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Density-functional theory for the energy of crystals: Test of the ionic model
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A test of the ionic description of bonding is made for a wide variety of crystals. Self-consistent Hartree-Fock

calculations provide the charge densities of the ions, from which the crystal energy is evaluated with a modified

electron-gas energy functional. Thus, the crystal binding energy is found by a priori quantum-mechanical methods

without fitting any adjustable parameters to experimental data. The theoretical crystal energies are minimized by

varying the geometry of the crystals to predict the stable structures and equilibrium energies of the crystals. For the

more highly ionic crystals, in which the electronegativity difference between atoms is larger than about one, this

purely ionic theory predicts both crystal geometry and binding energy to an average accuracy of ~2%. For less

ionic crystals, with electronegativity differences less than about one, the purely ionic theory gives larger errors, as

expected, ranging up to about 8%. We conclude that the ionic description of bonding is quite accurate for a

surprisingly wide range of crystals.

I. INTRODUCTION

Since the first applications of quantum mechanics
to chemistry, many of our basic ideas about chem-
ical bonding have focused on the covalent bond.
The earliest calculations' on H,

' and H, gave re-
markabl. e explanations for molecular bonding, and
Pauling, ' using empirical arguments, extended
these ideas to many-electron molecules. From
the electronegativity scale of the elements, he
explained almost a11 chemical bonding in terms
of distortions from the pure covalent bonds found
in homonuclear molecules. In this scheme the
fully ionic bond appears as an extreme limiting
case, observable only in very few molecules,
such as the alkali halides.

Although the bonding in nonmetallic solids should
not be fundamentally different from molecular
bonding, most theories of crystals have used an
ionic description of the bonding where at all pos-
sible, and a large variety of crystalline com-
pounds have been treated by semiempirical theo-
ries assuming a crystal comprised of ionic units.
In addition to numerous appl. ications of this type
to alkali halides, '4 calculations on less ionic com-
pounds such as oxides and sulfides have been re-
ported. 5 7 Ionic models of crystals have been
adopted mainly for practical convenience, how-

ever, with little a P~io~i theoretical justification.
Failures of ionic models have traditionally been
attributed to covalent effects, but no independent
assessment of the validity of ionic models has
been possible because of the many adjustable em-
pirical parameters which are fitted to the very
crystal properties (binding energy, lattice con-
stant, etc. ) which would best test the models.

Recently, we presented an ab initio electron-
gas theory for crystals, also based on a fuQy
ionic description of the bonding. The methods
presented were sufficiently general to allow their

application to a wide variety of crystals. Since
no empirical results are required by the theory,
it can be applied to many systems for which ex-
perimental results are lacking, such as crystals
at extremes of high pressure and temperature. In
our previous paper we gave results for a number
of highly ionic systems where the electronega-
tivity differences" between the component species
were in the range ~AX ~=2.0-3.0. Differences be-
tween theoretical and experimental geometries and
dissociation energies were only on the order of 1-
3%, and there was no discernible correlation of
the errors with electronegativity difference. The
question thus arises of how generally applicable
the electron-gas theory and the ionic models of
crystal bonding are to crystals with smaller
electronegativity diff erences.

In this paper we present results for many addi-
tional crystals, including some with very small
electronegativity differences, in order to further
evaluate the utility of the model and test its limits
of applicability. Since dipolar distortions of the
ions are not considered in the present version of
the theory, we confine ourselves to systems of
relatively high site symmetry. In the next section
the electron-gas crystal theory is briefly re-
viewed. In Sec. III theoretical results for equilib-
rium geometries and dissociation energies in
alkali chlorides are presented. The agreement
between theory and experiment for these systems
is excellent. In addition, we consider the relative
stabilities of the Bl (fcc), B2 (bcc) and B3
(sphalerite) structures for these systems. As
we found previously, the model tends to predict
slightly excessive stability of the B3 phase over
the Bl and the Bj over the B2. Since the beryl-
lium, magnesium, and calcium chlorides are
found in rather distorted structures, we have not
applied the theory to them. In Sec. IV, however,
we present the first electron-gas results for SrF,
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and Sr Q.2, which have the more symmetric fluorite
structure. The stability of a rutile form of these
compounds is also examined.

In the remaining sections of the paper, applica-
tions to increasingly-less- ionic systems are pre-
sented. Our results for a number of oxide crys-
tals, not previously treated by electron-gas cal-
culations, are in Sec. V. In addition to BeO and

SrO, we examine Si02 in its high cristobalite
modification, which is its most symmetric form,
and CaTi03 and CaSi03 in the cubic perovskite
lattice. Results for KA102 are also included in
this section. For these oxides we'find no indica-
tions of a breakdown of the theory. The calculated
equilibrium geometries and dissociation energies
of the alkali and alkaline-earth sulfides are given
in See. VI. Although the electronegativity dif-
ferences between the elements in these systems
fall in the range of 1.0-2.0, the calculated results
for all but BeS are within four percent of the ex-
perimental values, with average errors of about
two percent. Calculations on the alkali hydrides
and MgH, were also performed. In Sec. VII we
show that the results for these systems using the
Waldman-Gordon combination rules for correc-
tion factors ' display large and systematic errors.
We propose an alternate set of combining rules
for the correction factors for hydrides, which
give errors comparable to those for the systems
considered previously. In Sec. VIII we show how

the theory may be applied to nitride crystals as-
suming the existence of the N' ion in these com-
pounds. We obtain good results for Be,N„AlN,
and ScN, but find larger errors in the dissociation
energies for Li,N and BN. Proceeding to even
smaller electronegativity differences, we treat
AlP, Be~C, and SiC as ionic crystals in Sec. IX.
Here we see a clear breakdown of the model in
that the calculated lattice constants for these sys-
tems are significantly (=7%}smaller than the ex-
perimental values. We interpret these errors as
a failure. of the ionic charge distribution to de-
scribe these crystals. In the actual crystals the
binding apparently occurs with a significant shift
of electron density from the anions towards the
internuclear bonding regions leading to larger
nearest-neighbor distances than those calculated
from a purely ionic theory. For electronegativity
differences larger than unity ( ~a)(', ~& 1.0), the
model generally gives both the geometry and dis-
sociation energy to within four percent of the ex-
perimental values with average errors of 1-3%.
For electronegativity differences less than unity
(~gy ~~1.0), the error in at least one of these
quantities is fairly large (up to about 8%). A more
complete discussion of the overall results is found
in Sec. X.

where p;(x- r;, ) is the electronic density of ion
& centered at r;, and Z; is the nuclear charge. We
sum over the ions in a unit cell and all the direct-
lattice vectors. The binding energy of the crystal
8'~ is defined to be the crystal interaction energy
per formula unit relative to the fixed charge den-
sities Z, 5(x) —p;(x) at infinite separation, and is
split into electrostatic, exchange, kinetic, and
correlation components. The latter three are ob-
tained from the energy density functionals of the
electron gas theory, "and for crystals may be ob-
tained by integrating

dxg pi x- r;,

—g g g[p;(x- r;&)]

over a unit cell of the crystal. Each of the elec-
tron-gas energy terms is found in this manner,
with $[p(x)] the appropriate energy density func-
tional. Equation (2) gives the interaction energy
directly and includes nonlinear many-body effects
due to the simultaneous overlap of three or more
charge distributions.

