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Configurational excitations and low-temperature specific heat of the Frenkel-Kontorova model
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We study the specific heat due to configurational changes in a Frenkel-Kontorova model
with a finite density of defects. This model provides an example of intermediate disorder

related only to the diffusing ions. The results show that it is possible to obtain excitations
with very low energy due to quasidegenerate configurations, but it is not possible to obtain a
smooth distribution for these energies. The present model applied to the one-dimensional

ionic conductor hollandite can very well describe the peak structure recently observed in

the low-temperature specific heat.

I. INTRODUCTION

The long-standing problem of the low-

temperature extra specific heat of glasses and amor-
phous materials' receives further interest from the
measurements of analogous effects in the ionic con-
ductor P-alumina and very recently in hollandite
where a peaked contribution is observed instead of
the usual pseudolinear behavior. The phenomeno-
logical model that seems to be the most consistent
with various observations (specific heat, sound ab-

sorption, etc.) is based on the assumption that two-

level systems exist in disordered systems and that
the occurrence probability of various energy gaps
between the two levels is nonzero and smooth for
small gaps. ' This smooth distribution is necessary
to reproduce the pseudolinear behavior of the specif-
ic heat as a function of temperature. '

In order to say something about the microscopic
origin of these excitations one has to consider specif-
ic models of disordered systems. In this respect the
observation in ionic conductors of anomalies similar

to those of other amorphous systems is of particular
interest because these materials are rather well

characterized microscopically. The basic model is

that of a periodic potential (due to the host lattice)

whose pots are partly filled by the interacting diffus-

ing ions. In particular, in hollandite ionic diffusion

is along channels so that the corresponding model is

one-dimensional and it is essentially the Frenkel-
Kontorova model with a finite density of defects.
We have therefore a precise formulation for a prob-
lem of intermediate disorder, the disorder being

only that due to the diffusing ions while the cage
ions are assumed to give rise to the periodic poten-
tial.

The questions of interest are the following: (i)

Does this model give rise to low-energy ( —I K)
configurational excitations (two-level systems with

low gap)? (ii) Do these excitations have a distribu-

tion that can give rise to a pseudolinear specific
heat? As we will see the answer is yes to the first

question and no to the second one. In fact it is pos-
sible to have very low excitations because of
quasidegenerate configurations but the spectrum of
these excitations is discrete and we conjecture this

discreteness not to be removed by going to two or
three dimensions. The present model applied to
hollandite is in very good agreement with observa-

tions. On the other hand, from this model we see

that the disorder due to the diffusing ions in a
periodic potential does not give rise to a linear extra
specific heat. From this we conclude that in those
ionic conductors where the linear part is actually
observed there must be additional sources of disor-
der. In P-alumina this additional disorder could be
due, for example, to the field of the randomly
placed " compensating ions. "

In Sec. II we define the model and recall the
transformation to a spin system defined in Refs. 8
and 10. In Sec. III we give simple arguments for
the characteristic energies of the configurational ex-
citations. In Sec. IV we study the partition function
and derive analytical expressions for the specific
heat. In Sec. V we discuss the application of the
present model to the case of hollandite. In Sec. VI
the main results are summarized.

II. THE MODEL AND A USEFUL
TRANSFORMATION

The model we consider is that of Frenkel-
Kontorova generalized to an arbitrary density of
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defects, ' see Fig. 1. We also adopt the condition
of fixed average density of particles that is the ap-
propriate one for ionic systems where the ionic den-

sity is fixed by stoichiometry. This condition is dif-

ferent from that of the fixed chemical potential
adopted by various authors" and applicable to the
case of neutral overlayers. As in Ref. 8 our starting
Hamiltonian is

Na = g ,'mx, '—+g V(x, )
1=1 1=1

2V

N, = g (1+p, ) = N(1+ (p &), (2.5)

we have

(2.6)

A particular configuration is then specified by the
set of values a —= I pi I.

It has been shown in Ref. 8 that the total static
energy U of a given configuration a, including the
relaxation of particles in their pots, can be written in

terms of a spin Hamiltonian with exponential
(long-range) interaction:

p = a /b = N/N, , (2.2)

where cV, is the number of pots defined by the sub-
strate potential (one pot per unit cell) and N is the
number of atoms. For the substrate we use a piece-
wise parabolic potential

V(x + a),
V(x) = (2.3

—,mcoox, ix i ( —,a.
This is convenient for the calculations and we know
from numerical calculations that the specific shape
of the potential is not crucial for the properties we
consider here.

