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g center in KCl. I.Point-ion electronic-structure calculation with application to magneto-optical
parameters*
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The electronic structure of the R center in KC1 is investigated theoretically by means of a molecular-orbital

calculation with configuration mixing. The molecular orbitals, represented by single-center expansions in Slater-type
orbitals, are used to construct an extensive set of configurations. A point-ion potential is assumed in the calculation.
The resulting energy levels are correlated with the excited states associated with observed optical-absorption bands
and give further confirmation of the symmetry assignments for the bands which were previously made on the basis

of experiment. The corresponding wave functions are employed in a calculation of the spin-orbit constant and

orbital g value (magneto-optical parameters) associated with the ground electronic state, where the molecular

orbitals are orthogonalized to surrounding ion-core orbitals. The calculated magneto-optical parameters are in good
agreement with experiment.

I. INTRODUCTION

The Van Doom' model for the R center, shown
in Fig. 1, consists of an aggregate of three ad-
jacent F centers which form an equilateral tri-
angle in the (111)plane. The R center gives rise
to a series of optical-absorption bands, some of
which are obscured by much stronger absorptions
associated with F and M centers. The R, and R,
bands were first observed by Molnar. ' The R~
band was identified by Okamoto' in polarized
bleaching experiments. Silsbee4 used stress-in-
duced dichroism to isolate the four bands labeled
R„, R~, R~, and Rl,. Silsbee also investigated the
effect of stress splitting of the R,-band zero-pho-
non line, showing that the ground electronic state
is an orbitally degenerate spin doublet. The low-
est quartet states have been investigated by Seidel,
et al. ' and by Ortega. ' As a result of these exper-
iments, the energies and the corresponding sym-
metries, which characterize the electronic struc-
ture of the R center in KCl, are well known.

Duval, Gareyte, and Merle-D'Aubigne' have ob-
served ma, gnetic circular dichroism (MCD) as-
sociated with the R center in KCl. Subsequent
MCD measurements have been reported. '-" The
reduced spin-orbit constant and reduced orbital
g value were inferred by noting the dependence of
the dichroism on temperature and applied mag-
netic field. (By "reduced" we mean that the purely
electronic values are reduced by the effects of
lattice motion. ) The unreduced spin-orbit constant
and unreduced orbital g value have been measured
by Krupka and Silsbee" by observing the stress
dependence of the g shift. The electron-spin-res-
onance signal observed in this experiment is as-
sociated with the ground electronic state of the R
center in KCl.

The present article is concerned with an elec-

tronic-structure calculation of the R center in KCl
in the rigid-lattice point- ion approximation. En-
ergies of low-lying excited states are calculated,
arid the ground-state wave function is used to de-
termine the spin-orbit coupling constant and or-
bital g value. A pyioy j calculations of the electron-
lattice interaction, simulation of the R2-band ab-
sorption line shape, and evaluation of the Jahn-
Teller coupling constant are reported in the follow-
ing.

The electronic-structure calculations of the R
center may be divided into two categories: those
which employ a continuum potential and those
which employ a point-ion potential. " Silsbee4 has
adapted Hirschfelder's" calculation of the H, mol-
ecule to the R center in KCl. Wang and Chu" have
performed R-center calculations using intermedi-
ate polaron coupling. Both of these models employ
a continuous representation of the lattice. More
recent electronic-structure calculations" "have
employed a point-ion potential, which retains the
translational and rotational features of the true
lattice potential. These point-ion calculations
share one feature in common: They all employ
Heitler-London wave functions. In the calcula-
tions of Maisonneuve and Margerie, " configuration
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I IG. 1. Geometry of the P center in KCl. Three
electrons are trapped at the triangle of anion vacancies.
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mixing is included to correct for the exaggerated
correlation effects which occur when Heitler-Lon-
don wave functions are used.

The present electronic-structure calculation is
based on self-consistent-field molecular-orbital
theory with extensive configuration mixing. The
trial configurations are constructed from single-
particle orbitals consisting of s, p, and d Slater-
type orbitals (STO's), expanded about the geo-
metrical center of the defect. The linear coef-
ficients 2nd exponential parameters are varied in
order to minimize the energy corresponding to the
dominant configuration of each symmetry type.
The configuration mixing yields a ground electron-
ic state and low-lying excited states from which
transition energies are calculated and compared
with the observed optical-absorption bands.

