
PHYSICAL REVIEW B VOLUME 24, NUMBER 4 15 AUGUST 1981

Spatial oscillations in strain fields due to paraelastic defects
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Analytic expressions based on a phonon rather than an elastic continuum treatment are

given for lattice relaxation displacements and strains in the vicinity of paraelastic defects in

cubic crystals. Relaxation energies are also given in closed form. The approximations in-

volved in deriving these results are the use of the long-wave strain limiting form of the

defect-phonon interaction and the use of a Debye model for the phonons as well as a modi-

fied Debye model with appropriate Van Hove singularity at the Debye cutoff. The elastic

continuum limit in which the Debye frequency is allowed to go to infinity is investigated.

Only the modified Debye model gives sensible results in this limit. The analytic expres-

sions can be evaluated in terms of host-crystal parameters and measured stress-coupling

parameters of the defect. Displacements and energies are calculated for nine different de-

fect systems. It is found that the modified Debye model predicts defect interactions which

are of longer range than does the elastic continuum model and that these interactions show

a spatially oscillatory character at large defect separations.

Because of their strong interaction with their host
lattice, molecular and oA'-center defects in alkali
halide crystals exhibit small polaronlike proper-
ties. '

Among these properties is the renormaliza-
tion of tunneling matrix elements connecting
equivalent orientations of the defect. This renormal-
ization is due to reduction of phonon harmonic os-
cillator wave functions because of lattice relaxation
displacements of ions near the defect. This effect is

conveniently treated by means of the polaron
transformation which eliminates from the defect-
lattice Hamiltonian that defect-phonon interaction
term linear in lattice displacements by means of a
unitary transformation. This same transformation

applied to the lattice displacement operators yields
expressions for the associated static lattice displace-
ments in the vicinity of the defect. Sbch displace-
ments give rise to electric field gradients in the de-
fect region which could in principle be detected by
their interactions with nuclear electric quadrupoles,
although we do not concern ourselves with this as-

pect of the relaxation here.
In this paper approximate expressions for these

displacements are derived in analytic form. The ap-
proximations involved are (1) the use of the simplest
form of the defect-phonon interaction, the long-wave
strain limiting form, and (2) the use of a Debye
model for the phonons. A modified form of the

Debye model, in which the appropriate Van Hove
singularity at the maximum phonon frequency is in-

troduced, is also investigated to give some idea of

the sensitivity of our results to the assumed form of
the phonon spectrum. It is found that the use of
this modified Debye model is essential in achieving
a sensible expression for the volume change associat-
ed with the 3

&g
distortion created by the defect.

The resulting expressions for the lattice displace-
ments, although of course approximate, are easily

evaluated in terms of tabulated functions and

depend only on readily measurable quantities associ-
ated with the defect and the host crystal. It is

found that the displacements are not too sensitive to
the form of the phonon spectrum (within the limita-

tions of the models tried) suggesting that the ap-
proximate nature of the calculation might not be too
drastic. Using the Debye model is, of course, not
the same as using elastic continuum theory because
of the finite maximum Debye frequency. Elastic
continuum theory results follow from the modified

Debye model results given here by taking the limit

COD ~ oct .
The analytic expressions for lattice displacements

can be differentiated to give expressions for elastic
strain components which can be used to study
paraelastic defect interactions. It is found that the
strains have an oscillatory character reminiscent of
Friedel oscillations of the screening of a charge de-
fect in a metal. A consequence of these oscillations
is a longer range for defect interactions than that
predicted on the basis of elastic continuum theory.

In Sec. II expressions for lattice displacements
created by a [100] elastic dipole defect system are
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derived for both Debye and modified Debye
models. Section III gives analogous results for [111]
and [110]elastic dipole systems. Section IV gives

relaxation energy expressions and Sec. V presents
some numerical results for displacements and ener-

gies. Section VI discusses strains produced by elas-

tic dipoles and the interaction of paraelastic defects.
An appendix outlines the evaluation of certain in-

tegrals occuring in the modified Debye model.

II. METHOD AND [100] DEFECTS

In Ref. 3, Eq. (36), it is shown that the a Carte-
sian component of the displacement of the lattice
site occupant at L due to a defect with orientation i
is given by

' 1/2

6;XL ~ — g X f Dfeif
f

Here the sum over f is over the phonon modes, the

D~ are coefficients appearing in the linear defect-
phonon operator [Ref. 3, Eqs. (25) and (31)]. The
superscript i on X in (1) above, which appears in

Ref. 3 has been omitted here since we are omitting
the quadratic defect-phonon interaction term.

