gaussian
line shapes, the FTHM's are 14.6&&10" sec ' and
10.2x10" sec ' (see Fig. 5 and the discussion
at the end of Sec. IV). A discussion of these re-
sults is presented in Sec. VI.

(&u') =
I

V~&'~—~ Im[[I —G' (~'-ie)5I, ] '2
nS

xG'*(ui' —ie))d+V «) k,'if .

(60)

The coupling constants VE& are defined as

8
v ~ =, „&'E& Iv.,(~,~) I'zy"&&v&,»„(61)

for U~", z i nonvanishing. The changes in the ma-
trix L are symmetrized by averaging over all
of the rows of F..

The perfect-lattice Green's function, the static
forces, and the changes in the matrix L are cal-
culated by the methods described in Sec. Il. The
calculation of 5L is simplified by freezing the
wave function g(r, x) appearing in Eq. (18) when
the derivatives of Eq. (17) are evaluated; i.e. ,
g(~, x) = g(~, x'), where x' represents the perfect-
lattice conformation. The elements of these vec-
tors and matrices are assumed to be nonvanishing
only for the nearest five ions and three vacancies
to the geometrical center of the defect.

Before the single-phonon-sideband line shape
is evaluated, it is necessary to eliminate the

VI. DISCUSSIONS AND CONCLUSIONS

4

Al0

=' 2
V)

lO 20

~ (IO sec )

FIG. 3. Single-phonon-sideband line shape for A
&

modes calculated by the Green's-function method
(ggA f —p)

The point-ion-model wave functions appropriate
to a rigid-lattice conformation have been em-
ployed in calculations of the optical-absorption
line shape for the 8, band in KCl. The effects
of coupling to A., modes of vibration are embodied
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FIG. 4. Single-phonon-sideband line shape for A.
&

modes calculated by the Green's-function method
(6L+& & 0).

FIG. 5. Single-phonon-sideband line shape for E modes
calculated by the Green's-function method (———for
6L ~ =0 and —- for 6I-~ 0 0).

in the single-phonon-sideband line shapes, s,"&(hto),
shown in Figs. 1, 3, and 4. Comparisons are
made to s, (hto) as inferred from experiment. "
The corresponding Huang-Hhys factors are con-
tained in Table I. The Jahn-Teller parameters,
k ff (o ff and (to'), which characterize the opti-
cal absorption associated with E modes of vibra-
tion, are also summarized in Table 1. The cor-
responding single-phone n-sideband line shapes
are shown in Figs. 2 and 5.

The single-phonon-sideband line shape as cal-
culated in the diffuse-wave-function approximation
(Fig. I) is seen to agree quite well with experi-
ment at higher frequencies. This procedure gives
no contribution to s", ~(h~) at lower frequencies.
It seems that the detailed nature of the electron-
lattice coupling which occurs near the defect is
important in the low-frequency region. These
effects are neglected entirely in the diffuse-wave-
function, or Bitter and Markham, "approximation.

The best results in the compact-wave function,
or Green's-function, approximation are obtained
when only perfect-lattice modes of vibration are
considered (Fig. 3). In this case, the low-fre-
quency contributions to s", ~(&to) are predicted, but

the high-frequency results are not as good as
those from the diffuse-wave-function approxima-
tion. This is an expected behavior since this pro-
cedure treats the details of the coupling near the
defect quite well, while ignoring these beyond a
certain distance. The overall agreement is good in
view of the approximations made.

A problem is seen to arise when the force-con-
stant matrix is altered to account for the presence
of the defect, especially the vacancies. The re-
duction of the force constants leads to an enhanced
absorption at low frequencies (Fig. 4). These re-
sults indicate that the electron-lattice coupling
constants are somewhat too large and therefore
that the wave functions are too compact. A reduc-
tion in s, '(h!u) would be expected if extended-ion
effects and lattice relaxation were included. This
is consistent with the conclusions drawn from I.

The effective coupling constant 4',«has been
calculated by the three methods mentioned above
(Table I). They are in fair agreement with the
empirical values listed in Table IX of I, although
somewhat larger. This discrepancy is also at-
tributable to excessively compact wave functions.

The effective frequencies calculated by all of

TABLE I. Optical-absorption parameters in the diffuse- and compact-wave-function app-
roximations. The units of ru, a aud FWHM are 10 sec, and (m ) is in units of 10 sec

Lattice dynamics 2jeff eff

Diffuse-wave-function approximation: Ritter and Mar kham approach

Perfect 2.62 5.22 6.73 15.4

Compact-wave-function approximation: Green's-function approach

Perfect
Perturbed

5.14
7.45

3.44
8.72

17.0
12.1

3.27
1.65

14.6
10.2
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these methods fall between the first and third
peaks in the empirical line-shape curves (Figs.
2 and 5). This is quite satisfying since MCD
studies"" have demonstrated that E-mode ab-
sorption is associated with the second absorp-
tion peak. If 4, modes are assumed to be absent
and a Gaussian line shape is used to describe the
single-phonon- sideband, then the FWHM's would
be given by the values listed in Table I. Inspection
of the absorption curves associated with the second
peak in Figs. 2 and 5 reveals that the line shape
appropriate to the perfect-lattice Green's-function
approach agrees most closely with experiment.

In summary, gb initio calculations of the R,-
band line shape, using detailed electronic wave
functions, are in reasonable agreement with ex-

periment. The Ritter-Markham and Green's-func-
tion methods appear to have complimentary de-
ficiencies. Finally, incorporation of ion- size
and lattice-relaxation effects would yield a more
diffuse wave function and improve agreement with
experiment.
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