The electrostatic interaction energy is given by

where

dx gi5x-r; —p; x-r; 4; x, 3
i

y (x)=fdy(y (y) y "(y «;)+t« ly —«;)) l*-yl.

(4}

This term cannot be calculated directly from Eq.
(3}and instead was split up into terms involving
the Madelung energy, a direct and a reciprocal-
lattice summation, a three-dimensional numeri-
cal integration, and terms resembling self-ener-
gies of the charge distributions. This allowed for
rapid and efficient evaluation of all components
of the interaction energy.

The el'ectronic charge densities p;(x) are deter-
mined from atomic Hartree-Fock self-consistent-
field (SCF) wave functions. The stabilizing effect

II. REVIEW OF THEORY

In this section v, e wiQ briefly describe the
theory used to calculate crystal geometries and
dissociation energies. Complete details are given
in Ref. 8. We assume that the total charge density
in the crystal can be written as a superposition of
the densities of the individual ionic components of
the crystal„or
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of the crystal potential on these ionic densities
was approximated by including a spherical shell
potential in the atomic Hamiltonian. The charge
on the shell was chosen to be the negative of the
ionic charge and the overall method was made
self-consistent by choosing the shell radius ro,
such that the shell potential matched the crystal
site potential at each ion. This resulted in a net
contraction of the anion density but had a negli-
gible effect on the cation. This procedure led to
significantly better results than those obtained
with gas-phase or partially stabilized wave func-
tions. Since the spherical symmetry of the ions
was preserved, the model remains fully ionic,
with no charge transfer between ions.

The binding energy, calculated from the shell-
stabilized (SS) wave functions, then refers to the
infinitely separated stabilized ions and not ex-
perimentally observable gaseous anions or neutral
species. The dissociation energy D, of the crystal
into free cations and singly charged anions is ob-
tained theoretically from the binding energy and
differences in energy between the SS ions and the
free anions. This dissociation energy may also
be calculated entirely from experimental results
so that a meaningful comparison between theo-
retical and experimental dissociation energies
can be made.

III. EQUILIBRIUM GEOMETRIES
AND DISSOCIATION ENERGIES

FOR ALKALI CHLORIDES

There is a great deal of evidence for the ionic
character of the alkali chlorides, and thus for
these systems we should expect the theory to
yield excellent results. Kith the exception of
CsC1, these crystals are found in the 81 struc-
ture. Experimentally CsCl is found in the B2
structure; in this section we report the first elec-
tron-gas results for this crystal. '2 First, we
consider the experimental structures and then
compare these results with those in the alternative
B2 (or Bl) and B3 structures. Since all the lat-
tices considered here are cubic, by fixing the
ionic positions in the primitive unit cell, the
equilibrium geometry and dissociation energy may
be determined from energy minimization of a sin-
gle parameter. The results of these calculations
are found in Table I, along with the experimental
values. For comparison we also include the re-
sults of Cohen and Gordon, ""'which were obtained
using gas-phase Cl wave functions in a pairwise
additive approximation.

First, let us consider the calculated results in
the experimentally determined structures. The
overall agreement between the calculated and ex-

perimental lattice constants and dissociation en-
ergies is excellent. The average percentage error
in the lattice constant ~a

~

is 1.3%, and the aver-
age percentage error in D, is 2.1/~. None of the
results are significantly worse than these aver-
age errors. Generally, but not always, the cal-
culated lattice constants are too small, as are the
calculated dissociation energies, and there is no

systematic variation of these errors with the elec-
tronegativity of the metallic component.

The nonlinear many-body effects are relatively
small. In LiC1, where the Cl ions overlap con-
siderably, the difference between the free-ion two-
body and many-body results is —2.6% in ~a

~

and
+2.4% in D, . As was found for lithium and sodium
fluoride, the many-body theory for LiC1 and NaCl
leads to a smaller dissociation energy and larger
unit-cell volume than the two-body results for the
same wave functions. This is due to a net reduc-
tion of the many-body exchange energy from the
two-body value.

The calculations with the SS anions for LiC1 and
NaCl are in better agreement with experiment than
the results from the gas-phase anions. The use
of the SS wave functions is of less importance in
the other alkali chlorides. As the effective size of
the cation increases and the unit-cell volume in-
creases, the anion site-potential decreases. In

KC1 and BbC1 the many-body SS ion results for
~a

~

are in slightly worse agreement with experi-
ment than the two-body, gas-phase wave-function'6
results. The dissociation energies in the two

types of calculations are virtually the same, how-

ever. In CsC1 the SS wave function gives a larger
unit-cell volume, which is closer to the experi-
mental value, than the free ion. This differs with

all previous results where contraction of the
anion led to a denser crystal. Here it appears
that the use of the contracted SS Cl wave func-
tion leads to a reduction in magnitude of the net
nonpoint Coulomb Cl -Cl potential, which is at-
tractive at large separations. This leads to an
expansion of the lattice and a smaller dissociation
energy.