The first theoretical treatment of the spin-orbit
coupling constant and the orbital g value (mag-
neto-optical parameters) was the semiempirical
calculation of Krupka and Silsbee" for the ground
state of the R center in KCl. This calculation was
extended by Margerie and Martin-Brunetiere, "
where a different set of polar configurations was
considered. An ab initio calculation due to Maison-
neuve and Margerie" employs the wave functions
developed therein, orthogonalized to surrounding
ion-core orbitals.

In the present investigation, the magneto-optical
parameters are calculated for the ground state of
the R center in KCl by the same procedure, but
using wave functions generated by a molecular-
orbital approach. Since there are no adjustable
parameters in this model, the present treatment
also represents an ab initio calculation.

In Sec. II, we describe the theory of the electron-
ic-structure calculations which have been utilized
in the present work. Section III contains the the-
ory of the magneto-optical parameters. The re-
sults of the present calculation are presented in
See. IV, with a discussion following in Sec. V.

II. THEORY OF THE ELECTRONIC-STRUCTURE
CALCULATIONS

The electronic-structure calculations in the
present work are based on an open-shell mole-
calar-orbital method ~' with conf jguratj. on m jx-
ing. The point-ion model" for the crystal field is
also incorporated, with the point-ion potential ex-
panded about the defect center. In the point-ion
model, the ions which constitute the crystal are
represented as point charges located at the rigid-
lattice sites. Gourary and Fein2' have- shown that
the point-ion potential is a model pseudopotential,
thus justifying the neglect of extended-ion effects
in calculating the electronic structure.

The molecular orbitals associated with the ex-
cess electrons are expanded in terms of STO's
about the center of the defect. These single-center
expansions allow for the development of closed-
form expressions for the matrix elements of the
Hamiltonian. In the R center, the anion vacan-
cies do not contain strong centers of force for the
excess electrons; consequently, the single-center
expansion is more appropriate in this case than a
molecular orbital constructed from a linear
combination of vacancy-centered functions and
is far more expedient. Configuration mix-
ing is included both to incorporate correla-
tion effects and to provide a valid representa-
tion of excited states. Since the R center contains
three excess electrons, all configurations are
open shell; i.e. , there is at least one molecular
orbital which is only partially populated.

A. One-electron orbital and potential expansions

The geometry of the R center is shown in Fig. 1
with the ions at their rigid-lattice positions. The
point group of the R center is C,„with the triad
axis along [111]. The origin of coordinates is tak-
en at the center of the defect (i.e., the center of
the equilateral triangle of vacancies). The polar
angle 8 is measured with respect to the [111]ax-
is, while the azimuthal angle P is measured in
the plane of the vacancies.

The one-electron orbitals are expanded in terms
of the basis functions X», , which are taken to be
linear combinations of STO's. The STO's are of
the form

where f, is an exponential variational parameter
which is ultimately adjusted to minimize the elec-
tronic energy, n, is an integer, and Q,' is a lin-
ear combination of spherical harmonics which
transforms like the 0th row of the 3th irreducible
representation of the point group of the defect.
For-deriving the closed-form expressions for the
matrix elements of the two-electron operators in
the Hamiltonian, the assumption that n, & l, is use-
ful, where l, is the order of the spherical harmon-
ics contained in '9, . This restriction on n, is re-
tained throughout. The pth basis function is given
by

where the linear coefficients a„„are specified.
The ith one-electron orbital expanded in terms

of the basis functions is given by
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X(,2„C2f,; y—2, C2( 2

where the expansion coefficients C»,. are inde-
pendent of the row of the irreducible representa-

tion and X„and C, , are vectors.
The point-ion potential of the lattice is expanded

yn spherical harmonizes,

v„(2(= Y Y 2;"(22) .,,„««gf,„„(«*.«-~- «"-.*- )),
L =0 Af=-r, n (

where

~Q2t YN+
+

2t YN (g y )

8~QfLNn 2L + I 5 (~(22 4n) '

In these expressions, (~„6,(1( ) denotes the posi-
tion of the o.th ion, which has a charge Q . Y~~ is
a spherical harmonic, and P„& denotes that the
summation is restricted to all ions for which y-
& y. The infinite sum required for the evaluation
of e~~ is performed by the method of Nijboer and
De%ette. '~ The terms in the summations over L
and M, in practice, are limited by symmetry con-
siderations to a finite number, since the number
of basis functions for the one-electron orbitals is
restricted to make the computations tractable.
Slater atomic units are used throughout; i.e.,
distances are in Bohr radii and energies in ryd-
bergs.