In general in ionic systems the same pot can only
be occupied by one ion. We use this restriction and
introduce the variable

pI = 0, 1,2 (2.4)

where xI denotes the position of the lth ion. The
substrate potential V has periodicity a. In general
this periodicity is different from b, the periodicity
that the interaction between particles would produce
in the absence of a substrate potential. With respect
to the unit cell of length a the density of ions is

where

= Jg C'(1 —l')pip&',
1 (1'

2Pl No

Jz ———,m coo( —,a)2 1 2

(1+ 2g)'~ —1 2A
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/ e /

i —i //i.

with

A, —[ln (1/a)]
Note that since g & 0 we have

4WJ = 8JO ——Aa 1+
(1 —a')

(2.7)
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FIG. 1 Example of a portion of our system with the
various symbols l,pI, oj used in the text. The final equa-
tion (2.14) consists of a sum over all pairs of holes and
the interaction depends on the number of ions (n*)
between the two holes.

which denotes the number of empty pots which fol-

low the lth ion. Since

0(a(1 (2.13)

V = Jg C'(n*)o o J', 1C'(n) = a I l (2.14)

and therefore A, ) 0. Some configurations a can be
unstable (i.e., evolve into a'). These configurations
should be neglected. For a discussion see Ref. 8.

If the system is rather dense p ) 0.75 and the in-
teraction appreciable (this is certainly the case for
ld ionic conductors) we can neglect the probability
of having two (or more) empty pots nearest to each
other. In this case pI can only be either 0 or 1 and
we can think of Eq. (2.7) as arising from an effective
interaction between holes. Defining in fact OJ ——0
or 1 if the jth pot is filled or empty we can rewrite
Eq. (2.7) as
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where n* is the total number of particles between
the pots j and j'. The index I was in fact only de-
fined for particles while now we use j that refer to
pots. A configuration is then also defined by the set
of nj where nj is the number of consecutive occupied
pots. following the jth empty pot. For example, the
configuration (as in Fig. 1)

a ~ I nj I:4; 3; 3; (2.15)

means that there is a vacancy, then four occupied
pots, a vacancy, three occupied pots, a vacancy,
three occupied pots, etc.

III. CONFIGURATIONAL EXCITATj;ONS

and

p = (n }/((n ) + 1) = 0 77 (3.1)

(n }= p/(1 —p) = 3.35 . (3.2)

From an analysis of the structure factor $(k) (at
T = 300 K) the two parameters of the model were
determined. They are (see Table I in Ref. 8), in

units of eV,

and

Jo —0.23 (3.3)

Cr ———,~a =0.7
We have then

(3.4)

2
foal COO

1.61
2JO

(3.5)

In the previous section, using the results of Ref. 8

we have seen how to reduce the problem of finding
the energy of a configuration a from the original
continuous Hamiltonian [Eq. (2.1)] to the discrete
(spin-type) one [Eq. (2.13)]. In view of this discrete-
ness and since the interaction C'(n) (even if it ex-
tends to all the holes) decays exponentially we can
expect a discrete spectrum for the energies of various
configurations. In this section we show with a sim-

ple example how to obtain the characteristic ener-

gies of the spectrum. In the next section we consid-
er in a more formal way the partition function and
the calculation of the specific heat.

In order to be specific we consider the case used
to study the one-dimensional ionic conductor hollan-
dite. The density of occupied pots in this material
is p = 77% and defining (n ) as the average nj we

have

so that

a 034 (3.6)

0.94 . (3.7)

From the value of (n }= 3.35 we see that at low

temperature the system has mainly n = 3 or 4. A
change of configuration due to the hop of an ion

changes, for example, ; 4; 4; . - into .
3 5. - or . 34 into- 439 9

, etc. Because of the exponential decay of
C'(n) in Eq. (2.13) the energy gap b, , between the
configurations 4. 4 and 3 5

is essentially

b, i
—J[C'(3) + C'(5) —2C'(4)]

= Ja (a + 1/a —2) . (3.8)

In Eq. (3.8) we have only included the interaction

between nearest holes. With the above parameters
we obtain hi —150 K. Assuming this subsystem to
give rise to a two-level system (with gap b, ) indepen-

dent of the rest of the system we have for the corre-

sponding specific heat

g2 6/T
C*(T) = (ke ——1) .