The trends in the relative stability of the 81,
82, and 83 phases are in agreement with qualita-
tive ion-radius-xatio arguments. The 83 phase
is most favored for small cations. Thus in LiCl
the model incorrectly predicts the 83 structure
to be very slightly (1.6 kcal/mole) more stable
than the observed 81 structure. This is not sur-
prising since a similar error occurred for LiF.
As cation size increases from NaCl to BbQ. , the
83 form becomes progressively less stable rela-
tive to the 81, while the 82 structure becomes
closer in energy to the 81. For NaCl, KQ. , and

HbC1, the 81 phase is correctly predicted to have
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the largest dissociation energy of the three crystal
forms. Another error occurs in CsC1, however,
~here the BI, structure is still calculated to be the
preferred structure. These errors further sub-
stantiate our previous conclusion that the model
underestimates the stability of structures with
higher coordination number in favor of those with
lower coordination number. This result also oc-
curs in a number of semiempirical theories. e'4

An obvious source of this type of error in the
electron-gas theory is in the neglect of long-range
attractive dispersion forces which act to stabilize
the more dense phases with higher' coordination
number. The dispersion energies in ionic crystals
may be estimated by the methods described pre-
viously. This type of analysis for I iCl shows
that the dispersion energy in the Bl phase will be
about 1.8 kcal/mole greater in magnitude than in

the 83 phase. As is seen from Table I, the addi-
tion of this difference to &D, now makes the cor-
rect phase (Bl) most stable for LiCI, by a very
small energy difference (about 0.2 kcal/mole). In
CsQ. the net dispersion energy in the B2 phase is
about 1.7 kcal/mole greater in magnitude than in
the Bj phase. Adding this amount to the energy
difference between the two phases in Table I, we
see that the Bl remains slightly more stable (by
about 2.6 kcal/mole) than the B2 phase. The error
in the prediction of the relative stability of the dif-
ferent phases of CsQ. thus appears to be due to
other factors in addition to the neglect of the long-
range dispersion forces.

IV. RESULTS FOR SrF2 AND SrC1&

In our previous paper, we gave results for the
alkaline-earth fluorides, BeF„MgF„and CaF2.
We have performed SCF calculations on gas-phase
Sr2' and have. used the resulting wave function for
a number of crystal calculations. In. Table II, we
present our results for SrF, and SrC1„which are
found in the cubic fluorite structure. The other
alkaline-earth chlorides, BeQ.2, MgCl„and
CaC12, are found in distorted structures with
polarized Q. ions, and so have not been included
in the present calculations, in which we are as-
suming unpolarized (spherical) C1 ions.

The calculated lattice constants and dissociation
energies for both of these crystals are extremely
close to the experimental values and the errors
are typical of those for other halide crystals.
For CaF2, we found the model predicted that the
rutile structure would be slightly more stable than
the observed fluorite form. For SrF, and SrCl&,
however, the theory gives correct predictions,
and the fluorite structure is seen from Table II to
be preferred over the rutile. This can be explained

by the larger effective-ion radius in Sr" than in
Ca2'. These cation-anion radius ratio arguments
appear to be quite effective in explaining many of
the electron-gas trends. The larger anion size
in SrQ. 2 makes the rutile structure closer in en-
ergy to the fluorite form than in SrF,.

V. RESULTS FOR BeO, SrO, Si02,
KA1O2, ,CaTi03, AND CaSiO3

In this section we consider results for a number
of oxide crystals, the majority of which contain
elements with smaller differences in electronega-
tivity than in the crystals considered previously.
It has generally been assumed that most of these
crystals are fairly covalent in character. Thus
they should be effective test cases for probing the
limits of an ionic theory.

Beryllium oxide crystallizes in the hexagonal
ZnO or 84 structure, which is closely related to
the B3 structure. ' These two structures should
be very close in energy and many compounds are
found in both forms. The B4 structure is slightly
less symmetric than the B3, however. The cal-
culated results for BeO, listed in Table III, are
very close to the experimental values despite the
small electronegativity difference between bery-
llium and oxygen. The B3 structure is predicted
to be very slightly more stable than the B4. This
may be an indication that small distortions and
polarization effects, neglected in the theory, play
a role in determining greater stability of the B4
form in the actual crystal.

The calculated results for SrO, which is found
in the 81 structure, are also in good agreement
with experiment. The lattice parameter is too
small by —1.7/o and the calculated dissociation
energy is in excess of the experimental value by

There are many well known crystalline poly-
morphs of silica" SiO, which have very similar
heats of formation. We choose to consider Si02
in its high cristobalite form because this is a
highly symmetric structure in which there should
be no dipolar distortions of the oxide ions. The
results for this system are comparable to the re-
sults for the more typically ionic systems con-
sidered thus far. The calculated lattice constant
~a

~
is too small by —2.9'% and the error in dis-

sociation energy &, is —2.0%. We note that the
partially converged result, with a more diffuse
oxide ion, gave a better result for ~a ~

and only a
slightly larger error in D,. This suggests that
there may be some small symmetric distortions of
the oxide electron density toward the bonding re-
gions between the ions in the actua? crystal, which
would lead to a larger lattice constant and dis-
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TABLE I. Equilibrium geometries and dissociation energies for the alkali chlorides. Unless otherwise indicated, all
quantities are in atomic units.

Crystal. Structure D c
e -&;/&0' &0' &D, (kcal/mole) ~

LiC1

NaC1

NaCl

KCl

RbC1

CsCl

81
81
81
81
82
82
82
83
83
81
81
81
81
82
82
82
83
83
81
81
81
82
82
83
81
81
81
82
82
83
82
82
82
82
81
81
81
83

free ton, two body"
free ion, many body
SS ion, many body
expt.
free ion, two body"
free ion, many body
SS ion, many body
free ion, many body
SS ion, many body
free ion, two body"
free ion, many body
SS ion, many body
expt.
free ion, two body"
free ion, many body
SS ion, many body
free ion, many body
SS ion, many body
free ion, two body"
SS ion, many body
expt.
free ion, two body"
SS ion, many body
SS ion, many body
free ion, two body"
SS ion, many body
expt.
free ion, two body"
SS ion, many body
SS ion, many body
free ion, two body
free ion, many body
SS ion, many body
expt.
free ion, two body
free ion, many body
SS ion, many body
SS ion, many body

6.95
7.132
6.829
6.868
6.11
6.310
6.137
7.545
7.244
7.83
7.927
7.655
7.536
6.73
6.851
6.650
8.619
8.375
8.39
8.320
8.410
7.14
7.139
9.180
8.71
8.632
8.795'
7.37
7.361
9.588
7.579
7.550
7.689
7.792'
8.935
9.180
9.021
9.970

0.3219
0.3114
0.3294

0.3037
0.2905
0.3011
0.3135
0.3319
0,2867
0.2816
0.2946

0.2772
0,2703
0.2805
0.2767
0.2885
0.2711
0.2740

O.2656
0.2656
0.2657
0.2629
0.2656

0.2593
0.2597
0.2564
0.2581
0.2519
0.2507

0.2605
0.2593
0.2575
0.2487

0.3219
0.3114
0.3199
0.3270~
0.3037
0.2905
0.2948
0.3135
0.3224
0.2867
0.2816
0.2891
0.2991~
0.2772
0.2703
0.2764
0.2767
0.2831
0.2711
0.2710
O.2727'
0.2656
0.2626
0.2627
0.2629
0.2626
O.2539"
0.2593
0.2567
0.2534
0.2581
0.2519
0.2489
0.2543~
0.2605
0.2593
0.2557
0.2469

