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Low-temperature thermal conductivity of amorphous silica
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In order to understand the importance and limitations of the role of low-temperature thermal-conductivity data in
understanding amorphous glasses, we have used the two-level tunneling-state model to generate fits to such data. A
variety of densities of states have been utilized, including the forms previously suggested to explain specific-heat,
ultrasonic-attenuation, and thermal-conductivity data. We find that the low-temperature I & 3.5 K) fits to the data
can be generated with all of the different forms of the density of states considered. In the intermediate temperature
region (3.5-15 K) where there is a plateau, a variation in the strengths of the two different scattering processes,
resonant and relaxation scattering processes, generates the various shapes seen in the thermal-conductivity data of
different amorphous materials. With the strengths used for the best fit, we calculate the value of the coupling
constant y to be in accord with ultrasonic-phonon-echo experiments. The high-temperature thermal conductivity,
above the plateau, requires a gentle tailing off in the density of states. Finally, an equally good fit to the complete
thermal-conductivity curve can be generated with both a nearly constant density of states and a density of states
which has a quadratic energy dependence.

INTRODUCTION

That amorphous materials form a distinct and
different class of materials is seen, in the case of
amorphous insulators, in the anomalies in the
specific heat, "thermal conductivity, "attenua-
tion and dispersion in the velocities of sound and
ultrasound, ' and in the existence of phonon echoes. '
There exist a number of theoretical models which
attempt to explain these anomalies, of which the
two-level tunneling-state model due to Anderson,
Halperin, and Varma' and independently Phillips, '
has been the most successful. These two-level
states, formed by the tunneling of entities in an
asymmetric potential well, are considered intrin-
sic to the amorphous material. They contribute
to the excess specific heat, scatter thermal and
acoustic phonons, and produce the anomalies seen
in experiment. The presence of the two-level
tunneling states is embodied in two factors: the
density of such two-level states, and the coupling
constant y which gives, a measure of the coupling
strength between the phonons and the two-level
states. The coupling constant y has been mea-
sured from phonon-echo experiments, whereas
the product of the two factors, the density of
states and y, is determined from the specific-
heat data and phonon scattering experiments, such
as thermal-conductivity or ultrasonic-attenuation
measurements. The two-level systems give rise
to two distinct and important scattering mechan-
isms which are not present in pure crystalline
materials. In an attempt to understand the be-
havior and importance of the two dominant phonon
scattering mechanisms in different temperature
ranges, we have studied the fit to the thermal-con-
ductivity data of fused silica with several different

forms of the density of states of these two-level
systems.

The thermal conductivity K, is given by

where C, (co) is the specific-heat contribution of
phonons of frequency v and polarization i, and
v, and l, (&o) are the velocity and total mean free
path, respectively. We have assumed a tunneling-
state model where the two-level systems are
scattering the phonons. We have followed Smith,
Anthony, and Anderson, ' in taking the form of the
total mean free path,

l, = l;„+(l,„,'„+ l; '„,, + l, '„,) ', (2)

where I, „, and l&,„,, are the mean free paths due
to the resonant and relaxation processes, respec-
tively. Specifically, we have used l,„,„=1.5x10 ' cm
and l,„= 3 cm, where /, „„.is roughly the length
of the sample. In Fig. 1 is displayed the thermal
conductivity of a number of different amorphous
insulators, all of which show essentially the same
characteristic temperature dependence. We can
analyze the thermal-conductivity data by consider-
ing three regions: (1) the low-temperature re-
gion (& 3.5 K) where the temperature dependence
is T, where 6=—1.8, (2) the intermediate tempera-
ture region, the region where there is a plateau
in the thermal-conductivity curve (-3.5--15 K),
and (3) the high-temperature region, that is be-
yond the plateau up to room temperature.

Following comments in Sec. I on the varieties
of densities of states, some of which have been
proposed previously to fit the experimental data,
we discuss each of these temperature regions se-
parately below in Secs. II, III, and IV. Finally,
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FIG. 1. Low-temperature thermal conductivity of some
amorphous insulators. Data for Si02 is from Ref. 7,
As2S3 and BeF2 from Ref. 10, Se from Ref. 1 and poly-
methylmethacrylate (PMMA) from Ref. 2.

we remark on some considerations not fully ex-
plored here, in Sec. V, and present our conclu-
sions.

FIG. 2. Forms of some two-level density of states,
gzz.. (a) a nearly constant density of states with a sharp
cutoff at an energy Empt kT0p p (b) a density of states
varying with energy and a sharp cutoff at E~gx kT0p & (c)
a nearly constant density of states to E=kT& followed
by decrease according to Eq. (6), and (d) an energy-de-
pendent density of states to E=kT & followed by a de-
crease according to Eq. (6).