B. Open-shell molecular-orbital theory

Roothaan has developed, a method for performing
open-shell molecular-orbital (MO) calculations. ""
This method is applicable only to eases in which
the energy of the open-shell MO can be written in
a particular form. This section relies heavily on
Roothaan's work, and the reader is referred to
Refs. 21 and 22.

Roothaan's method is applicable to any configur-
ation for which the energy is expressible as"

E=2+ I2f, + Q(2Z~, —K„)

«f(2 ZH„«f Q (2o2, —2(C )„„
+2 Q(22, —ff, )},

where subscripts k and l refer to closed shells,
and subscripts m and n to open shells. The first
two sums in E(I. (7) represent the closed-shell en-
ergy; the second two sums, the open-shell ener-
gy; the last sum, the interaction of open and
closed shells. The number f is the fractional oc-
cupancy of the open shell, and the numerical con-

stants g and b depend on the specific case. The
quantities II,, J,, , and E, , are, respectively, ma-
trix elements of the one-electron, Coulomb, and
exchange operators.

Application of the variational principle to Eq.
(7) with an orthogonality constraint, and subse-
quent elimination of off-diagonal Lagrange multi-
pliers, yields distinct self-consistent field (SCF)
equations for closed and open shells. " When the
molecular orbitals are expanded in terms of sym-
metry-adapted basis functions as in Eq. (3),
these SCF equations have the form

+ QCxk ~ xksxC&k

for closed and open shells, respectively, where
$, is the overlap matrix for basis functions of A

symmetry. The Fock operators F,~ and I,~, de-
fined in Ref. 22, are functions of all the C's. Thus
the SCF equations are implicitly coupled, and
must be solved simultaneously by an iterative
procedure.

C. Configuration mixing

In order to include electron correlation effects,
and to provide a representation of excited states,
the configurations formed by populating the vari-
ous molecular orbitals are allowed to interact.
Each eigenstate of the many-electron system is
then represented by a superposition of configur-
ations.

The /th state wave function with a particular
symmetry and multiplicity can be written as

yXgg d C, A, gQ
I jj g

where the configurational terms 4',.' are linear
combinations of Slater determinants of the form

4' =Z D, & )Hl. k;(2)&(f)]'

Here, 4&'~ transforms like the ath row of the &th

irreducible representation with spin multiplicity P,
and the coefficients B» are determined by sym-
metry. The q(i) are the one-electron spin func-
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tions, and 8 is the antisymmetrizer.
The expansion coefficients d„. are determined

by diagonalizing the total system Hamiltonian which
leads to the following eigenvalue equation:

where

(C, xa 0 Iform))(l)
mn m n

The solution of E(I. (i3) yields approximate wa, ve
functions and upper bounds on the energy levels
for each symmetry and multiplicity. Only the few
lowest eigenvalues of H „provide close approxima-
tions to the energies of excited states, so many
more configurations are required than the number
of states of interest.

III. SPIN-ORBIT CONSTANT AND ORBITAL
g VALUE

The spin-orbit constant and the orbital g value
appear in expressions which describe the stress
dependence of the parallel g shift" and the temper-
ature and magnetic field dependence of the mag-
netic circular dichroism. " In unreduced (elec-
tronic) form, the spin-orbit constant and orbital
g value appropriate to the 8-center ground state
are defined respectively as"

(i4)

)f('E,) = )a,'le,) '. (18)

The results of the electronic-structure calculation,
described in the following section, support this
identification. In terms of the molecular orbitals
for the A center, A and g,~ are given by

A@- -g Ie ~ 1e„

and

Smith" has shown that it is necessary to orthogon-
alize these molecular orbitals to the surrounding
ion-core orbitals. Assuming that the normaliza-
tion factor is negligible, the orthogonalized orbit-
als, ~e,.&, may be written in terms of the pseudo-
orbitals, ~i&, as

V„(r) is the Hartree potential associated with
core state c of ion n, and n„ is the fine-structure
constant. The orbital angular momentum operator
for the ith electron taken about the ath surrounding
ion is denoted 1„,. and the corresponding spin op-
erator is s, The symbol 1, , represents the orb-
ital angular momentum taken about the geometri-
cal center of the defect.