For the D~ we will use the so-called long-wave
limiting form in which the phonon-defect interaction
arises exclusively from the strain produced by the
phonons. For [100]-, [111]-,and [110]-oriented de-
fects the coupling to strain is given by

H, ([100])= ——,yi(2e~ —
eyy

—e~),

H, ([111])= ——,y2(e„+ e, + e ),

H, ([110])= ——,yi(2e —e„„—eyy)

3—
2 'V2exy ~ (4)

H. (~ ig ) = yo(e + eyy + e ),
and will be treated separately later.

Since the displacement operator is given by

1/2

XL ——g X f i (af of) (6)2'
where

I. f = (M, )
'f e (j)exp[iq X(L)]

for Debye phonons [see Ref. 4, Eq. (22)], the strains

produced by phonons at the origin of coordinates
(where we assume the defect to be situated) can be
written in terms of phonon creation and annihilation

operators: The strain components are derivatives of
(6) evaluated at the origin. Comparing with Ref. 3,
Eq. (31) we find

where yi ——ai(cii —ciz) and yz
——a2c44, ai and

a2 being the stress parameters as defined in the ta-
bulation of Bridges. The c;~ are the host-lattice
elastic stiffness constants which we assume to be
unaltered by the defect. The interactions (2)—(4)
have been constructed so that the sum over defect
orientations vanishes and consequently omits the
A 1g distortion due to the defect. For the purpose of
investigating lattice displacements this A 1g part
should be restored. It has the form

Df = —(i/3)yi(fi/2cofM )
~ [2e (j)q„—ey(j)qy —e (j)q ],

Df'" ———(3i/4)y2(A/2cofM, )' [e„(j)qy + e (j)q„+ c.p.],
Df = i (fi/2cofM, )'

I —,y, [2e, (j)q, —e, (j )q„—e„(j )q» ] —, y2[e„(j )qy + ey (j—)q„]I (10)

D "=iyo(a/2~fM. )'"[e-(J)q- + "Nq. + "(J)q ]

where c.p. is a cyclic permutation.

If the long-wave limiting form of the defect-
phonon interaction were abandoned in favor of an
interaction which is linear in the displacements of
neighbors nearest to the defect (and not just the
strain at the defect site), then the q; factors in (8)—
(11) would be replaced by (sinq;a)/a. For the sake
of the analytic results of this paper we have not
used this "linear in displacements" interaction. The

r
e(j) are phonon eigenvectors for mode jthe q;, pho-
non wave numbers, and M, is the crystal mass.

In the Debye approximation

g —+ I co deil cj. I
J

the j sum being over two transverse and one longi-
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I ip 1—
' 2 1/2

dco . (13)

This has the appropriate Van Hove singularity at
coD. In order that the total number of degrees of
freedom be the same both the Debye and
modified Debye models it is required that

tudinal wave with wave velocities cj. %e will also
consider (and be forced to opt for} a modified De-
bye model in which the integral over co in (12) is

replaced by

AD = AD(16/3tr)' . To be consistent with our sim-

ple model we use the elementary Debye model
result co& ——6m c /a where a is the host-crystal
nearest-neighbor distance and
1/c = (2ct + ct )/3

To perform the integrations in (1) we write the
lattice site position vector L in terms of spherical
polar coordinates R,8,4 with the crystallographic z
axis as the polar axis. So as to simplify q

~ L
( = qR cos8), the q and e (j) vectors are then writ-
ten in terms of spherical polar coordinates 8,$ with
I. chosen as the polar axis:

q = e(l) = (Asx + BFsy + BEc, —Bsx + AFsy + AEc, —Esy + Fc),

e(ti) = (Ay —BFx, —By —AFx, Ex),

e(t2) = (Acx + BFcy —BEs, —Bcx + AFcy —AEs, —Ecy —Fs) .

(14)

(15)

(16)

gj

I2(aj) = d8sin8cos8sin(ajcos8)
0

= 2ji(aj ), (18)

For conciseness we have used the notation
A = sin@, B = cos4, E = sin8, F = cos8,
x = sing, y = cog, s = sin8, and c = cos8. Using

q = coq/cz and performing the P integration in (1)
with (12), many terms vanish. The initial algebraic
step in this process is tedious. In the case of [110]
defects, for example, it involves consideration of 850
terms. The labor was much diminished by use of
the algebraic programming system REDUCE. The
surviving 8 integrations, having chosen the real part
of (1), can be reduced to two types

Ii(at ) = d8sin 8cos8sin(atcos8)
0

4j2(aJ)

I I

where j] and jz are spherical Bessel functions and

aj ——R co/cj.
The remaining integrations over co are straightfor-

ward in the Debye case:

ND

J co d pt I;(aj ) = 2cj

R
Et(gj ), (19)

where gj
——R m/cj,

K, (g) = Si(g) —3ji(g) ——,m + 2 cosg/g, (20)

K2(g) = Si(g) —sing —, ir —sing ——cosg/g . (21)