I. VARIETIES OF DENSITIES OF STATES

From Eq. (1) we can see that a measurement of
the thermal conductivity K is sensitive to the form
of the density of states of the two-level systems,
which are the dominant scatterers in amorphous
insulators. We have studied a variety of different
forms for the density of states in our attempt to
fit the experimental data. We shall label the
various forms of the density of states a, b, c, d,
and numerical variations in a single form, for
instance, by b-1, b-2, b-3. We have sketched each
basic form in Fig. 2.

Figure 2(a) shows a constant density of states
with a sharp cutoff at an energy E „, equivalent to
a cutoff temperature T„. Figure 2(b) shows a
density of states with an energy dependence or
dispersion, and again with a, sharp cutoff at E,„.
= kT . One of the main energy dispersive forms
that we have considered is (form 5-1),

0 for E&E,„,

for E& 8
(3)

where q(E)= ,'I (4 n/7)T, —P =1.04x10"
erg 'cm ', P„=S.8x10" erg"'cm ' following
Smith et a/. ' The product' g(E)P(E) is the total
number of two-level systems, all of which con-
tribute to the specific heat, while P(E) are the
more strongly-coupled states that scatter phonons
and hence determine the thermal conductivity. We
have also considered (form 5-2),

P„[1+~(E/kT~Pl for E&E~»

0 for E&E,„
(4)

where P =8.42x10 erg 'cm, a=0.032 follow-
ing Stephens, ' and (form 5-3), P„=7.Sx 10"
erg 'cm ', a=0.025 following Hunklinger and
Arnold. ' T~= 1 K is a convenient normalization
temperature in all three cases. We can set the
second term of the density of states of form b-1
equal to zero:

q(z)P(Z)=P„(z/kr )" for Z&Z.,„.
This is, in fact, the form we have used when we
have considered a nearly constant density of states
of the form shown in Fig. 2(a) (form a). In Fig.
2(c), we display a nearly constant density of states
again, but instead of a sharp cutoff at E,„, we
have, after a certain energy &7~, adecrease in the
density of states given by

P~P(E)=
( / )~

forz&kPr

where we have used a value of P~=3.97&&10"
erg ' cm ' and k = 0.3 (form c). Another useful
form (form d) is an energy dependence until
E = kT~ as in form b, and then the tail as above.
This is sketched in Fig. 2(d). Now, let us look
at each of the regions of the thermal conductivity
curve in detail.
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II. THE LOVf-TEMPERATURE REGION

The resonant mean free path, due to the reso-
nant interaction of phonons and the two-level sys-
tems, is given by'

tj=',(, ,) ( )Ztanh( )P(E), (7)

where y is the coupling constant and p is the mass
density. At low temperatures (& 3.5 K), the reso-
nant mean free path is the only one that is impor-
tant. In Fig. 3, we display thermal-conductivity
curves generated with different factors in front
of Eq. (7), i.e. , the f„,' has been multiplied by a
factor which in case (a) is 0.5, in (b) is 0.75, in
(c) is 1, and in (d) is 1.5. Figure 3 shows clearly
that the low-temperature region is resonant domi-
nated, and very sensitive indeed to the value of the
resonant term. An increase in l „', causes the
thermal conductivity to decrease by the same
factor. If we were using a constant density of
states, we mould get a T' dependence for the ther-
mal conductivity, as has been predicted from
theory. This can, in fact, be seen from the ther-
mal-conductivity integral, in which l,„ is present
alone, on applying the low-temperature limit. On

using form a for the density of states, a thermal
conductivity varying as T" as seen in experiment
is obtained. We have compared the thermal con-
ductivity obtained when one uses form a and form
b-1 of the density of states. We find no difference
at all at low temperatures. At low tempera, tures,
the energy-dependent term simply does not mat-
ter. The low-temperature fit determines the
coefficient in the density of states, which in our

case was found to be I' =7.34&10"erg 'cm ', a
somewhat smaller number than the 1.04 @10"
erg 'cm ' found by Smith et al.'

III. THE PLATEAU REGION

The next distinct temperature region we con-
sider is the plateau region. We have attempted
to generate the plateau in the thermal-conductivity
data with just a resonant term included in the
thermal-conductivity integral. We find that no
fit is possible. One can see that directly from
the integral. In the low-temperature limit, the
temperature varies as T"; in the high-tempera-
ture 1imit, the temperature dependence is T.
Thus, the resonant term is not sufficient by it-
self to produce the plateau. Therefore, in this
intermediate-temperature region, the relaxation
processes must also start to contribute to the
total mean free path.

