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Properties of excitons bound to neutral donors
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The binding energy of excitons to neutral donors in the approximation of spherical, nondegenerate energy bands, is
calculated by a variational method for relevant range of electron-to-hole mass ratio. Estimated relative intensities of
LO-phonon replicas of radiative recombination of the exciton-neutral-donor complex are in fair agreement with
measured intensities of fluorescent lines.

I. INTRODUCTION

Shallow excitons bound to impurities or defects
in semiconductors give rise to sharp absorption
and fluorescence lines observed in good crystals
at low temperatures at photon energies lower by a
few millielectron volts than the intrinsic free
exciton lines. ' ' Recombination of shallow excitons
bound to neutral donors and acceptors can be de-
scribed in the effective-mass approximation.

Here we will report a calculation of the exciton-
neutral-donor complex ground state by a varia-
tional method. The minimization of the ground-
state energy of the complex determines the op-
timized bound-exciton envelope which is used to
compute the interparticle distances in the neutral
complex, the electric dipole moment for radiative
recombination, and the intensities of the I.O-
phonon replicas.

II. EXCITONS BOUND TO A NEUTRAL DONOR

Starting from the Hartree-Fock approximation
for the many-electron. system in the crystal and
adopting the effective-mass approximation,
Ungier" ' derived equations for the envelope func-
tion of the shallow bound exciton. In the calcula-
tion, the spin-orbit interaction is neglected. The
conduction and the valence bands are assumed
nondegenerate except for spin. The fundamental
energy gap is assumed direct at the zone center
where the effective masses of the electron and
holes are taken to be spherically symmetric.

For the exciton bound to a neutral donor the unit
of energy is the effective donor Rydberg ED
=e m, /2hVo, the unit of length the effective donor
Bohr radius a~ =Do/e m„where m, is the effec-
tive mass of the electron and 6p is the static di-
electric constant of the crystal.

In these units the effective-mass Hamiltonian
for the exciton bound by Coulomb potential to a
neutral donor is

H =T+P)
r =-(v', + v', +~v', ),

1 1 1 1 1 1t
!

1/'=2 —-- +——————
rf2 ro r1 r2 rfh r2h)

The subscripts 1,2 refer to two electrons; h to
the hole. Thus x,& is the electron-electron, r„ the
donor-hole, x),2 are the donor-electron, and x(„,g„
the hole-electron distances, respectively.
o =m, /m„ is the electron-to-hole effective-mass
ratio. The electron-hole exchange energy terms"
have been neglected in (1).

Adamowski 3 computed the ground-state energy
of an exciton bound to a neutral donor using the en-
velope function'

F =4p+c4),
4'o No(l +P—&2) exp(- nr, —Pr2 —yr&„—5r 2o), (

+or (1 +E/o) exp( n rf P ro y r$o ~ roo) '

The constants N p and N2 normalize respective
functions to unity, P, 2 interchanges the electrons
1 and 2, and c is a linear variational parameter.
The nonlinear parameters n, P,y, 5, n, P,y, 6
have been optimized for each value of g by mini-
mization of the expectation value E =(E,HE)/(E, E)
of the Hamiltonian (1) with the help of the MINUIT

program of the CERN library. The optimized val-
ues of the variational parameters and of the bind-
ing energy

W=E +Ex +Ep ——E +E~[1+( 1+cr) ]
for few selected values of 0 are given in Table I.

III. EXCITON BOUND TO A NEUTRAL ACCEPTOR

In the approximation of nondegenerate spherical
band extrema the study of an exciton bound to a
neutral donor and of an exciton bound to a neutral
acceptor are equivalent, if the electrons are inter-
changed with the hol. es. The energy E(A,X)(o )
of the exciton-acceptor complex (A,X) with the
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TABLE I. Binding energy —TV, linear parameter c, and nonlinear parameters +, p, y, 6, Q, ', p, y', 5' of the exci-.
ton envelope function, as functions of the electron-to-hole mass ratio cr = m, f'm&.

0.2
0.3
0.4
0.5
1.0
5.o

10.0

0.048 91
0.042 65
0.038 33
0.035 26
0.028 70
0.028 46
0.028 12

0.460 12
0.439 26
0.421 27
0.405 82
0.358 37
0.329 67
0.362 08

1.041 04
1.047 51
1.050 21
1.053 33
1.061 21
1.059 41
1.045 49

0.209 90
0.219 90
0.227 27
0.233 63
0.255 42
0.284 11
0.285 38

0.103 10
0.080 85
0.065 63
0.053 77
0.022 96
0.000 00
0.000 12

0.830 71
0.759 05
0.697 24
0.645 07
0.466 97
0.138 54
0.070 66

1.079 90
1.090 73
1.094 68
1.10081
1.11722
1.093 06
1.057 76

0.298 42
0.305 22
0.308 67
0.312 58
0.323 03
0.31795
0.297 85

0.186 97
0.156 38
0.135 50
0.11852
0.073 00
0.010 28
0.005 85

0.867 50
0.795 55
0.732 73
0.680 63
0.505 37
0.192 57
0.10196

acceptor gydberg Z„=e m„(2RVO is related to the
energy Z(D', X)(g) of the exciton-donor complex
(DO, X) by

Z(A, X)( ')/Z„=Z(D, X)( )(Z

For the exciton bound to a neutral acceptor
Stebe and Munschy" have calculated the ground-
state energy with the trial function of Page
and Fraser'8 which for the positronium hydride
PsH corresponding to 0 = I, has given the best-
known results. The binding energies obtained by
Stebd' with a 35-term variational function are
plotted in Fig. 1 as a function of the mass ratio o
and of the inverse g '.