Since c3=3ct'/2, gJ -(9~)1/3 (R/a)(ct/cj) The.
asymptotic forms are those for large g (R greater
than a few nearest-neighbor distances). Defining
A/ = cj E;(gj ), the three components of the non-
A is(Es) displacement of an ion at R,8,4 are given

by

5ippXI.„——(A ipp/R )[3(3—5$ )(Ai —Ai) + 2(3g —1)A2 + 6(1 —g )A2]g,

5ippXty = (A ipp/R )[3(1 —5$ )(Ai —Ai) + 2(3( —1)A2 —6(2A2]rt,

5ippXL,, ——(A ipp/R )[3(1 —5( }(Ai —Ai) + 2(3g —l)A2 —6k A2R

(22)

(23)

(24)

where A ipp ——y&/12' P. g, il, and g are the direc-
tion cosines of L. This Ez distortion of the lattice
has the necessary property J 5ippX. dA = 0, the in-

tegral being taken over a spherical surface centered
at the origin. Thus there is no net volume change
associated with the Ez distortion. The diminishing
oscillations exhibited by the asymptotic forms in

(20) and (21) are reminiscent of the Friedel oscilla-

l

tions" in the screening of a point charge in an elec-
tron gas. The occurence of A; and A each with its
own length scale in its argument is an artifact of our
modified Debye spectrum which fixes a single cutoff
frequency coD. This produces two different cutoff q
vectors which lead to the two length scales. Be-
cause of the cj factors in the definition of the A;
and because c, /cI ——c44/c ~ &, the A; are typically

'2 2= I
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5g, X = —(yp/2ii pR )A2 . (25)

Paus and Liity' have measured 6V/V for
KCI:OH and found it to be, —0.21 per defect.
The asymptotic form of A2 for large R is

( —,m —sing()/ci . Using this, one ought to be able

to relate yp to this measured b, V/V through

only about 15%%uo as large as the A . We wilI oc-
casionally omit A; terms in the following discussion.

By the same method one finds the radial A &~
dis-

placements to have the magnitude

2 1/2

I~(a, ) = 2CJ
E;(gq ),

R

but the sine term would imply that 5V/V is a very
sensitive function of crystal size and appears to be
spurious. Indeed it is; this oscillating term in the
surface integral is an artifact of the incorrect sharp
cutoff of the Debye spectrum (which must be aban-
doned in favor of the modified Debye model).

This can be seen by carrying out the calculations
using the modified Debye density of states (13). For
this case the integrals (19) become

3'0 2
1 ——sin

C))Q 'jj

=a J5~, XdA

CI

(26)

(27)

with g~ = coDR /CJ. The displacements in the modi-
fied Debye case are given by (22) —(24) with the K's
replaced by E's. These integrals, like (20) and (21),
can also be expressed in terms of tabulated func-
tions:

K i(g) = wl gJp(g) —Ji(g) + rr(g —3g )[Ji(g)Hp(g) Jp(g)Ht(g)] ]

——,~r+ (&2~/g'~')cos(g ——,ir),

&2(g) =,~I gJo(g) —2J1(g) +,~g IJl(g)HO(g) —Jo(g)H 1(g)] ]
1 3

2
'ir —V 17/2g cos(g —

~
'ir) ~

(28)

(29)

2.2 11 1

2.0—

1.8—

l.6—

l.4—

l.2—

I.O—

0.4—

0.2—

0
0 2 4 6 8 l2

g

FIG 1. The functions Ei(g) and E2(g) defined in Eqs.
(28) and (29). The range of g values g~ and g, for the
first-nearest-neighbor distances of the systems discussed
in Sec. V are shown.

lO

Here the J„'s are Bessel functions and the 0„'s are
Struve functions. An outline of the evaluation of
these integrals is given in the Appendix. E

&
and E2

are plotted as a function of g in Fig. 1.

Note that the leading terms in the asymptotic
forms of K ] and E2 are the same as those for E ]

and E2. This is to be expected since the modified
Debye spectrum does not alter the density of the
long-wave phonons which determine the displace-
ments for large R. Note also that the oscillating
parts of the modified Debye asymptotic forms fall
off more rapidly for large R (with an extra factor of

'~
) than for the Debye case but they are not el-

iminated by modifying the abrupt Debye cutofK
We note from (29) that the bothersome oscillating
term in (26) is absent when the modified Debye
spectrum is used and b, V/V = —yo/c»a i, an ex-
pression which unlike (26) is independent of crystal
size. It is also independent of FoD and hence un-

changed by going to the elastic continuum limit.
This is, in fact, the elastic continuum theory result
of Nowick and Heller. '