T2 (1 + edit)2
(3.9)

Equation (3.9) produces a peak at T —0.46. For
b i

—150 K we obtain a peak at T —60 K (Ref.
10). The configuration change from; 3; 4;to; 4; 3; is instead degenerate with

respect to the nearest-neighbor interaction. We then
have to specify the configuration more precisely in-

cluding other neighbors. For example, -;3; 4;
3 4 . chants into . 3 3 4 4.g 9 9 9

The main interaction is now that with the second
neighbors and the gap can be estimated as

b,, = J[C'(6) + C'(8) —2C'(7)]

= Ja (a+ 1/a —2) 5.9K, (3.10)

which gives rise to a peak in specific heat at
T —2.3 K. This value compares nicely with the re-
cently observed peak at T —1 K (Ref. 5) especially
if one notices that 52 is.very sensitive to the value of
a(b, q ~ a ). The value of a used here corresponds
in fact to parameters determined by analyzing S(k)
at room temperature and a change of 20%%uo in the
value of g produces a change of a factor of 2 in A2.
The peak predicted at T —60 K cannot be obsewed
because at this temperature the phonon contribution
is already dominant but the gap 5] could be deter-
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mined by looking, for example, at ultrasound ab-

sorption.
In analogy to the previous argument we can go

on and find transitions that are degenerate with

respect to both nearest and second-nearest interac-
tions. This. is the case, for example, for the transi-

tion between the two configurations: . 4; 3; 3;
433. and . 434333 . . In7

such a case we have to include the interaction
between third-neighboring holes. The corresponding

gap is then

J[C'(9) + C'( 1 1 ) —2C'(10)]

= Ja' (a+ 1/a —2) 0.23K, (3.11)

%ith respect to the physical meaning of these low

gaps it should be pointed out that the present model

is incomplete for discussing energies « 1 K be-

cause quantum-mechanical eA'ects (tunneling) then

become important even for atoms.
The simple example discussed here has allowed

us to obtain an intuitive understanding of the
discrete nature of the spectrum and of the origin of
the low-energy gaps. %e have completely neglected
in the hand-waving arguments presented in this sec-
tion the combinatorial aspects related to the intensi-

ty of the specific heat contributed by a given gap.
In order to study these elects we have to be more
formal and start from the partition function of the
total system. This will be the subject of the next
section.

which produces a specific-heat peak at T —0.09 K.
Looking at more degenerate configurations we can
define h4 —0.009 K; 55 —0.00036 K, etc. In gen-
eral we can write

(3.12)

nearest, etc.) become relevant. In this case we can
adopt the following simplification.

A. Interaction only bet&veen nearest holes

This implies that we only include the interaction
between one hole and the next one no matter how
far they are. Introducing a chemical potential p for
the particles the statistical weight of an "array" of n

filled pots (preceded and followed by empty pots) is

z„=exp[ (pn —Ja")/T ) .

The partition function is then simply

(4.1)

Z= Z Z ' ' Zll) 82 n

f ll), ll2 . . . 1$~ ),g =1

N

gz„
8=1

= exp( —Q/T), (4.2)

where X' is the number of holes (empty pots) and
0 is the grand potential. The summation over n

(size of an array) extends in principle to infinity but
it is actually converging very rapidly. ' The grand
potential "per hole" is then

Qs ——Q/X' = —Tlnfp

having introduced

(4.3)

fp = gz. .
n=l

The total free energy is

E=O, +pN&,

(4.4)

(4.5)

where Nz is the total number of particles. Other re-
lations are

IV. THERMODYNAMICS AND
SPECIFIC HEAT

In this section we start from the expression (2.13)
and compute the partition function. Even if the
problem is one dimensional a complete solution
cannot be obtained because the interaction extends
to all distances. Nevertheless, since the interaction
is exponentially decaying with distance we will see
that it is possible to simplify the problem and obtain
analytical solutions that are essentially exact in a
given range of temperature. For example, from the
discussion of the previous section we can expect that
around T —60 K the specific heat is dominated by
the interaction between nearest neighbors and only
at temperatures below 10 K the other terms (second

and the specific heat per hole is

dS d
GT dT 8 T

(4.6)

0 nh 8 nh dp
T2 Qp

(4.7)

where S is the entropy per hole. In order to com-
pute the second term of Eq. (4.7) we have to take
into account that the total number of particles N&

and therefore (n ) are constant in our model. This
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implies

a Qh a Qh
d((n )) = — dT — d)M =()

a Tap ap
and therefore

(4.g)

dP a Qh a Qh

dT a TaI ap2

We can then rewrite Eq. (4.7) as

(4.9)

a2QhC*= —T
a T

a'Qh
'

a'Qh

a Tap aIM

(4.10)