From Hunklinger and Arnold, ' we have 7' ', the
inverse lifetime of an individual two-level system,

M2) 2M2 E3 E
2 8 2kT

'The coupling parameters M and D of Hunklinger
and Arnold' reduce to y(a/E) and 2y(4/E) on
making the usual assumption that the dominant
coupling of the phonons to the tunneling states is
through a modulation of E. Here & is the overlap
energy. With this,
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where N, the total number of two-level systems
iS

N= P E, T chdE
0 min

and

The inverse mean free path due to interaction
between phonons and two-level system in a relaxa-
tion process is'
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FIG. 3. Low-temperature thermal-conductivity curves
generated with different values for the coefficient in
front of Eq. (7), i.e., in the E«, term. The values are in

{a) 0.5, (b) 0.76, (c) 1, and (d) 1.5.

(12)

is the probability density of a, two-level system
having energy E and lifetime v. Using Eqs. (10),
(ll), and (12), we have,
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1 ~ dE jP g sech2 (1 ~min /7)
1+co T

(13)

Equation (13) may be integrated, in the high-frequency limit err, „»1 and with P(E) = P (a constant density
of states), and substituting 7,'„ from Eq. (9) we obtai. n, '

(14)

For the case of an energy- dependent density of two-level states P(E) the integral becomes, following
Hunklinger and Arnold, '"

dEI'E sech' --— —,—, coth

here we have used an average relaxation time
for each tunneling-level energy. We have used
Eq. (15) for the calculations that follow.

Using a density of states of form b-1 and l,„,
l,„, and E „ofRef. 7, we are able to generate a
plateau region. However, the calculated values
of the thermal conductivity in this region were
smaller, 0.06 W/mK, than the experimental
value of 0.09 W/mK. ' We have tried adjusting (i)
the cutoff E „and (ii) the coefficient & in &f„„'
using the l „', determined from the low-tempera-
ture fit previously. Curve & of Fig. 4, shows
~=0.7 and T„=38 K, curve b of Fig. 4 shows
A =1 and T, =20 K, and curve c of Fig. 4 shows
4=1 and T„=10K. Figure 4 demonstrates that
only lower values of the thermal-conductivity
values and not higher values, as required by the
data in the plateau region, could be generated.

Let us consider, for the moment, a constant
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FIG. 4. Curves generated with A. l,,~ using E,„deter-
mined from the previous low-temperature fit. I'or (a)
&=0.7 and V„=38K, (b)~=l, r =So K, and (c)@=1
and T„=10K. A density of states of form 5-1 is used
in all three cases.

density of states in an effort to understand why
we could not raise the plateaU to the required
value. The resonant rate is 7;„'= aT(E/
kT )P tanh(E/2kT) and the relaxation rate is 7,,',

= P T'(E/kT)'P, where +and P are the coefficients
with the values of velocity, density, and coupling
constant that appear in the expression for 7„',
and v,„'. The numerical values for a and P for
fused silica are 3.78X10 "and 1.09&10 ", re-
spectively. These are obtained on inserting the
numerical values of the constants in Zqs. (7) and
(14) where, of course, 7' '=u/ '. Thus, a and p
are numbers derived from experimentally mea-
sured data and are not freely adjustable param-
eters The .ratio P/@=2. 88&&10 ' governs the
relative dominance of the roles of r„,' and v,„'
in determining the conductivity data as a function
of temperature, If one allows this ratio to vary in
order to obtain the best fit to the thermal-con-
ductivity data, the expression P/n is obtained
which gives a coupling constant y equal to that
obtained from ultrasonic measurements. In the
case where an energy dependence in the density
of states is included, these numerical factors will
be modified by the integration of the energy-de-
pendent density of states, the modifying factor be-
ing the same in both the rates, 7 „', and v,,', . We
show what happens to the plateau region in the
thermal conductivity with different values of the
ratio P/a with a density of states of form a and
form b-1. Figure 5 curve a shows form a with
P/o. =2.88x10 ', while Fig. 5, curve 5, shows that
the plateau disappears when the ratio P/a is made
smaller, P/n = 2.88 x 10 '. Figure 6, curve a,
shows form 5-1 with P/+ = 2.88&10 ', while Fig.
6, curve b, is the same density of states
with P/u = 2.88&&10 '. The plateau region disap-
pears as P/e becomes smaller, indicating that
with the given expressions for the two rates, one
cannot decrease the relaxation scattering rate by
an order of magnitude without washing out the
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FIG. 5. Thermal conductivity generated with a con-
stant density of states with the ratio p/n, the ratio of
the relaxation rate to the resonant rate (7-eI/w«, ), for
the cases (a) 2.88 x 10 3 and (b) 2.88 x 10 4.

plateau. This behavior shows quite clearly why
we could not raise the plateau region to fit the
experimental values, although we could lower it.
Recall that the &„', value has been previously fixed
by the low-temperature fit of the thermal-con-
ductivity data.