Using Lighthill's'" method of finding asymptotic
forms of Fourier integrals one can readily deduce
the asymptotic expressions in (28) and (29) without
having to evaluate the integrals. This procedure is
interesting because it shows that the constant
asymptotic terms in (28) and (29) are governed en-

tirely by the phonon spectrum near co = 0 while the
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oscillating terms are produced by the form of the
Van Hove singularity at co&. These particular
features of the phonon spectrum are not mere ai'-

tifacts of the modified Debye model but are quite
general requirements of any adequate phonon spec-
trum. ' Furthermore, the use of the long-wave lim-
iting form of the defect-phonon interaction does not
seem to be an artificiality which itself produces the
unusual asymptotic displacement fields. In a more
elaborate model using summations over actual pho-
nons and a more accurate form of the Df' such as
that discussed under (11) above, one might worry
that the (sinq;a ) factors might vanish at the

Brillouin-zone boundary where the Van Hove singu-

larities of primary interest to us occur. This would

lead to a vanishing of the coupling of the defect to

zone-edge phonons and a suppression of the role of
the associated Van Hove singularities. This occurs

only at a few points on the zone boundary surface

(e.g. , the point X) and is not in general the case.

Thus, the asymptotic forms of (28) and (29) have a

more general validity than our approximate method

derivation might imply. We do not here investigate

the possible contributions to asymptotic displace-

ment fields from Van Hove singularities other than

those at ~ = 0 and co = co&.

III. [111]AND [110]DEFECTS

Using the methods of Sec. II and Eqs. (3) and (4) one can deduce non-A
&s displacement expressions for

[111]and [110]defects. For a [111]defect the T2g displacements are given by

5iiiXL„——(A iii/R ) I [2(A2 —A2) —5(Ai —A'i)](gil + ilg+ g')g+ (Ai —Ai + A2)(il + g) I,
and 5&iiXI, being given by cyclic permutations of the direction cosines g, i),g, in (30). Here

A „,= 3y,/8ir p.
For a [110]defect the displacements (both Eg and Tzz) are given by

5iipX~ ——(A ))p/R )[3(Ai —AI)(1 —5$ ) + 2A2(1 —3g ) + 6A2( ](
+ (B)ip/R )[(Ai —AI)(5( —1) + 2A'ig +. A~(1 —2g )]g,

5()pXs = (& )&p/R )[3(AI —AI)(3 —5( ) + 2Ai(1 —3g ) —6A2(1 —0 )10

+ (Bt(p/R )[5(AI —AI) + 2(A2 —A2)]grj(,

(30)

(31)

(32)

IV. ENERGIES OF RELAXATION

The energy associated with the polaronlike relaxa-
tion is given by

I) 2I
f

according to Ref. 3, Eq. (37). E can be readily
evaluated by the methods of Sec. II to give

(33)

and 5iipXli, is the same as (31) with g and i) inter-
changed, where 2 iip = pi/12ir p aild Bi ip
= 3y2/4m p. As with the [100] case, in both the
[111]and [110]defect cases, the modified Debye
forms of the displacements follow from expressions
(20)—(32) with A/ replaced by A J. It can be
readily verified that there is no net volume change
associated with these non-A, s distortions. In (22)—
(24) and (30)—(32) the elastic continuum results fol-
low if one takes cori ~ ce . This causes A; ~ n/2c/
throughout. Note that only the modified Debye
model yields a sensible elastic continuum limit.

2-2
~100 —~

3 +1 ~

9
@111=~3272 ~

Ellp=~(3) i+
E~„=Bro,

where
1 3P~+2 1

10pa 2P + 1 ci

B =3/[2pa (2P +. l)ci ],

(34)

(35)

V. NUMERICAL RESULTS —DISPLACEMENTS
AND ENERGIES

To calculate relaxation displacements and ener-

gies by the methods of the previous sections we need

with P = ci/c, . These results are the same for both
tht..Debye and modified Debye phonon spectra be-

ing independent of co~.
Since the defect-lattice interaction has been treated

as arising solely from the strain produced by the de-
fect, these energies include no electrostatic contribu-
tion.
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the measured defect stress parameters o.~ and/or a2
along with the fractional volume change 5V/V as-

sociated with the defect. Also needed are the host
interionic distance, elastic constants, and density.
The Struve functions which occur in (28) and (29)
can be calculated using the Chebyshev polynomial
method of Luke. '

Table I shows, for the case of the [100] defect

KC1:OH, displacements for the first five neigh-

bors nearest to the defect and relaxation energies

for the Eg and for the A ~g distortions. Results are
shown for room-temperature and for 80 K elastic
constants as well as for the Debye and modified