In the present formulation, the ground electron-
ic state is approximated by the single and domin-
ant configuration of lowest energy; hence

@('E„)= )a*,)e,)

g,~= -j + 'E„ lo
i

The ionic spin-orbit operator is denoted f,(x),
where

(n'
)

(8)',.(r)
)

where i takes the values x, y. The ket, ~nc&, de-
notes core state c on ion a, and the 0, , are over-
lap integrals defined by

A. Spin-orbit constant

The spin-orbit constant is expanded in terms of pseudo-orbitals and ion-core orbitals as

iQ &y
~
t.-, I' ~x& —Q (& n'c'

~ ],I' ~

x) &*, „,+ &y
~ g.,f'

~

n'c'& 0„„,)
Cg +iCi

Smith has shown that the first three terms consti-
tute less than i0% of the total result for the E
center. These terms are neglected in the present
treatment. In addition, it is assumed that the ma-
trix elements which connect core states on differ-
ent ions are vanishingly small; hence

where

g „,=&nc I] Inc'& ~

The ionic spin-orbit coupling constant f „,is

(24)
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evaluated for the 2p and 3p states of K'and Cl-
using the radial wave function of Clementi. " The
average value of $» and $ „is used for the off-
diagonal elements g»~.

B. Orbital g value

The orbital g value is expanded in pseudo-orbit-
als and ion-core orbitals as in Eq. (24). In the
last term, it is necessary to translate the origin
about which /, operates"; hence

(26)

where d, is a vector connecting the center of the
defect with ion n, and p is the linear momentum
operator. The dipole approximation is employed,
so that, in Slater atomic units,

(27)

H, is the Hamiltonian for the isolated ion, where

(28)

The orbital g value then assumes the form

+ — Q, , Q„E

yacc'

(29)

x „,=&nc'IxInc&, (30)

(31)

IV. COMPUTATIONAL RESULTS

The theory presented in the previous sections
has been applied to the g center in KCl. The re-
sults of these calculations are presented here.

A. One-electron calculations

Before embarking on the elaborate electronic-
structure calculations of the g center using mo-
lecular-orbital theory and configuration mixing,
the one-electron energy levels were computed for
the g" center. These calculations were per-
formed in order to obtain preliminary insight
into the nature of the orbitals, mhich mere subse-
quently used to construct the configurations.

The one-electron orbitals are expanded in terms
of the basis functions as given by Eq. (3). The ex-
pansion coefficients are determined from a varia-
tional principle, which minimizes the electronic
energy. For the one-electron orbital problem in
the point-ion model considered here, the Hamil-
tonian consists only of the one-electron operators
f, , which are given by

where m, is the azimuthal quantum number of core
orbital. ~o.c&, and where X,„and Y' „,are defined
by

Table I summarizes the basis-function set for the
molecular orbitals used in the g-center electronic
calculations. It should be noted that with this ba-

TABLE I. Basis-function set for R-center molecular
orbital. s.

A, E(2)

F ),C gA
—c),qs), C

where E& and $„are the one-electron Hamiltonian
and the overlap matrices, respectively, in that
portion of the space defined by the p basis set
[see Eq. (3)] which transforms like the Ath irre-
ducible representation. Equation (33) reflects the
fact that P and $ can be partitioned by symmetry
considerations. c» is the kth one-electron energy
level corresonding to the P th irreducible repre-
sentation. It should be noted that g depends on the
variational parameters g, defined. in Eq. (1). Thus
it is necessary to solve Eq. (33) for various values
of g, . The optimum value of g, corresponds to the
minimum of the lowest one-electron energy level.

For the p-type basis function, the two lowest-
order STD's are used in order to preserve the
normalization and the continuity of the wave func-
tion at the origin. The explicit forms of the radi-
al components of the basis functions are

(32)

where pp, (r) is given by Eq. (4).
The variational problem reduces to diagonalizing

this Hamiltonian, which is equivalent to solving
the eigenvalue equations

Ro~{) ()

R(~( (p)

R)&~ (d)

R, ~, '
(p)

R~F~ (d()

R2Y & (d&)

-R(~( (p)

—Rp~p (dg)



TABLE II. Optimum variational parameters for one-
electron orbitals for R2' center in KC1. The variational
parameters are in units of inverse Bohr radii.

Basis function

&& orbitals

0.61
0.65
0.95

E orbitals

0.46
0.68
.57

sis set only A, —and E-symmetry one-electron
orbitals can be formed. The two E-symmetry
basis functions which contain the &, radial func-
tions are allowed to have different variational
parameters.