If the P/u ratio is increased, on the other hand,
to p/a=2. 88x10 ' for instance, a definite maxi-
mum and a minimum appear in the plateau, in
the intermediate temperature region, due to the
dominance of the relaxation process. This shape,
as can be seen in Fig. 6, curve c, is reminiscent
of the thermal conductivity measured for As,'S3

and As, Se,.""The size of the p/a ratio has an
important physical relevance as it gives a direct
measure of the product y'/pv'. Noting that the on-

set of the "peak" and "valley" in the thermal-con-
ductivity curve occurs for a value of p/n ~ Qx 10 '
we have made an estimate of the coupling con-
stant for As, S, which is in agreement with the
ultrasonic results of Claytor and Sladek" (--, the

y for silica). Further, this ratio together with
kT~, the energy at which the density of states
starts to decrease, governs the shape of the
thermal-conductivity curve. A variety of shapes
can be explained by the relative strengths of p
and a, from a very weak plateau, to a strong
peak and valley in the plateau region. Moreover,
no new mechanism is required" to explain the
maximum and minimum in the plateau.

We next attempt to fit the plateau region with a
density of states form a and a change in the cut-
off T„=15 K, Figure 7 shows that we were able to
fit the plateau region to the experimental data.
We have therefore shown that while an energy-
dependent density of states can generate a plateau
in the thermal conductivity, the energy dependence
is not essential as has been suggested"'" for the
occurrence of the plateau. Further, a nearly
constant density of states (form a), gives rise to
the plateau in the correct place with respect to
the experimental data.

The fact that we can fit the thermal-conductivity
data with a constant density of states becomes inter-
esting in light of the recent time-dependent specific-
heat experiments of Loponen, Dynes, Narayana-
murti, and Garno. " Their results show that the
excess linear specific heat is due to two-level
systems, but that the excess T' specific heat may
arise from a different origin. The origin of the
observed excess T' specific heat and the possible
implications for the analysis of thermal-conduc-
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generated with a nearly constant density of states. The
points are the experimental data of Smith et gl. (Ref. 7).
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tivity data are not known. At this point, one should
recall that, although an energy dependence may
not be required to explain the larger than Debye
T' term in the specific heat, it does appear neces-
sary to explain, for instance, the velocity-dis-
persion results. '"

IV. THE HIGH-TEMPERATURE REGION
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In the high-temperature region (& 15 K), the
slope of the thermal-conductivity curve above
the plateau has a temperature dependence that
is' T'" over the range 15-60 K. Following
Smith et al. we write the mean free path as

l;„+(f,'„+f, ,'„+f, t„) ' for E& E,„
l;„ for E&F. ,„.

Because l;„is not temperature dependent, " the
thermal-conductivity integral has the tempera. ture
dependence of C, (~) integrated, which is T""
with 8+= 60 and 81,=330." With the abrupt cutoff
of the density of states at energy E,„ the tem-
perature arises from the integral over C, (~) and
the resulting thermal conductivity K~ T""is in
sharp contrast to the observed E~ T""depen-
dence. The calculated values of the thermal con-
ductivity, using an abrupt cutoff in the density
of states (solid line), is compared to the experi-
mental data (filled circles) in Fig. 8.

We have tried to fit the high-temperature (& 15 K)
experimental data' with a decreasing density of
states, or a "tail," beyond a certain energy kT~
(form c and form d). The results with a nearly
constant density of states and a tail are shown
in Fig. 9, curve a. The energy kT~ beyond which
the density of states is characterized by a de-
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FIG. 9. Thermal conductivity generated in case (a)
with a nearly constant density of states and a tail (form
c), and (b) with a density of states of form b-1 and a tail.
The points are the experimental data of Smith et ai.
(Hef. 7). See text for the physical significance of the pa-
rameters employed for this good fit and that of Fig. 10.

crease according to Eq. (6),

g -b

P(E) =Pr for E&kTr

with T~=15 K. Curve b of Fig. 9 shows the effect
of form d where the energy dependence is of form
b-l, with T~= 38 K. Figure 10 shows again a
density of states of form d, but now the energy
dependence is of form b-3. The points are the
experimental data points of Smith et al. ' We
would like to emphasize that this particular form
of the tail is not unique, and that one could ob-
tain the same fit with suitable adjustment of P~
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FIG. 8. Thermal conductivity generated with a density
of states of form b-1 and a sharp cutoff. The points are
the experimental data of Smith et ai- (Ref. 7).