Debye phonon spectra. The Paus and Luty' value

of —0.21 for AV/V and the stress parameter

a~ ——5.8 X 10 cm from Ref. 8 have been used.
It is to be noted that the variation of displacements
with choice of phonon spectrum is relatively slight
except for the 111 neighbor in the case of the Ez
distortion. A much larger change is produced by
using 80 K instead of room-temperature elastic
constants. Note that, at least for the case of
KCl:OH, the A &g displacements and relaxation
energies are an order of magnitude smaller than
those associated with the Eg distortions. The oddi-

ty of slightly larger A ig radial displacements. for
200 neighbors than for 100 neighbors occurs in this
model calculation because of an initial marked in-

creased in IC&(g) for small and increasing g.
Stress parameters for a number of other molecu-

lar or off-center defects have been tabulated by
Bridges. Unfortunately, neither hV/Vfor any de-

feet system other than KC1:OH nor low-

temperature elastic constants for host crystals other
than KC1 and KBr seem to have been measured.
Table II shows calculated displacements and relaxa-
tion energies for these other systems. The stress
parameters (in units 10 cm ) used were the fol-
lowing. For the [100] systems KBr:OH
RbC1:OH, RbBr:OH, RbI:OH 0!] = 7.68,
4.97, 8.67, 12.0, respectively. For the [110]systems
NaBr:F, RbC1:Ag+, RbBr:Ag+ (a~, aq)
= (2.12, 0.728), (7.42, 1.82), (13.7, 3.51).
For the [111]system KC1:Li+ a2 ——3.31. For
KCl:Li+ and for KBr:OH the results are given for
both room-temperature and low-temperature elastic
constants. Elastic constants have been taken from
the tabulation of Huntington. ' The use of low-

temperature lather than room-temperature elastic
constants is seen to make little difference in the case
of the [111]system KC1:Li+ while in the case of
[100] KBr:OH mainly the 100 displacements and
the relaxation energy are affected by this choice of
elastic constants. It is interesting to note the small

displacements and relaxation energy of the KC1:Li+
system compared with the other non-[111] systems.
The 111 neighbor displacements are the only ones
showing marked sensitivity to the form of the pho-
non spectrum, even changing sign with change from
the Debye to the modified Debye forms in the case
of NaBr:F . The asymptotic identity of the Debye
and modified Debye model displacement magni-
tudes appears to have been nearly achieved at fifth
nearest neighbor distances.

TABLE I. Displacements for various neighbors and relaxation energies for the [100] KC1:OH system. RT (room

temperature) or 80 K refer to the temperature at which the elastic constants were measured. Eg or A &g refer to the sym-

metry of the distortion and D and MD refer to the choice of phonon spectrum: Debye or modified Debye. All displace-

ments are given in hundredths of an angstrom. The column labels Imn refer to near-neighbor positions. The numbers in

parentheses are the x, y, and z components of the displacements. The Eg displacements at 0+ 10 and 00+ 1 sites are
directed radially inward toward the defect and have magnitude half that shown for the 100 site.

Case 110
Site

200 210 E (eV)

RT
RT
80 K
80 K
RT
RT
80 K
80 K

Eg

A)g
A)g
Alg
A)g

D
MD
D
MD
D
MD
D
D

(26,0,0)
{23,0,0)
(31,0,0)
(27,0,0)

( —1.6,0,0)
( —1.6,0,0)
( —1.4,0,0)
( —1.4,0,0)

(1.7,3.8,0)
(1.7,2.8,0)
(1.9,4.5,0)
(1.8,3.5,0)

( —1.4, —1.4,0)
( —1.3,—1.3,0)

(—1.2, —0.30,0)
( —1.1,—1.1,0)

(—1.8,0.90,0.90)
(—0.2,0.11,0.11)

( —2.2, 1.1,1.1)

( —0.31,0.16,0.16)
(—1.1,—1.1,—1.1)

( —1.0,—1.0, —1.0)
( —0.99,—0.99,—0.99)
(—0.91,—0.91,—0.91)

(5.6,0,0)
{6.0,0,0)
(6.6,0,0)
(7.1,0,0)

(—1.8,0,0)
( —1.6,0,0)
(—1.7,0,0)
(—1.5,0,0)

(3.4,0.41,0)
(3.5,0,9,0)

(4.0,0.53,0)
(4.1,1.1,0)

{—1.5,—0.74,0)
( —1.3,—0.63,0)
{—1.4, —0.69,0)
(—1.2, —0.60,0)

0.12
0.12
0.18
0.18
0.016
0.016
0.015
0.015
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I

TABLE II. Displacements and relaxation energies for several defect systems. All the displacements and energies
0

shown are for non-A
&g distortions. The displacements are in units 10 A. The top values are Debye results, bottom

modified Debye. In the case of KBr:OH and KCl:Li+ where the low temperature elastic constants are known, results

for both room temperature (RT) and low temperature (LT) are given.