If (n ) is assigned Eq. (4.6) fixes the value of the
chemical potential p at each temperature. The
specific heat is then given directly by Eq. (4.10).
All the sums of type g„"i appearing in the vari-

ous expressions are exponentially converging and
their explicit evaluation is straightforward. The
resulting specific heat consists of one or more peaks
in the temperature region T —6& as discussed in

the previous section and in Ref. 10.
Of much more interest is the eventual structure at

"lower" temperature (T « 6)). In order to say

something about this part of the energy spectrum
we have to include additional terms in the interac-
tion as discussed in Sec. III.

z = QB(n ) n)B2( nn2)3B(n)v.,n)),
In I

(4.11)

where

n = n)n2, ' ',n (4.12)

and each n;(i = 1, . . . , i)i'} can take the values m

and m + 1. The matrix elements of 8 are

B, ) ——B(m,m) = exp [(pm /J —a —a )/t ],

that is p & exp( —50) for our value of hi and
T & 3 K. Generalizing this result we can conclude
that for T « 4& there are only two values to be
considered for n. These are n = m and n = m

+ 1, m being the integer value of (n ). This is a
pleasant consideration because it reduces the size of
the transfer matrix to 2 and we can obtain analyti-
cal expressions for the thermodynamic quantities.
There can be situations in which this reduction is
not possible, for example, if we want to know the
effect of the interaction with second-neighboring
holes at T —4~ or if the characteristic energies

(5),52, . . .) are not well separated. In such cases
one has to resort either to numerical methods or to
different types of approximations.

Allowing for only two values of n and including
the interactions up to the second-nearest holes we
can write the partition function as

B. Interaction up to second-nearest holes B» —B(m + 1 m + 1)

(4.13)

We study here the effect of the next-neighbor in-

teraction between holes. This implies that for each
array of length n we also include the interaction

with the previous and following array. This prob-
lem can be treated with the method of the transfer

matrix. The size of the matrix is given by the
number of different values that the array size n can
take. In practice, if we are interested in a tempera-

ture range T « b
&

the system is "frozen" with

respect to the energies of order 5& and only very

few values of n have an appreciable statistical

weight. For example, in hollandite (n ) = 3.35
and, as we have seen in Sec. III h~ —150 K. At
temperatures of the order of a few degrees (T & 3

K} the system is in the ground state with respect to
excitations involving energies of the order of 6& so
that only arrays with n = 3 or 4 can be present.
The statistical weight of arrays with n & 3 or n & 4
can be estimated to be of order p —exp( —t) i/T)

(4.14)

B)2 ——B2) ——B(m,m + 1)

= exp[ —,)M(2m + 1)/Jt]

[ (
m + (m+1))

(2m+ 1)]/t ]

where we have introduced for convenience

(4.15)

t =T/J. (4.16)

The transfer matrix method' then gives

(4.17)

exp I [it(m + 1)/J t2(m+)) ~2( +))m] /t
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where A,M is the maximum eigenvalue of the
transfer matrix 8. The grand potential "per hole" is
now given by

[exp(u /t) —1],4S
(1+S)' (4.27)

QI, =——T ink, M (4.18)
a2NI( 1 a)2 (4.28)

and in analogy to Eqs. (4.6) —(4.10) we have

8 Oh
(n) = ——

() p

C* = Ci+ C2,

3 Qh
C) ———T = t (t ink,st),T Bt

8 Oh

p

(4.19)

(4.20)

(4.21)

2t+
A.M 8 t

(4.29)

where

1 ~~M M=3 +Bt (1+S)

Equation (4.23) fixes the relation between (n ) and

p. This relation has to be considered with caution
because different values of p can give rise to the
same value of (n ) but of course only one is the
"physical" value.