With the abave basis-functian set, only terms
up to and including I = 4 survive in matrix ele-
ments of the point-ion potential. In addition, the
present calculations are based on considering the
first 51 shells of ions in the direct lattice summa-
tions required for the potential computations. The
incorporation ot' f orbitais would allow an azimuth-
al variation in A, symmetry as well as providing
one-electron orbitals of A, symmetry, but would
greatly increase the complexity of the calculation.

The optimum parameter sets for the A, and E
molecular orbitals are given in Table II. The
corresponding one-electron energy levels and
linear coefficients are listed in Table III. These
results show that the lowest one-electron orbital
has A, symmetry.

B. Open-shell molecular-orbital calculations

The nine molecular orbitals described in the
preceding section can be used to generate 53 dis-
tinct configurations for the three-electron R cen-
ter, consistent with the Pauli exclusion principle.
Each configuration is farmed by populating the
molecular orbitals. In order to obtain an initial
estimate of the ordering of these configurations
according to energy, the sum of the one-electron
energies for the populated MO's, as obtained in
the preceding section, was used. The results are
shown in Table IV for the ten lowest configurations.
Table IV suggests that the ground state is a dou-
blet E state.

Each configuration is constructed by populating
three molecular spin orbitals. These configura-
tions can be decomposed into individual terms
which transform like a particular row of one of the
irreducible representations of C„. Since there
are three electrons, the spin multiplicity of each
term is either doublet or quartet. Table IV shows
the terms which correspond to each of the ten
lowest conf igurations.

An MO calculation is carried out for the lowest-
energy configurational term for each of the three
irreducible representations of C,„: A„A„and E.
The ionic conformation for these calculations is
the rigid lattice. The results of the MO calcula-
tions yield all the molecular orbitals which are
used to construct the configurational terms of the
corresponding symmetry. These calculations are
performed only for either a doublet or a quartet
state of each symmetry for which the criterion of
Eq. (7) could be satisfied. In order to select the
appropriate lowest terms of each symmetry, the
sums of the one-electron energies as given in

TABLE III. One-electron energy levels and linear coefficients for R ' center in KC1. The
energies are in units of rydbergs.

'
&& orbitals

Orbital.

designation

1
2,
3 .

1Q(

2Q(
3a&

-1.1015
-0.8425
-0.3061

0.8955
0.4438

-0.0339

-0.4033
0.8414
0.3597

0.1882
—0.3085
0.9324

E orbitals

Orbital
designation

18
2&

38

-0.8544
-0.6882
-0.5919

0.9753
-0.2187
-0.0329

-0.0978
-0.5601

0.8227

0.1983
0.7991
0.5676
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TABLE IV. Ten lowest configurations for R center in KCl estimated from the calculated
single-particl. e energies of the R2' center. The energies are in units of rydbergs. Relative
energies are also listed in electron volts, in order to facilitate comparison with Table VIII.

Configuration Terms
Estimated

energy (Ry)

Relative
energy (eV)

lan le

1Q(2Q(
2

1Q(2e

la)le

la~2 a&le

la&3e

la& 2a&
2

la&le2e

la&2a&2e

le

2A i

2E

2A + 2A +2E+ 4A

E+ E

A 1

2A, +'A, + 2E+4A, + 4A2+'E

2E+ 4E

-3.0574

-3.0455

-2.8912

-2.8103

-2.7984

-2.7949

-2.7865

-2.6441

-2.6322

-2.5632

0.00

0.16

3.36

3.57

3.69

5.62

5.79

6.72

Table IV are used. The configurations which con-
tain these lowest terms are: la', 2a„ la, le', and
1a', le for 'A„'A„and 'E symmetries, respective-
ly. It should be noted that the A, configuration
does not contain an E-symmetry orbital; hence,
the corresponding MO calculation does not yield
any information concerning these orbitals. Thus
it is necessary to select a set of E orbitals from
one of the other MO calculations in order to obtain
all of the configurational terms of A, symmetry.
The selection of these orbitals is discussed later.
The values of Roothaan's parameters" ( f, a, b)
are listed in Table V for each of the configuration-
al terms for which the MO calculations are per-
formed.