0.347
0.362

O.324
0.332
0.355
0.369

0.311
0.323

0.298
0.306
0.310
0.319

0.297

0.285
0.291

0.286

0.277
0.279

0.270
0.265

0.268
0.274
0.268

0.0
0.0
0.357

0.0
0.0
0.333
0.0
0.357
0.0
0.0
0.323

0.0
0.0
0.303
0.0
0.3225
0.0
0.286

0.0
0.286
0.286
0.0
0.286

0.0
0.286
0.286
0.0
0.0
0.270

0.0
0.0
0.270
0.270

2.8

3.0

2.8

3.1

3 3

3.5

3.5
3.5

3.5

3.5
3.5

3.7

3.7
3.7

—11.4
-13.1
-15.8

1.3
1.6

-6.0
—7.1
-8.0
-3.04
-3.8

3 4
-5.3
-4.6

2 y3

—37

-1.5
—4.6
-4.3

-5.5

Length of primitive unit-cell axis.
"Binding energy relative to cations and SS anions.
'Dissociation energy relative to cations and gaseous anions.
~Anion-site potential.' Shell potential.

Shell radius.
~Difference in dissociation energy between this phase and the comparable result for the 81 phase.
"Reference 16(a).

Experimental result for 298 K from Ref. 3 quoted in Ref. 16(a).
~ Experimental result for 0 K calculated from thermodynamic data in Refs. 17 and 18.
"Experimental value at 298 K from Ref. 3.

sociation energy than calculated by our purely
ionic theory.

It is also apparent from Table III that, as we
consider crystals with ions of high charge, the
dissociation energies become considerably larger
than for our previous calculations. Thus the ab-
solute error in D, can be quite large, when the

percentage error is still small. We postpone fur-
ther discussion of this point until Sec. X.

The structure of KA102 is similar to that of high
cristobalite and so we include it in this section. In
this crystal the A1.

3' and 0~ ions occupy the posi-
tions of Si4' and 02, respectively, in high cristo-
balite, and the K' ions occupy interstitial posi-
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TABLE II. Results for SrF2 and SrC12. Notation is the same as in Table I. All. results were obtained with the many-
body theory and the SS iona.

Crystal Structure De -N /yp fp

SrF&

SrCl2

Fluorite
Fluorite
Fluorite
Rutile
F luorite
Fluorite
F t.uorite
Rutile

partially converged
self-consistent
expt.
self-consistent
partially converged
self-cons istent
expt.
self-cons istent

7.762
7.777
7.750

10.488
9.185
9.223
9.322

12.517

0.9636
0.9613

7.083 0.308 0.9537
0.8225
0.8182

8.208 0.305 0.8189

0.9557
0.9547
0.9506"
0.9458
0.8099
0.8100
0.8195~
0.8063

0.371
0.370

0.385
0.314
0.313

0.327

0.392 2.55
0.377 2.65

0.392 2.55
0.333 3.0
0.303 3.3

0.333 3.0

~Reference 19.
Compiled from data in Befs. 17 and 18 for 298 K.

tions in the unit cell. " Although thermochemical
data for the heat of formation of this crystal is
unavailable, the calculated lattice constant is in
good agreement with the experimental result.

CaTi03 is one of many compounds with the
perovskite structure. Although more precise

structure determinations have shown many of these
compounds to be slightly distorted to a less sym-
metric, orthorhombic lattice rather than the ideal
cubic perovskite form, "we will consider the sim-
pler ideal form only. For our purposes, the dif-
ferences between the two forms should be negli-

TABLE III. Equilibrium geometries and dissociationenergies for BeO, SrO, Si02 (high cristobalite), KA102, CaTi03,
and CaSi03 (perovskite). Notation. is the same as in Table I.

Crystal Structure D XQ

BeO

SrO

KA10~

CaTi03

CaSiO3

B4
B4
B4
B3
B1
B1
B1

High
cristobalite

High
cristobalite

High
cristobalite

Cubic
Cubic
Cubic

Perovskite
Perovskite
Perovskite
P erovskite
Perovskite
Perovskite
Perovskite
Perovskite

partially converged
self-consistent
expt.
self-consistent
partially converged
self-consistent
expt.
partially converged

self-consistent

expt.

partially converged
self-consistent
expt.
partially converged
self-consistent
expt.
partially converged" ~

self-consistent"~
self-consistent~'"
self-consistent~ ~

expt.

5.227
5.137
5.099
5.086
6.644
6.777
6.895
9.577

9.288

9.567

10.355
10.549
10.276
7.192
7.311
7.257
6.819
6.766
6.684
6.713
6.586'

8.145
8.065
8.277

0.376
0.376
0.378

1.7885
1.8141

1.8168
1,3270
1.2915

5.1283

1.3873
1.3898
1.4048 b

1.3925
0.9722
0.9763
0.9463

' 4,2798

1.04
1.06

1.05
0.744
0.730

1.19

3.6071
3.M16

4.3944

2.8049
2.7964

0.929
0.912

5.9926
5.8723

6.2834
6.3536
6.1900
6.1587

4.7892
4.7.761
5.0207
5.1873
5.2086
5.0449
5.0137

0.899
0.885

0.951
0.957
0.970
0.966

5.3113 4.3049 1.23

1,0
1.05

2.0
1.9

1.05 1.90

1.21 1.65

1.0 2.0
0.909 2.2

1.0 2.0
0.909 2.2

0.909 2.2
0.952 2.1
0.952 2.1
0.952 2.1

1.05 1.9
0.877 2.28
0.756 2.65

~Reference 19.
"Compiled from data in Befs. 17 and 18 for 0 K.
'Compiled from data in Befs. 17 and 18 for 298 K.

Compiled from data in Befs. 18 and 21 for 298 E.' Zero-pressure result.
' Correction factors for 28 electrons.
~Cal.culated for P=160 kbar, PV term included in —W~ and D,.
"Correction factors for 20 electrons.
' Reference 20 at 160 kbar.
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gible. The calculated lattice parameter for this
system is seen to be in excellent agreement with
the experimental value. The error in D, is —4.9%
and is somewhat larger in magnitude errors than
for the crystals considered so far. Because D,
is very large, the absolute error in energy for this
system is quite large.

At pressures of -160 kbar, CaSiO, has been
shown to undergo a structural transformation to a
perovskite structure. 0 We calculated ~a~ and D,
at pressures of 0 and 160 kbar for this system.
An ambiguity in the proper use of the Waldman-
Gordon" correction factors arises for this system
since there are two types of nearest-neighbor in-
teractions, one with a total of 20 electrons and the
other with 28 electrons. Our results in Table DI,
using the two sets of correction factors, are very
similar, however. At 160 kbar the average of the
two ~a

~
values is close to the experimental result.