For the first term of the specific heat we obtain

8 A,M t2 B kM
2 2

1
A, Bt2 A2 Bt

The explicit evaluation of these quantities is rather
lengthy but straightforward. We obtain + —,D ([ [1+(1+g)'"] (1+g)'"] '

(1+S)[1+.(1+g)'/ ] (4.22) (4.30)

(n) =m + S
1+S

1 S —1

2 S+ 1 (1+g)'"[1+(1+g)'" ]

where

(4.23)

3 =( —pm//+a +a )It

& = —(p/J +f )/t',

(p/J+ f )

t 2

(4.31)

(4.32)

+ exp[(pm/J —a —a' )/t],

S = exp[(p/J+ f )It],

f~ =a (1 —a)+a (1 —a ),

(4.24)

(4.25)

(4.26)

&m

t2
1 —exp . (4.33)

For the term containing the second derivative of A,M
we obtain

B t' 1+S [1+(1+ g)' '](1+g)' ' (1+S)[1+(1+g)' '](1+g)' '

2/, )+ ~~
——,'(1+ g)-'(Dg)'+ g(aD/at+ D')

+ —+- '
1+S 2[1+ (1+g)'"(1+ g)'"] (4.34)

gg) (p/J +f ) S —1 (t/J+f )

S+1 +
t 2

2BS
(S+ 1)'

2~m
+ — 1 —expt3

+m ~m
1 —exp

t

2

exp (4.35)
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For the second term of the specific heat we have

J (Q), )~q (4.36)

where the subindices p and t indicate partial derivation. From Eqs. (4.19) and (4.23) we then obtain

1 S —1

2 S+1

+
(1 + S) (1 + S) (1 + g)' [1 + (1 + g)' ]

(1 + k)'"[I + (1 + k)'"] —4[2 + (1 + k) '"]
(1+g)[1+(1+g)'"]' (x = p, r) (4.37)

ag 1 1 —S
ap Jr 1+S

(I ~J+f ) 1 —s
1+S

ag
t at

where

asS = + —S,
Bp Jt

S, = as () ~J+f ) S,at t2

(4.38)

(4.39)

(4.40)

3 3. 4. 4; . . It is easy to see that the pro-
bability of having in the ground state a series of
values like the above one is maximum if the values
3 and 4 have equal probability and decreases when
one of the two is much more probable. According
to this simple argument the maximum peak height
corresponds then to (n ) = 3.5(p = 0.77) while the
peak vanishes for (n ) = 3 or (n ) = 4. In fact, for
(n ) = 3 we can only have

n ' ' ' ' 3' 3' 3' 3') 7

In ]: 3243I
j

~m 4S ~m
exp

r (1 + S)

(4.41)

The specific heat is now given explicitly by these
formulas. A particular application will be discussed
in the next section.

which involves always energies of the order of 6&.
This behavior is qualitatively in agreement with that
of Fig. 3 where we have plotted the peak height of
the specific heat (per hole' ) as a function of the ion-
ic concentration. For a random sequence of arrays
with n = 3 and n = 4 we would have

C*,„=p(1 —p) (5.2)

V. DISCUSSION

We specify now the results of the previous section
to the one-dimensional ionic conductor hollandite.
A description of this system together with a discus-
sion of the applicability of the present model to it
can be found in Ref. 8. Figure 2 shows the low-
temperature configurational specific heat as comput-
ed from Eq. (4.29) with the parameters given by
Eqs. (3.3) and (3.4) and for different concentrations
of diffusing ions. As expected from the discussion
in Sec. III we have a peak at T —0.462. In addi-
tion there is a strong dependence of the peak inten-
sity on the ionic concentration p (or (n ) ). In order
to understand the origin of this dependence we have
to go back and analyze the excitations that give rise
to the gap A2. In Sec. III we have seen that a typi-
cal case is a transition from a configuration [n I:

3; 4; 3; 4; to a new configuration [n 'I:

0.5
0.4

0 0.3
K

0.2

0

I I I I

0.7775

0.780

0.772$

.785

LLI~ 0.05— 0.765—

0.76

0.01
0.5 2 3 45 10

T( K)
FIG. 2. Low-temperature specific heat as computed

from Eq. (4.27) using the hollandite parameters (see text)
for different values of the ionic density p. The units are
in k& per hole (Ref. 13).
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5.0 &n y 40
I I t I t I

0.75 0.76 0.77 0.78 0.79 0.80
PARTICLE DENSITY P

FIG. 3. Dependence of the low-temperature specific-

heat peak intensity (C ) on the ionic concentration p.
As expected from the discussion in Sec. III the max-

imum is at (n ) = 3.5[p = (n )l(1 + (n ) ) = 0.77] and

the intensity goes to zero for the two "commensurate"
cases (n ) = 3(p =- 0.75) and (n ) = 4(p = 0.80). The
sharpness of the peak around (n ) = 3.5 indicates that

the positions of the various arrays (holes) are quasior-

dered.

and three dimensions' and in the Appendix we

show that it also happens in one dimension. A ran-
dom distribution of ions in any dimension gives rise
therefore to a smooth distribution of small gaps and
to a linear specific heat.