For each MO calculation, Roothaan's equations
are solved for different sets of the exponential
variational parameters. The optimum set for a
particular MO is determined by minimizing the
corresponding energy. These minimum MO energy
levels in rydbergs are E('A, ) = -1.9018, E('A, )
= -].9497, and E('E)= -1.9620. The corresponding
optimum exponential parameters and linear co-
efficients are shown in Tables VI and VII, re-
spectively. A comparison of the exponential para-
meters of Table VI with those obtained from the
one-electron calculations (Table II) shows that the
MO results generally yield more diffuse orbitals,
as expected, because of the electronic Coulomb
repulsion.

C. Configuration-mixing calculations

The configuration-mixing calculations are car-
ried out for the doublet and quartet states of each

symmetry using the MO results contained in Ta-
bles VI and VII. As noted previously, the MO
calculation for the lowest A, term does not yield
any information for the E orbitals. The orbitals
obtained from the A, MO calculation result in

slightly lower energies for the A, configuration-
mixed states, so that these orbitals are considered
the appropriate set. Table VIII summarizes thy
admixtures [squares of the linear coefficients in

Eq. (10)j of the ten lowest configurations obtained
for all configuration-mixed states which are within
3.0 eV of the ground state. The corresponding
calculated energy-level scheme is shown in Fig.
2. Included in Fig. 2 are the measured B-band
energies.

The ground state is found to have 'E symmetry,
which agrees with Silsbee's assignment. " In ad-
dition, the admixtures of the configurations for
which the MO calculations are performed are
relatively large for the lowest state of the respec-
tive symmetries. This indicates that the MO re-
sults constitute a relatively accurate representa-
tion of these states even before configuration mix-

TABLE V. Roothaan's parameters for lowest-energy
configurational terms for R center in KCl.

Configurational
term symmetry

A 1

4A
2

2E
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TABLE VI. Optimum molecular-orbital exponential parameters for A center in KCI..

Lowest Ai state Ai orbitals

Basis function

0.405
0.456
0.680

Lowest A2 state Ai orbitals

Basis function

E orbitals

Basis function

Lowest E state Ai orbitals

0.499
0.626
0.975

p
di
d2

E orbitals

0.363
0.340
0.520

Basis function Basis function

0.444
0.673
1.050

p
di
d2

0.342
0.280
0.505

ing is performed. Figure 2 indicates that the com-
putational results are able to predict all of the ob-
served R bands with the possible exception of the
transition to the lowest state of 'A. , symmetry
(z„ba,nd).

D. Magneto-optical parameters

The calculated spin-orbit constants and orbital
g values are presented in Table IX, along with the-
oretical and experimental values obtained by other

TABLE VII. Linear coefficients for eigenvalues of molecular orbitals for R center in KCI, .

Lowest Ai state

Ai orbitals

C~~ Cp

1 —0.3380 0.9985 -0.0555
2 -0.0764 0.0530 0.9484
3 0.4180 0.0165 0.3122

0.0010
-0.3126

0.9499

Lowest A2 state

Ai orbitals E orbitals

1 -0.5566 0.9316
2 0.0637 0.3630
3 0.7457 -0.0166

C»

-0.3406
0.8882
0.3085

0.1267
-0.2817

0.9511

-0.3170
—0.0155

0.1156

0.9723
-0.1029
-0.2098

0.1538
0.9578
0.2429

C

0.1760
-0.2685

0.9471

Lowest 2E state

Ai orbitals E orb&tais

e~ C~~ Cp C~ Cp~

1 -0.3811 0.9757 -0.2017 0.0859 -0.2764 0.9579
2 0.2349 0.2162 0.9503 -0.2239 -0.1476 —0.0125
3 0.9834 —0.0365 0.2371 0.9708 -0.0585 -0.2868

gik

0.0932
0.9585
0.2696

C

0,2716
—0.2850

0.9193
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TABLE VIII. Admixtures of ten lowest configurations for electronic states of the R center in KC1. The admixtures
are the squares of the linear configurational coefficients. The tabulated numbers do not add up to unity since not all of
the configurations considered are listed.