System

KBr:OH

RT

LT

RbCl:OH

RbBr:OH

RbI:OH

100

(33,0,0)
(29,0,0)
(39'.0,'0)

(34,0,0)
(24,0,0)
(21,0,0)
(42,0,0)
(37,0,0)
(58,0,0)
(51,0,0)

110

(2.1,4.9,0)
(2.2,3.7,0)
{2.4,5.7,0)
(2.4,4.3,0)
(1.5,3.6,0)
(1.5,2.7,0)
(2.5,6.3,0)
(2.6,4.8,0)
(3.3,8.7,0)
(3.5,6.6,0)

Site

[100] Systems

( —2.3,1.2, 1.2)

(—0.3,0.16,0.16)
( —2.8, 1.4, 1.4)

(—0.41,0.21,0.21)
(—1.7,0.87,0.87)

(—0.3,0.13,0.13)
( —3.1,1.5, 1.5)

{—0.49,0.24,0.24)
{—4.3,2.1,2.1)

( —0.72,0.36,0.36)

200

(7.1,0,0)
(7.6,0,0)
(8.3,0,0)
(8.9,0,0)
(5.2,0,0)
(5.6,0,0)
(9.0,0,0)
(9.7,0,0)
{12,0,0)
(13,0,0)

210

(4.4,0.55,0)
(4.4, 1.2,0)

(5.1,0.69,0)
(5.1,1.5,0)

(3.2,0.43,0)
(3.2,0.9,0)

(5.5,0.77,0)
{5.6, 1.6,0)
(7.5, 1.1,0).

(7.6,2.3,0)

E (eV)

0.17

0.24

0.082

0.21

0.31

[111] System

KCl:Li+

RT

LT

(0,1.3,1.3)
(0,0.98,0.98)

(0,1.3,1.3)
(0,0.96,0.96)

(1.3,1.3,—0.33)
(1.1,1.1,—0.18)
{1.3,1.3,—0.36)
{1.1,1.1,—0.20)

(1.2, 1.2, 1.2)
(1.1,1.1,1.1)
(1.2, 1.2, 1.2)
(1.1,1.1,1.1)

(0,—0.03,—0.03)
(0,0.14,0.14)

(0,—0.03,—0.03)
(0,0.13,0.13)

(0.33,0.32,0.31)
(0.39,0.30,0.20)
{0.34,0.32,0.30)
(0.40,0.29,0.19)

0.0069

0.0073

[110] Systems

NaBr:F

RbCl:Ag+

RbBr:Ag+

(2.9,0.54,0)
(2.5,0.44,0)

(18,1.1,0)
(16,0.92,0)

(34,2.0,0)
(29,1.6,0)

(1.3, 1.3,0)
(1.0, 1.0,0)
(7.6,7.6,0)
(6.4,6.4,0)

(14,14,0)
(12,12,0)

( —0.13,—0.13,0.4)
(0.02,0.02,0.05)

(—'1.3,—1.3,2.8)

(—0.15,—0.15,0.5)

(—2.4, —2.4,5.2)

( —0.31,—0.31,1)

(0.61,0.05,0)
(0.64,0.09,0)
(3.9,0.12,0)
(4.2,0.19,0)
(7.1,0.21,0)
(7.7,0.33,0)

(0.42,0.27,0)
(0.43,0.27,0)

(2.9,1.5,0)
(3.1,1.7,0)
(5.3,2.8,0)
(5.7,3.1,0)

0.0092

0.19

0.54

VI. STRAIN FIELDS AND DEFECT
INTERACTIONS

The displacement fields (22) —(25) and (30)—(32)
can be differentiated with respect to the Cartesian
components of lattice position to get expressions for
elastic strain tensor components as a function of po-
sition relative to the defect. Interactions between
defects can then be written down in analytic form
using the strain components and the strain-defect in-

70

2&P

1 32 2
~ A' + ~ n'

R
(36)

teraction expressions (2)—(5) suitably altered to in-

clude all possible defect orientations of the second
defect. In this section only the modified Debye
model will be used. We drop the tildes on A and E
functions for convenience.

For the 3 ~g distortions
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and cyclically for e~„and e . %e have introduced
the notation

CJ dgj
A/(g~ )

= (con/cj~)K (gj),
1

where the E~ are derivatives of the E;(g) given by

(37)

+, [&i(g)~0(g) —Jo(g)& i(g)]
3m'

—(2'/g )'~ sin(g —, n), — (38)

E~(g)=, ~ —&,(g) —Jo(g) -(~/2g)' cos(g ——,~),
(39)

I

the asymptotic forms being those for large g. Note
that for an A &z defect the dilatation of the strain
field does not vanish according to (36):
e + e~ + e = —(yo/2mpR )Ilq. In the elastic
continuum limit it does vanish but our modified De-
bye theory produces this nonzero oscillating dilata-

tion field. Consequently, interactions between A &

defects are possible in this model although they do
not occur in elastic continuum theory. As was seen

in Sec. V for the only case in which yo is known

(KC1:OH ), the A is distortions are small compared
with the E& distortions. %e will therefore omit the
3 &z strains from further consideration in this sec-
tion.