Qn the other hand, we have seen in the previous
sections that diffusing interacting ions in a periodic
potential produce a discrete distribution of gaps.
The model studied is one dimensional but since the

origin of the discrete spectrum is not directly related
to /he dimensionality (it arises from the periodicity
of the potential plus the interaction between ions)

we conjecture that the discrete nature of the spec-
trum will remain in two or three dimensions. This
implies that interacting ions in a periodic potential
cannot be described as randomly distributed and
therefore the linear specific heat observed in P-
alumina has to be linked to a different "random
field" like for example that of the compensating
lons.

where p is the probability for n = 3 and (1 —p) for
n = 4. The ion density p is linked to p through the
relation (n ) = 3p + 4(1 —p). The fact that the
curve in Fig. 3 is much sharper than predicted by
Eq. (5.2) implies that the positions of the arrays are
actually not random but quasiordered.

The recently measured low-temperature specific
heat of hollandite (for two samples with p —0.77
and p —0.78) shows a peak around 1 K with a
larger intensity for the system with p —0.78. This
behavior corresponds rather well to our results of
Figs. 2 and 3. The only discrepancy between the
present model and the experiments is that the abso-
lute value of the measured specific heat is much
lower than predicted. This probably has to do with
the many impurities that are present in this materi-
al. For a more detailed discussion see Ref. 5.

An interesting question is what happens in two or
three dimensions. This problem is of direct
relevance for P-alumina that is usually described by
the two-dimensional version of the present model.
Contrary to hollandite the low-temperature specific
heat of P-alumina shows a pseudolinear behavior

like many amorphous materials. In Ref. 14 this has

been explained as due to two-level systems (sites for
the position of an ion) in which the energy differ-

ence arises from the Coulomb field induced by a
random distribution of ions (in two or three dimen-

sions). The crucial point to obtain a linear term in

the specific heat is to have an appreciable continuous

probability distribution for small energy gaps. This
is the case for a random distribution of ions in two

VI. SUMMARY

The configurational excitations of the Frenkel-
Kontorova model are shown to have a discrete dis-

tribution of energy gaps. This behavior is in good
agreement with the peak observed in the low-

temperature specific heat of the one-dimensional

ionic conductor hollandite.
This model also shows that the disorder due to

diffusing interacting ions in a periodic potential does
not give rise to a linear specific heat. This is prob-

ably due to additional random fields like for exam-

ple that of the compensating iona in P-alumina.

APPENDIX: PROBABILITY DISTRIBUTION OF
THE SITE ENERGIES FOR A

ONE-DIMENSIONAL RANDOM
DISTRIBUTION OF IONS

Given an ion that can occupy two sites at dis-

tance a from each other we compute now the distri-

bution of energy difference P(E) between these two
positions under the influence of other ions randomly
placed on a line. The same problem for two- and
three-dimensional cases has been studied in Ref. 14
using the method of Markov' that we also adopt
here. Our result here will be qualitatively similar to
the two- and three-dimensional cases. '" The func-
tion I'(E) starts from a nonzero value P(0) and de-

creases with increasing E. This is completely dif-

ferent than what we have obtained for the model
discussed in the rest of the paper and shows that in-

teracting ions in a periodic potential cannot be
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described as being randomly distributed.
The energy diA'erence between two sites at dis-

tance a (small) under the influence of N ions is

r(r„.. . , rtt ) = (1/L) where L is the length of the

chain. With the method of Ref. 1S we obtain (in

the limit of large N)

E = g i));, (A 1)
00

P(E) = —f dp cos(pE)exp[ —n (2map)'/2],

2 sgn(r;),
r;

ee;a

(A2)

(A3)

where n = N/L is the ionic density. From Eq.
(AS) we obtain

P(0)= n a

(AS)

(A6)
where P; is the field due to the ith ion at distance r;
with charge e; and e is the dielectric constant. The
probability distribution P(E) is given by

L/2 L/2 N

P(E}= dri . . I drtt5—L/2 —L/2

X &(ri. ~ ~ ~ "N)

(A4)

where ~ is the probability distribution of the various

ions. For a random distribution we have

and

P(E) = = tr e /g(e /'),—3 2 —i 2

P(0)

where e = E/n a and the function g is defined and
tabulated in Ref. 16. The function (A7) decreases
montonically from the value one to zero. This
behavior is qualitatively similar to the case of ions
distributed in two and three dimensions as discussed
in Ref. 14.
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