Qppl I I I I I I I

Q2 0.5 I 2 5 lp 20 50
TEMPERATURE (K)

FIG. 10. Thermal conductivity generated with a density
of states of form b-3 and a tail. The points are the ex-
perimental data of Smith et ai. (Ref. 7). See text for the
physical significance of the parameters employed for this
good fit and that of Fig. 9.
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with larger or smaller values of b. Furthermore,
we would like to point out that changing the cutoff
would require changes in P~ and 5, as the contri-
butions from the states above and below 8 = kT~
change. Figures 9 and 10 show that the fits to the
experimental data in the high-temperature region
with the addition of the tail in the density of states,
are very reasonable. On comparing the fit with
and without the tail in the two-level density of
states (see Figs. 8 and 9), it can be clearly seen
that a tail in the density of states is essential to
producing a fit to the experimental data.

V. OTHER CONSIDERATIONS

Let us consider some further ramifications of
using these different forms of the density of states,
particularly in considering data in addition to the
thermal-conductivity data. We have, for instance,
calculated the total number of states with form c,
form b-l, and form b-3 of the density of states.
With form c and T~=15 K, we arrive at a total
number of states of 5.34~10" cm ' which is iden-
tical to that obtained from form b-3 and T,„=38 K,
5.33x10"cm '. The total number calculated from
form b-1, is on the other hand, 2.08&10"cm ',
almost a factor of 4 larger. We also have looked
at the low temperature (~ 2 K) specific-heat data'
and find our density of states, form c and form d,
in good agreement. We have shown that an explicit
fit to the thermal-conductivity data can be made
with a nearly constant density of states, with a
tail (Fig. 9, curve a). Nevertheless, an energy-
dependent density of states is required to fit the
ultra, sonic attenuation and velocity dispersion
data. "" We have also shown that a good fit with a
quadratic dependence in the density of states up
to E= kT~ and a tail beyond, is possible. However,
a fit to the data could not be achieved with a cubic
density of states. We mould like to reiterate that
the best fit achieved gave a coupling constant equal
to that measured from the ultrasonic experiments,
and a P, i.e. , a coefficient to the density of
states, consistent with the low-temperature
specific-heat data.

CONCLUSION

In order to better understand the importance of

the thermal-conductivity data to our physical
understanding of amorphous insulators, and to

understand the limitations of what may be learned
from such information, we have generated a,

variety of fits to the thermal-conductivity data.
We have seen that both a nearly constant density
of states and a quadratic density of states gene-
rate equally good fits. Accordingly, one clear
limitation emerges, that the fits do not allow one
to specify a density of states uniquely. On the
other hand, we have seen that a cubic energy de-
pendence in the density of states cannot fit the
data. Too strong an energy dependence although
producing a plateau, does not yield the correct
magnitude of the thermal conductivity in the in-
termediate temperature region. The low-tem-
perature fit to the thermal conductivity specifies
the coefficient P, the value of which is as ex-
pected, and agrees with the low-temperature
specific-heat results. In the plateau region, the
ratio of the relaxation to the resonant lifetimes
P/a influences the magnitude, shape, and break-
away point from the Ti.8 dependence of the low
temperature region. This ratio is thus a signa-
ture of the particular form of the thermal-con-
ductivity data: a definite plateau, weak plateau,
or a peak and a valley in the plateau region. From
this ratio, we have obtained not only the coupling con-
stant for fused silica, which is in agreement with that
obtained from ultrasonic experiments, but have
also made an estimate of the coupling constant for
As, S, which is in reasonable agreement with ul-
trasonic experiments. Further, we have seen
that given a particular density of states, the
energy kT~ at which the density of states starts
to decrease, determines the shape and the point
at which the thermal-conductivity curve starts
its upward trend again. Finally, the high-tem-
perature slope cannot be fit with an abrupt cutoff
in the density of states. Instead, it is essential
to have a gentle tailing off in the density of states,
a suggestion that is certainly physically reason-
able.
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