Symmetry Energy
type (eV) la(1 e 1Q(2Q( lai2e 1Q(le la&2a&le la& 3e la~2Q~ la~1 e2e la&2a&2e le3

4W,

0.43
2.15
2.94

1.47
2.57
2.99

0.00
1.28
2.06
2.62

0.55
2.02

2.35
2.89

0.924
0.002
0.001
0.000

0.745
0.142
0.001

0.075
0.491
0.272

0.786
0.038
0.016

0.000 0.003
0.309 0.612
0.607 0.284
0.019 0.004

0.977
0.002

0.007
0.005
0.008
0.214

0.908
0.066

0.000
0.001
0.016
0.583

0.087
0.211
0.600

0.009
0.009
0.001

0.023
0.860
0.600

0.014
0.001
0.000
0.086

0.936

0.001
0.963

0.070
0.630

0.003
0.007
0.004
0.008

0.001
0.007

0.012
0.000
0.000
0.012

investigators. The spin-orbit constant is calcula-
ted from Eq. (24), where the matrix elements of
$ for the K' and Cl ions are listed in Table X.
The orbital g value is calculated from Eq. (29) in
which the free-ion energies of Clementi" are em-
ployed.

The molecular orbitals are orthogonalized to
the core orbitals for a set of 61 ions about the de-

feet (cube of 64 ions centered at the defect minus
three vacancies). The resulting overlap integra]. s
are linear combinations of overlaps between STO's
with different origins. Procedures for calculating
these quantities have been developed by Mulliken
et pl."and by I ofthus. " In the present work, the
nearest-neighbor separation is taken as 5.95 atom-
ic units.

TABLE IX. Magneto-optical parameters for the R center in KC1. The reduced parameters
are denoted by a subscript R. The measured coupling constants are denoted by k~.

Xz (cm ') goE &g (cm )

Ka. S'
Sb

Bc
MA &D'
B, M@MA
KkS
M @MB~
M @M~

Present

—4.8
( 5 4)h

(-5.3)
(-2.4)
(—2.5)
—2.1'
-3.63
—8.01

-10.8'

1.1
(1.0)
(1.2)
(0.28)
(0.60)
0.48
0.30'
0.59'
0.99

(-0.38)
-0.32
-0.24
-0.70
-0.64

(0.075)
0.06
0.055
0.080
0.15

. 3.0
3.2
3.6
1.1
1.25

D. C. Krupka and R. H. Silsbee, Ref. 12.
" I. W. Shepherd, Ref. 8.' W. Burke, Ref. 9.

Y. Merle-D'Aubigne and P. Duval, Ref. 10.' G. Binet, J.Margerie, and Y. Merle-D'Aubigne, Ref. 11.
~ J.Margerie and F. Martin-Brunetiere, Ref. 20.
I A. Maisonneuve and J.Margerie, Ref. 19.
" Parentheses indicate that parameters are calculated by us from experimental values using

the Ham reduction factor IF. S. Ham, Phys. Rev. 166, 307 (1968)].
Theory.
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TABLE X. Matrix elements of the spin-orbit operator
(i.n electron volts).

2.0 R
B

K'
Cl

1.874
1.096

0.158
0.062

-0,531
—0.254

i.s-
~asm R2

C
I.Q—

0.5-

QQm

A
I

2
A2

2 4A
2

Experiment

Calculated

FIG. 2. Energy levels for the R center in KCl. Solid
lines represent calculated energies while dashed lines
are energies inferred from experimental data reported
in Refs. 2-6.

V. DISCUSSIONS AND CONCLUSIONS

The electronic structure of the A center in KCl
has been investigated theoretically by an open-
shell molecular-orbital calculation with configura-
tion mixing. The calculated results have been used
to identify the excited states which are associated
with each of the observed bands. Calculated and
measured transition energies agree well; only the
'A, state exhibits a large quantitative difference
with experiment. These results give further con-
firmation of the symmetry assignments for the
bands made on the basis of experiment.

Although the present work has yielded wave func-
tions which prove useful in preliminary calcula-

tions of the properties of the 8 center, these wave
functions are subject to further refinement. It is
noted that static-lattice distortion is omitted in
this treatment. Ion-size effects should be included
in the electronic-structure calculation. " A further
refinement of the present treatment would be the
expansion of the basis set to include f orbitals.
This would permit azimuthal variation of the mol-
ecular orbitals and provide A, -symmetry one-
electron orbitals.

The wave functions described above have been
employed in a calculation of the ground-state mag-
neto-optical parameters XE and g, . It is difficult
to obtain an accurate value for A, since the value
of this parameter depends on cancellation of large
ionic contributions [Eq. (24)j. It is noted that the
magnitude of the calculated spin-orbit constant
is greater than even the largest experimental val-
ue. We believe that this is a consequence of
neglecting extended-ion effects and lattice relaxa-
tion in the electronic-structure calculation. A
more diffuse wave function would tend to reduce
the magnitude of &~.
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