There is no published value of &Hz for this crystal,
but a lower bound to this quantity can be obtained
from 6Hz for wollastonite, the stable low-pres-
sure form of CaSiO, . The calculated D, value of
this mineral is 5.4443 a.u. ,"which is somewhat
larger than our zero-pressure results for the
perovskite form. Quantitatively, this means that
our calculated D, value for perovskite CaSi03 is
no more than 4.3% smaller than the (unknown) ex-
per imental value.

VI. RESULTS FOR ALKALI- AND ALKALINE-EARTH
SULFIDES

Sulfide crystals can be treated by an ionic theory
as containing cations and dinegative anions. Cal-
culations on sulfides by the electron-gas theory
are analogous to those for oxides in that S is un-
stable in the gas phase and experimentally unob-
servable. The incorporation of a spherical-shell
potential in the Hartree- Fock calculations approxi-
mates the crystalline potential and gives bound
S' wave functions.

Over the years a number of "cohesive" energy
calculations for sulfides have been reported. e'
As was the case for oxides, ~' there are many in-
consistencies in these calculations. The cohesive
energy is defined as the crystal energy relative
to infinitely separated cation& and S' ions, and is
not a quantity obtainable from experiment. Ther-
mochemical values for the cohesive energy re-
quire values for the electron affinity of the S ion,
which, in this case, is the difference in energy be-
tween the S ion in the crystal and the free S '
ion. This quantity obviously varies from crystal
to crystal and reported values for this electron
affinity ' represent averages for a range of
crystals. Furthermore, since these values are

obtained in part from semiempirical lattice ener-
gy calculations, they hardly represent experi-
mental quantities.

A far more appropriate quantity, which is ob-
tainable either from completely theoretical or
completely experimental methods, is the dissocia-
tion energy D, of the sulfide crystal into cations,
free S' ('P) anions, and free electrons. A clear
comparison between experiment and theory can be
made for this energy.

The binding energy 5'~ obtained from the elec-
tron-gas calculations is the crystal interaction
energy relative to free cations and free SS sulfide
anions. To complete the theoretical energy cycle,
we must add the difference in energy between the
SS 82 ('S) species and the free S' (2P) ion to WB.
The Hartree-Fock energy of S' ( P) is —397.5382
a.u. ,

"and the Hartree- Fock energy expectation
values for the SS ions are obtained in the SCF cal-
culations. As was the case for oxide calculations,
we should consider correlation and relativistic
energy differences as well. Following Clementi
et a/. , we take the correlation and relativistic
energy difference between all SS S2 ('S) ions and
the free S' (2P) ion to be the same as the dif-
ference between Ar('S) and Ar'(2P) or —0.0359
a.u. The net atomic energy differences for the
results reported in Table IV may be obtained from
the difference between —8'~ and D, .

The alkali sulfides are found experimentally in
the CaF2 structure. Calculations were performed
on this structure only, and no alternative forms
were investigated. The agreement between theo-
retical and experimental results for these crystals
is close to that obtained for more ionic systems.
The average absolute error in geometry is 2.1%,
with no systematic variation as we proceed from
lithium to rubidium. The greatest errors in ~a~
are for K2S and Li2S, the smallest errors are for
Na2S and Rb~S. Conclusions based on errors in
D, will be somewhat suspect, sine|; experimental
uncertainties in the energies of these crystals are
higher than in compounds treated previously. "
The errors in D, vary in sign as we go from Ll2S
to Rb2S, and as the average absolute error is only
2.3%, there does not appear to be any breakdown
of the model.

With the exception of BeS, the alkaline-earth
sulfides are found in the B1 structure. Because
of the smaller cation-anion radius ratio, the B3
phase is most stable in BeS. For all systems but
BeS, the model continues to give good agreement
with experiment. The calculated values of ~a~
are all slightly too small, but the average absolute
error is only 2.1%. Excluding BeS, the calculated
dissociation energies are close to the experimen-
tal results. The error in D, for BeS is —8.4%,
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which is more than twice the error found in most
systems considered previously. The calculated
lattice constant for BeS differs from the experi-
mental by only —2.7%, however. In proceeding
from BeS to SrS, the error in D, goes from nega-
tive to positive which may be indicative of minor
covalent effects in MgS, CaS, and SrS with sub-
stantially larger covalent contributions in BeS.

In addition to the experimental structures, we
calculated the stability of the Bl phase for BeS
and the B3 phase for MgS. The theory gives the
correct predictions in these cases, but again both
structures are very close in energy.

VII. RESULTS FOR ALKALI
AND MAGNESIUM HYDRIDES

Hydride crystals have been treated as ionic
crystals in a number of Born- Mayer-type cal-
culations. In applying the electron-gas theory
to these systems, we employ SS H densities which
are more contracted than the gas-phase H den-

sity. In ab initio calculations on gas-phase H

the correlation energy should be considered,
since Hartree- Fock theory predicts H is not a
stable gas-phase species. " This is not a problem
for crystalline H because the inclusion of a shell
potential in the Hartree-Fock calculations leads to
a bound species with total energy intermediate be-
tween that of gas-phase H and He. To calculate
the dissociation energy of the hydride crystals
into cations and free H anions, we add the dif-
ference in energy between gas-phase H and the
SS H to —W~. We assume no correlation energy
differences between the two species. The Hartree-
Fock energy of the SS species without the shell po-
tential is obtained from the SCF calculations, and

we take the Hartree-Fock energy of gas-phase H

to be —0.48793 a.u ~'3'
The calculated dissociation energies and equilib-

rium geometries for the alkali hydrides in the B1
structure and the rutile form of MgH, are listed in
Table V. The first set of calculations, using the
Waldman-Gordon" (WG) correction factors for the
energy density functionals, showed progressively
larger errors as we proceeded from LiH to CsH.
For the heavier metal ions, we obtained lattices
that were too dense and excessively large values
for D,. A similar pattern for the pair potentials
of the heteronuclear helium rare-gas dimers can
be seen in the WG results. In these systems the
position of the well minimum becomes progressive-
ly' too small and the well depth becomes too large
in proceeding from HeHe to HeXe. These errors
suggest that for helium- and hydride-ion systems
the correction factors, rather than. the densities,
are in error and thatthey should be modified in

such a way that the helium or hydride ion is
weighted more heavily in their determination.