For [100] defect only e, ezra, e play a role in

defect interactions. The E~ strains arising from dis-

placements (22) —(24) are given by

e~ = (A ioo/R )[3(3 —24( + 25(")(Ai —Ai)

—2( 1 —12$' + 15$')A', + 6(1 —6g'+ 5(')A', ]

+ (3 ioog /R )[3(3—5g' )(IIi —IIi') + 2(3g —1)IIq + 6(l —g )Iiq],

eye ——(Aioo/R )[3(1 —3i) —5$ + 25$ g )(Ai —A', )

—2(1 —3' —3g + 15$ i) )Ap + 6g (5i) —1)Ai]

+ (3 ioorp/R )[3(1—5( )( II i
—

II i ) + 2(3g —I)Iip —6$ II~]

(40)

(41)

(42)

with e being the same as e„~ if g replaces g there. The dilatation associated with this strain field is given by

e + e~~+ e = (1 —3g )A&00[(6/R )(Ai —Ai+ Az) + (1/R )(311& —3IIi —211&)] .

This does not vanish but does average to zero over
directions since (g ) = —, so that the volume

change associated with this Ez strain field is indeed

zero. The elastic theory results follow in these and
similar expressions if one sets A, equal to n/2c~
and all H J equal to zero.

The oscillating terms in the A and H functions
have an interesting consequence in the form of the
strain components at large distances. from the defect.
Referring to the asymptotic forms of the A and H
functions [see (28), (29), (38), and (39)] one finds
that the leading asymptotic terms for large R in

(40)—(42) are those containing Iiz. These terms
vanish as R for large R. In the elastic theory
form of (40) —(42), with all the II functions absent,
the strains fall off as R . Thus the effect of the
oscillations arising from the Van Hove singularity at
the modified Debye cutoff frequency is to make the
range of defect-defect interactions somewhat greater

than that given by an elastic theory with no cutoff
frequency. This is again reminiscent of the screen-

ing of a point charge by an electron gas in which
the singularity in the dielectric function which arises
because the sharpness of the Fermi surface produces
static oscillations in the screening charge distribution
and extends the range of interaction beyond what it
is in theories which do not take such oscillations
into account.

Neglecting the smaller longitudinal terms for sim-

plicity, the leading terms of the asymptotic forms of
the strain components (40) and (41) are

1

e —C(R/a) g (1 —g )cos(g, —4~),

e~~ ——C(R/a) '
g i) cos(g, ——,~), (43)

e ——C(R /a) '~
g g cos(g, —,~), —

where C = (yi/c44a ) (3/2 n. )'~ and
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g, = niDR/c, = (48m)' (R/a). The spatial oscilla-
tions have a wavelength of the modified Debye
transverse wavelength minimum. The asymptotic
dilatation associated with (43) is zero so that the
preferred orientation of a second (100) defect is
determined by the maximum of e~, e~~, e~ accord-
ing to (2). This is determined by the sign of the
cosine factor in (43). For a given distance R, except
for g' = 1 or 0, all the second-defect-preferred orien-
tations are either with the x direction or in the y,z
direction (degenerate) depending on the sign of the
cosine factor. These asymptotic strains can be com-
pared with those of elastic theory which are, again
neglecting the longitudinal terms,

e„„——C'(1 —12( + 15( )(R /a)

eye ——C'(1 —3'' —3g'+ 15$'r)')(R /a) '
(44)

e ——C'(1 —3g —3g + 15( g )(R/a)

where C' = (yi/c44a )/8m which is about —, the C
of (43).

The critical concentration c, at which elastic di-

pole defect interactions begin to be important for
(100) defects occurs when the average distance
between defects is such that y&e is equal to the
matrix element 5 associated with nearest-neighbor
tunneling of the defect. Strains (43) and (44) give
different estimates of this concentration. For
KC1:OH for which 0;& ——5.8 A, 5 = 0.17 cm
c, (mole fraction of KOH in KCI) estimated from
the modified Debye asymptotic strains (43) is

1.9 )& 10 while that estimated from the elastic
continuum asymptotic strains (44) is 4.3 )& 10, 20
times greater than the modified Debye model esti-
mate. Unfortunately, accurate information about
the critical concentration in KC1:OH is not avail-

able.
Of course OH is also an electric dipole (p). The

~~tical concentration for electric dipole interactions
is cd —esca /p . e is the static dielectric constant.

=x
000 IOO 200 500 400

FIG. 2. Preferred orientations of a second (100) de-

fect in the strain field of a [100]-oriented elastic dipole at
the 000 site according to Eqs. (2), (40), and (41) for the
case of KCJ:OH

The electric dipole of OH in KC1 is 0.9e A so that
for KC1:OH cd —2.4 )& 10 ". The elastic contin-
uum estimate of the elastic dipole interaction critical
concentration would suggest that electric dipole in-

teractions would very slightly dominate but the
modified Debye model estimate of c, suggests that
this may not in fact be the case.