There is a simple way of accomplishing this,
which leads to substantially improved results. In

the WG formulation the correction factors are
determined from both the total number of electrons
in the two atoms or ions and the total number of
valence electrons. A two-electron system is
weighted more heavily if we use twice the geomet-
ric mean number of electrons instead of the total
number of electrons to determine these factors.
Correction factors determined this way are re-
ferred to as geometric mean correction factors in
Table V.

These correction factors give much better re-
sults for KH, RbH, and CsH than the WG factors.
The errors for these crystals are then comparable
to those for the systems considered previously,
although we still obtain a rather large D, value for
CsH. The results for LiH are also in excellent
agreement with experiment. Rather large and

surprising errors are found for NaH and 'MgH2.

The equilibrium lattice parameters for these two
crystals are too large by 7.1% for NaH and 5.6%
for MgH2. The D, values for NaH and MgH2 are
too small by —3.3% and —3.4%, respectively.
These anomalous results suggest that the Na" and

Mg' densities are too diffuse.
The overall average errors for the hydride

crystals (3.0% in geometry and 2.5% in D, ) are
essentially no larger than the errors for more
ionic crystals. The patt, em of the errors indicates
no substantial covalent effects. A non-ionic theory
for the binding in these crystals has been pro-
posed34' in which all valence electrons are treated
as a "nearly-free-electron gas." Although this
model leads to errors in the geometry comparable
with ours, it gives completely unreliable values
for the dissociation energy.

VIII. EQUILIBRIUM GEOMETRIES
AND DISSOCIATION ENERGIES

FOR NITRIDE CRYSTALS

Although the N3 ion is not a stable gas-phase
species, there is some evidence that nitrogen in
some crystals has properties of a triply charged
negative ion. In view of its low electronbgativity,
this is surprising, and nitride crystals should
prove to be excellent additional test cases for de-
termining the limits of applicability of the present
ionic model. Here we report results for a number
of nitrides found in highly symmetric structures.

For the application of the electron-gas theory,
SCF calculations on SS N3 ions were performed
with a shell charge of +3 and varying shell radii.
Since N ( P) is unstable with respect to dissocia-
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TABLE IV. Results for alkali and alkaline-earth sulfides. Notation is the same as in Table
I. All results @&ere obtained from the many-body theory with SS sulfide ions.

Crystal Structure C (r) -N /xo ro

Li2S

Na2S

K2S

Rb2S

BeS

BeS
MgS

CaS

SrS

Fluorite
Fluorite
Fluorite
Fluorite
Fluorite
Fluorite

Fluorite
Fluorite
Fluorite
Fluorite
Fluorite
Fluorite

B3
B3
B3
B1
B1
B1
B1
B3
B1
B1
Bl
B1
B1
B1

partially converged
se lf-consistent
expt.
partially converged
partially converged
se lf-consistent
expt.
partially converged
self-consistent
expt.
partially converged
se lf-consistent
expt.
partially converged
se lf-consistent
expt.
self-consistent
partially converged
self-consistent
expt.
partially converged
partially converged
self-consistent
expt.
partially converged
se lf-consistent
expt.

7.112
7.385
7.627"
8.524
8.704
8.781
8.720"
9.385
9.526
9.876"

10.000
10.094
1P.P22b

6.385
6.306
6.481'
6.029
6.724
6.880
6.953
7.176
7.361
7.474
7.604
7.8191
7.800
8.044

1.0743
0.9867

0.8663
0.8451
0.8367

0.7921
0.7758

0.7460
0.7385

1.463.7
1.4850

1.4411
1.3127
1.2806

1.3113
1.2025
1.1794

1.1367
1.1283

0.7411
0.7241
0 7130'
0.6037
0.6113
0.6119
0.6275
0.5673
0.5742
0.5618
0.5444
0.5455
0.5294
1.1590
1.1518
1.2571'
1.1364
1.0088
1.0180
1.0488
1.0066
0.9399
0.9456
0.9373
0.9029
0.9035
0.8879~

0.752
0.724

0.627
0.615
0.609

0.568
0.562

0.535
0.523

0.839
0.850

0.822
0.736
0.719

0.745
0.672
0.661

0.631
0.626

0.851
0.714

0.714
0.645
0.625

0.625
0.556

0.556
0.526

0.800
0.851

0.800
0.800
0.714

0.800
0.714
0.645

0.645
0.625

2.35
2.8

2.8
3.1
3.2

3.2
3.6

3.6
3.8

2.5
2.35

2.5
2.5
2.8

2.5
2.8
3.1

3.1
3.2

Dissociation energy in a.u. into cations, S ( P) anions and free electrqns.
"Reference 19.
'Thermodynamic data for 298 K from Ref. 17. ~H& for Li2S from Ref. 24.

Thermodynamic data for 298 K from Refs. 18 and 25.
'Thermodynamic data for 298 K from Ref. 18.
' Thermodynamic data for 0 K from Refs. 17 and 18.
~ Thermodynamic data for 298 K from Refs. 17 and 18.

tion into neutral N( S) and an electron, the appro-
priate dissociation energy for comparison of
theory and experiment in these systems is the en-
ergy relative to cations, free atomic nitrogen,
and free electrons. Energy differences between
SS N~ ('S) and N(~S) were calculated using
—54.40092 a.u. for the Hartree-Fock energy" of
N(4S) and —0.188 a.u. for its correlation energy. ~7

In addition, the correlation energy for all the SS
N' anions has been assumed equal" ~'3' to that
of 02 ('S) or —0.406 a.u.

in good agreement with experiment, there are
some larger errors in the calculated values of
D, . For BN the percentage error in D, of —7.9%
is a rather large deviation from experiment. In

AlN, as for BeO, the B4 structure is almost iden-
tical in energy with the B3 form. Again the more
symmetric B3 form is predicted to be slightly
more stable than the 84. The calculated D, value,
in either lattice, is very close to experiment,
however. For ScN the calculated value of D, is
too large by 3.7%.

A. Results for BN, AlN, and ScN

The preferred form for boron nitride is the B3
structure, while for A1N it is the B4 structure.
The cation-anion radius ratio is larger in ScN,
and it is found to have the B1 structure. We list
our results for these crystals in Table VI.

While the calculated lattice parameters are all

B. Results for Be3N& and Li3N

Both beryllium nitride and lithium nitride are
found in hexagonal lattices. ' "' 9 Since there are
ten ions per unit cell in Be3N„ the number of
points in the three-dimensional quadratures for
this system was increased4 to 3722. We varied
the lengths of the a and c axes in minimizing 8'~
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TABLE V. Results for alkali hydrides and magnesium hydride. Notation is the same as in Table I. All results were
obtained with the many-body theory and SS H ~ anions

Crystal Structure DR
e fo

LiH

NaH

KH

RbH

CsH

MgH2

B1
B1
B1
B]cl

B]d.