Ignoring the electric dipole interactions just for a
moment, Fig. 2 shows the preferred orientations of
a second OH in the immediate vicinity of a [100]-
oriented OH defect in KC1 based on the elastic di-

pole interaction alone using (2), and (40) and (41).
It can be seen that the preferred orientation pattern
is quite complicated even close to the central defect.
Far from the defect where the asymptotic strains

vary rapidly with distance from the central defect
the pattern would be even more chaotic, although
the angular dependence of preferred orientation for
a given distance is, as we have seen, in the case of
(100) defects essentially absent. Paraelastic defect
interactions seem to lend themselves to an orienta-
tional glass state.

A more favorable case for domination of defect
interactions by elastic dipole interactions is
KCl:CN where the electric dipole is small p —0.1e
A. This is a (111)system.

Off-diagonal strain components for a (111)de-
fect are given by

3 I [2(A2 A2) —5(A»][—gtl(farl + rig+ g) + g(g+ r))(1 —2g )

+ tl(g+ g)(1 —2g ) —2gt)g(g+ il)]

+ (A', —A', + A') [2 —3g —3tl —3((il + g)] J

+ (rl', —11', + 112)[g(g+ q) + g(g+ P] I (45)
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3 y2 3
4 c~a' 2'm'

L

cos(g, ——,
'
~)[1 —0'+ nP + 4 —4k'(kn + n0+ 4g)]

and cyclically for ez, and e . Asymptotically, for large E., keeping only the transverse terms,

-]/6 . . -5/2

(46)

and cyclically.

Using (46) one can estimate the critical density

for elastic dipole interactions in KC1:CN
(yz ——5.1 X 10 ' erg) as c, —2.3 X 10 '. The
eIectric dipole moment interactions produce a criti-
cal density c~ —7.8 X 10 . This is a case in

which the elastic dipoles most assuredly dominate.

Holuj and Bridges' have observed interaction ef-

fects in paraelectric resonance experiments at a
conceritration of 10

Preferred orientations of a second (111)defect
asymptotically far from the central [111]defect
calculated from (46) and (3) with its other forms
are given in Figs. 3 and 4 for negative and positive
cos (g, —, ir) in —(46). For a negative cosine factor
most of the sites have a preferred orientation paral-
lel to the central [111]defect except for a few sites
in the [111]direction and sites near the great circle

I

on the sphere which has a plane perpendicular to
[111]. For a positive cosine factor the pattern is

more complicated. In this case, however, the
numbers of sites with preferred [111],[111],and

[111]orientations are all the same. There are no
sites with preferred [111]orientations for a positive
cosine factor. In the [111]defect case with positive
cosine factor, unlike the [100] defect case, there is a
marked dependence of preferred orientation on

direction of the defect site as well as a rapidly os-

cillating dependence on the distance to this site.
Strain component expressions around a [110]de-

fect are readily deduced from (31) and (32) but the
rather lengthy expressions are not given here. The
preferred orientations of an asymptotically distant
second (110) defect varies markedly not only with

distance but also with direction.
Note added. In a theoretical investigation of ul-
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FIG. 3. Preferred orientations of a second (111)defect in the asymptotic strain field of a [111]-oriented defect at the

origin. The distance from the origin is such that cos(g, ——ir ) in Eq. (46) is negative. The plot is a mercator projec-

tion of the spherical surface surrounding the origin. The projection of the [111]direction occurs at 0 = 54.7' and

tI) = 45'. The regions labeled 1 have preferred [111]direction. Those labe1ed 2, 3, and 4 have preferred [111],[(1)],
and [111]directions. The parameters used are those for KC1:Li+.
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FIG 4. The same as Fig. 3 but for positive cos (g, ——cr) in (46).

trasonic attenuation in glasses JofFrin and Levelut
have done a Debye calculation similar to the one
described here. They have not investigated the
modified Debye case.

where Ref. 21 (3.752.2), has been used. The in-

tegral involving the Bessel function is given in Ref.
21 (6.561.13) as corrected by referring to the source
given there and we get
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APPENDIX

The simpler of the two integrals K
&

and K2 is the
latter:

1

E2(g) = (1 —y )'~ singy
0 y

1—2g I dy (1 —y )'~ cosg)7

= f dy (1 —y )'~ J dt cosyt —vrJ~(g)

Jdt J,(r)—lt ——J,(g),
2 o 2

Kz ——
2 m[1 —gJ&(g)S 2,o(g)

The S&„(g) are Lornmel functions which can be ex-

pressed in terms of Struve functions and Bessel
functions by use of identities given in Ref. 22. In
getting (29) we have also used the Wronskian identi-

ty given inRef. 23 (9.1.16).
The integral

1

& (g) = 2g f dy(1 —y")'"Jz(@»

can be performed by first using an integral represen-
tation of j2, Poisson s integral, given in Ref. 22
(10.1.4). Ij: ~(g) then yields to the same methods as
were used for K &(g). The asymptotic forms in (28)
and (29) can be found by use of Ref. 23 (12.1.30).
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