B18
B1

B]d
B1f
B1
Bld
B1h
B1tl

B1
B]d

B1
rutile
rutile d

rutile'
rutil. e

partially converged
self-consistent
expt.
partially converged
self-consistent
self-consistent
expt.
partially converged
self-consistent
self-consistent
expt.
self-consistent
partially converged
self-consistent
expt.
self-consistent
partially converged
self-consistent
expt.
par tially converged
self-consistent
self-consistent
expt.

5.495
5.564
5.459"
6.659
6.978
6.987
6.521"
7.635
7.515
7.699 .

7.617
7.727
8.042
8.073
8,067"
7.840
8.401
8.377
8.520"
8.746
8.866
8.902
8.536

6.072 0.311
6.142 0.312
6.151 0.312
5.709 0.306

0.3845
0.3782

0.3254
0.3097
0.3091

0.2851
0.2887
0,2817

0.2842
0.2726
0.2714

0.2836
0.2657
0.2662

1.0657
1.0497
1.0463

0.3506
0.3500
0.3459
0.2971
0.2951
0.2945
0.3044
0.2705
0.2785
0.2716
0.2708~
0.2741
0.2624
0.2633
0.2574
0.2734
0.2555
0.2591
0.2482"
0.9978
0.9932
0.9897
1.0244

0.452
0.447

0.371
0.355
0.353

0.324
0.329
0.321

0.320
0.307
0.306

0.316
0.294
0.293

0.456
0.453
0.452

0.476
0.444

2,1
2.25

0.444
0.357
0.357

2.25
2.8
2,8

0.357
0.323
0.323

2.8
3.1
3.1

0.323
0.323
0.303

3.1
3.1
3.3

0.323 3.1
0.323 3.1
0.295 3,4

0.476 2.1
0.444 2,25
0.444 2.25

Dissociation energy of crystal into free cations and H (~S) anions.
"Reference 19.
'Compiled from data in Ref. 17 for 0 K.
'Calculated with Waldman-Gordon (Ref. 10) correction factors.
'Geometric mean correction factors for NaH and MgH2. Cg =1.090, C~ =0.719, and Cg =0.380.

Geometric mean correction factors for KH: CE ——1.085, Cz-—0.793, and C~-—0.450.
'Calculated from data in Ref. 17 for 298 K.
"Geometric mean correction factors for RbH: Cz ——1.079, CX ——0.873, and C&=0.500.

Calculated from data in Refs. 3, 17, and 32 for 298 K.
'Geometric mean correction factors for CsH: Cz =1.074, Cx =0.913, and Cc=0.515.
"Calculated from data in Refs. 17 and 32 for 298 K.' Reference 33.

for these systems and for Be3N2 the parameter u, "
which determines the -equilibrium positions of four
of the Be' ions, was varied as well. The calcu-
lated cell volumes for Be3Nz and Li,N are some-
what too small; theaverage sr~or for ~a~ and )ci
is —4.4% for both systems. The calculated ~c~/
~a

~

ratio for Li3N is close to experiment, while
that for BesN, is too large by 6.8%. The D, value
for Be3N2 is very close to the experimental value,
but for Li,N the calculated D, is too large by 6.7%.
This discrepancy may be due to our neglect of the
zero-point energy in Li3N. Experimental evidence
suggests that the force constants for the Li-N in-
teractions in this crystal are considerably larger
than in the lithium halide crystals.

The overall pattern of the errors for the nitride
crystals may be indicative of some covalent ef-
fects. The calculated lattice parameters are, in
all but one case, too small, which suggests that

there are contributions to the binding from sym-
metric distortions of the electronic density away
from the anion towards the cation neighbors.

The errors in D, vary in sign, and go from posi-
tive to negative as the electronegativity of the
metallic species increases. As for some oxide
crystals, the dissociation energies in these crys-
tals are fairly large. This means that the errors
in absolute energy will be considerably larger
than, for example, the alkali-halide crystals,
even when the percentage error in &, is quite rea-
sonable.

IX. RESULTS FOR A1P, Be2C, AND SiC

Our results thus far have shown that the ionic
electron-gas theory works quite well for most of
the systems treated. There are a few isolated
examples where errors in either the calculated
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TABLE VI. Equilibrium geometries and dissociation energies for nitride crystals. Notation is the same as in Table
I. These results were obtained with SS N3 anions and the many-body theory

Crystal Structure Dae 4;(r;) -N]/ro 7p

BN

AlN

ScN

Be3N2

Li3N

B3
B3
B3
B4

B4
B3
B1
B1
B1

hexagonal
hexagonal
hexagonal
hexagonal

partially converged
self-consistent
expt.
partially converged
self-consistent
expt.
self-consistent
partially converged
self-consistent
expt.
partj. ally converged
self-consistent
expt.
self-consistent
expt.

4.801
4.682
4.831"
6.133
5.867
5.879"
5.795
5.842
5.978
5.933'
4.936
5.025
5.369
6.643
6.894

9.418
9.146
9.407

17.455
18.394
18.317
6.903
7.323

0.394
0.385
0.885

0.079
0.078
0.075

4,.2193
4.3466

3.8767
3.5361

3.5400
3.2913
3.2055

6,9374
6.7418

2.1238

2.8676
2.8673
3.1115
2.3872
2.8709
2.3793'
2.8748
2.1260
2.1279
2.052
3.9788
4.0879
3.9788
1.0834
1.0156

1.68
1.72

1.34
1.89

1.39
1.27
1.24

1.58
1.54

1.20

1.58
1.71

1.2
1.36

1.36
1.36
1.25

1.71
1.58

1.20

1.9
1.75

2.5
2.2

2.2
2.2
2.4

1.75
1.9

2.5

Dissociation energy to cations, gaseous, neutral nitrogen atoms, and free electrons.
"Reference 19.

Compiled from data in Refs. 17 and 18 for 0 K.
Compiled from data in Refs. 18 and 25 for 298 K.' Structural data from Ref. 38.

lattice parameters o~ dissociation energies are
markedly larger than for most of the other cases.
As a whole, the nitride crystal results show some-
what larger errors in both quantities than the
other results. In order to test the theory further,
we have chosen Alp, Be,C, and SiC as extreme
limits for an ionic theory.

For the phosphide calculation, we used SS
P' ('S) wave functions. The calculation of the
dissociation energy in this case refers to infinitely
separated Ale' cations, P('S) atoms, and electrons.
The Hartree-Fock energy2' of P(4S) was taken to
be —340.7186 a.u. In order to estimate the corre'-
lation and relativistic energy differences between
SS P' ('S) and P(4S), we used the methods and
values suggested by Q.ementi et aE. 3 The net
three-electron ionization in going from P ( S) to
P('S) was separated into three single-electron

steps, The change in correlation and relativistic
energy for each of these steps was then assumed
to be the same as for the ionization of the isoelec-
tronic neutral species. The net correlation and
relativistic energy difference between P3 ('S) and
P(4S) is then found to be —0.1291 a.u.

Be2C and SiC were treated as consisting of
cations and C' units. The dissociation energy
refers to Be2' or Si4' ions, electrons, and C(3P)
at infinite separation. The Hartree-Fock energy'
of C(~) is —87.6886 a.u. and its correlation ener-
gy37 j.s —0.168 a.u. For C4 (~S), we took the cor-
relation energy to be the same as for the isoelec-
tronic O' ('S) species" or —0.406 a.u. This is
probably only a rough estimate of the actual value,
but errors introduced this way will only effect D,
and not the equilibrium geometry.

As might be anticipated, the results for these

TABLE VII. Results for A1P, Be2C and SiC.

Crystal Structure 4;{r;) -N& lxo ~0

Be~C

SiC

B3
B3

Antifluorite

B3
B3

se lf-consistent
expt.
self-consistent
expt.
se lf-consistent
expt.

6.785
7.284
5.428
5.790
5.368
5.810

3.0708

5.127

6.7090

2.1146
2.2720'
2.5910
2.598'
4.1726
4.2587

1.18

1.98

2.0

1.2

2.0

2.0

2.5

2.0

2.0

~Reference 19.
"Compiled from data in Ref. 18 for 298 K.
'Compiled from data in Refs. 17 and 18 for 0 K.
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three systems in Table VII are substantially
poorer than for most other systems. For these
crystals, the calculated lattice constants are sig-
nificantly smaller than the observed values. These
errors are all larger, but similar to those in BN,
Li,N, and Be3N,. The average error in s, is
—6.8/o. Errors in D, are less systematic. For
Sic, D, is too small by 6, 9'%%uo, but for Alp and

Be,C the calculated D, values are reasonably close
to experiment. It appears that in many cases the
ionic model can give as much binding in the crystal
as a covalent model by forcing the nuclei slightly
closer together than in the actual crystal. A co-
valent model would give similar binding by charge
transfer towards the bonding region between
atoms.

X. SUMMARY OF RESULTS
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ELECTRONEGATIVlTY Dt FFERENCE

Errors in the electron-gas calculations arise
from many different sources. Among these are
the approximate form of the density funetionals,
the additive density approximation, the evaluation
of component ionic densities, and the neglect Qf

long- range dispersion for ces and zero- point ener-
gy. The overall accuracy of the theory depends in
part on a cancellation of these individual errors
and the net error can be expected to be fairly
random from system to system. That this is true
even for highly ionic systems is revealed in Figs.
I and 2, where the percentage errors in the
equilibrium geometries and dissociation energies
versus absolute electronegativity differences' of
the component species have been plotted. We in-
clude calculations presented here and in Ref. 8.
For the strongly ionic crystals (~b X~ = 3.0), our
choice of ionic densities is probably fairly ac-
curate, and the major source of error is likely to
be in the density functionals. This type of small
random error will also be present in calculations
on more covalent crystals and will tend to conceal
any errors due to breakdown of the ionic model.

There is no simple or obvious correlation of the
errors with electronegativity difference to be dis-
cerned from these figures. The use of alternative
scales of electronegativity"" leads to very little
change in the figures. Over a wide range of elec-
tronegativity differences, these errors are quite
small. With a few exceptions, the absolute values
of the errors in the lattice parameters average to
less than 2%, and are almost always within 4.0'%%uo

for ~&X~&1.0. This is clearly an acceptable error
for many applications and a great number of com-
pounds will fall into this category. Errors in
geometry for NaH and MgH2 are considerably
larger than this, however. From Fig. 1 it is ap-
parent that for the other sodium and magnesium
crystals, the calculated lattice parameters were

FIG. 1. Percentage errors in calculated equilibrium
geometry versus electronegativity difference (Ref. 9).

also too large but with smaller errors. This sug-
gests that the Hartree-Fock Na' and Mg' densi-
ties are too diffuse. This could be due to the
neglect of correlation in the determination of the
cation wave functions, which should be a particu-
larly important effect in the second-row cations.
Densities from correlated wave functions should
be more contracted than the Hartree- Fock densi-
ties. For AlP, Be2C, and SiC, the errors in the
lattice parameters are much greater than for the
other crystals and show the inadequacy of the
ionic model for these systems with

~

&X
~
&1.

Percentage errors in D, show much the same
sort of scatter as those in the equilibrium geom-
etry. In general for ~&X~& 1.0, D, is calculated
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to an average absolute error of less than 2%, and
usually to within +4.0%. For ~&X~- 1.0, D, is
always too small, but, as the results for AlP and
Be2C show, can be fortuitously close to the experi-
mental value.

The bulk of the calculations support the validity
of the ionic model for those systems with

~

& X
~) 1.0. The average absolute error in both the

equilibrium geometry and in &, is only 1.9%%uo in
this case. For ~&X~~1.0, theerrorinatleastone
of these quantities is significantly greater than
these averages. Excluding MgH„ the trend in
these systems is for the lattice constants to be
much too small (average error = —5.2%) and for
D, to be also too small with an average error of
—5.1%. For ~&X~ ~ 1, then, the ionic model is in-
adequate. As was mentioned in Secs. V and VIII,
the absolute errors in D, can be fairly large for
systems with highly charged ions. This is probably
an electrostatic effect, since for these systems the
electrostatic potentials and fields are larger than
in the other crystals, and a given error in the den-
sity will lead to a large error in the absolute ener-
gy. Thus it is probably best to judge the applica-

bility of the model by the percentage rather than
absolute error in D,.

In many cases, however, a certain degree of ac-
curacy in D, will be required. Since the percen-
tage error in D, averages to less than 2%, and is
generally less than 4.0% for ~aX~&1.0, the likely
absolute error in D, for a given system can be
easily estimated. The net crystal dissociation en-
ergy can be estimated from both TV~ and average
energy differences between SS anions and the
appropriate gas-phase species. 8'~ is usually
close to the Madelung energy of the crystal. A

rough estimate of D, can then be easily found and
used to determine the probable error in the elec-
tron-gas result. The suitability of the electron-
gas theory for a given problem can then be judged.
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