The extensive calculation of Stebl and Munschy"
confirms the result of Adamowski et al. ' about

the stable Coulombic binding of excitons to a neu-
tral donor and acceptor whatever the value of the
mass ratio g. In the important range of 0 =1, the
binding energy depends weakly on the mass ratio.
The weak dependence in this region is obtained by
other methods of calculation, like the. calculation
in the local density approximation, and calcula-
tion with a model Hamiltonian. 2' This weak de-
pendence is consistent with the rigorous upper and
lower bounds to dissociation energy of an exciton-
neutral-donor complex originating from the ac-
curate cal,culations of the 82 molecule.

CS =mh/m

0
I I

0.5 1 2 10
I f I f I 1 I I ~ I I I I

I

TABLE II. Experimental input data. In the case of
anisotropic effective mass the harmonic mean, and in
the case of the dielectric constant a geometric mean
have been used (Ref. 12).

Compound

CdS
CdSe
CdTe
ZnSe
ZnTe

me

0.205
O.13 '
O.O91 g

O.16"
O.O9 '

0.986
0.56
0.36 g

O.75"
0.6 '

Ep

8.46 b

1O.2'
9.65 g

8.7 '
1O.7'

5.27
5.88
7.2 g

7.3 j

Ace~ (meV )

38'
27'
21.3 ~

31.4
25.e '
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jF'IG. 1. Plot of the binding energy —W of the (D, X)
complex, in units of twice the donor Rydberg, versus
the mass ratio g = me/m&, obtained with Adamowski
(Ref. 13) wave function (curve D) and plot of the binding
energy of the (A, X) complex, in units of twice the ac-
ceptor Bydberg, obtained by Stebe and Munschy (Bef.
17) wave function (curve A). The circled point repre-
sents the best known result achieved by Ho (Bef. 19) for
0= 1 ~



PROPERTIES OF EXCITONS BOUND TO NEUTRAL DONORS

IV. SIZE OF THE BOUND EXCITON COMPLEX

The interparticle distances in the exciton-neu-
tral-donor complex computed with the optimized
envelope of Adamowski are shown dependent upon
0 in Fig. 2. The Coulomb potential keeps the
electrons at a distance from the donor smaller
than the donor-hole distance which increases when
the hole mass decreases. At 0 =10 the average

(r„}=16,and (x&) =3 Bohr radii. This compares
will with the best computed ~ average (r&+r2)
= 5.42 Bohr radii in the hydrogen ion H .

The envelope function of Adamowski et aL. '3 is
not sufficiently flexible: At about o =1 it yields
the binding energy about one-half of that obtained
by Stebe and Munschy, "and gives too large inter-
particle distances, but it is simpler for computa-
tion of the expectation values.

V. RADIATIVE RECOMBINATION

The rate of radiative recombination is propor-
tional to the squared modulus of the electric dipole
matrix element of the electronic system between
the excited 4b and the ground state 4p as

MPb=e O'P) r]4b

Since the electronic transitions are fast in com-
parison with the time required to change the posi-
tion of the lattice atoms we calculate the transition
rate between the electronic states assuming that
electrons adiabatically follow the lattice. Thus
we adopt the Condon approximation ': The elec-
tronic matrix element is taken independent of lat-

tice coordinates. In the configuration diagram of
the l.attice vibration the electron optic transition
goes vertically, i.e. , at the same value of the con-
figurational coordinate for the initial and the final
state.

VI. PHONON REPLICAS

Radiative recombination of excitons is accom-
panied, particularly in polar semiconductors, by
the phonon replicas. The longitudinal-optical (LO)
phonons in polar semiconductors give rise to rep-
licas (equidistant on the frequency scale) which
can be unambiguously identified. '

Multiphonon processes are possible if the equi-
librium position of the lattice atoms is different
for the different electronic states between which
the transition takes place. 2' 3~ Among the more
recent papers on multiphonon processes, Ridley
reported a quantum-mechanical calculation of the
multiphonon nonradiative transition rate for elec-
trons in semiconductors without assuming the
london approximation. Ridley at first38 made no
attempt to calculate the electronic matrix elements
since that would involve invoking special models
for the electronic states at the impurity center or
defect and for the electron-phonon interaction.
Nexts he has made a calculation with simple quan-
tum-defect wave functions.

Ungier, "' ' extending the theory of multiphonon
transitions developed by Qummel and I ax,3' de-
scribed the I.o-phonon replicas of the shallow
bound-exciton recombination, assuming the polar
coupling of the electron and the hole to the I.o
phonon. The interaction potential energy is linear
in the normal coordinate Q(q) of the longitudinal
mode with wave vector q,

V, „(r}= g y;Q(q}e"' .

For optic-mode phonons y~ = —iy / ~ q ~

with

t'

t, O

(2~~ ' ' 4rQ &' '
=e(u,

) (6)

"ed j

0.5
I I

1.0 1.5
0= me/mh

I

2.0 2.5

FIG. 2. Computed interparticle distances in units of
the donor radius a &, versus the mass ratio 0 =m~/mz.
Here r&&. hole-donor, r ~&. electron-hole, r «. elec-
tron-electron, r,„: electron-donor distance.

n = (e'/}f)(m/25(ui)'I'(e„' —eP)

is the dimensionless Frohl. ich coupling constant.
(See Table II.) e„=n„' is the high-frequency di-
electric constant of the crystal. of volume Q. For
the hole y„= -y. The I 0-phonon frequency re~
is assumed independent of q.

The lattice relaxation energy due to the elec-
tron-phonon interaction in the crystal ground state
with energy F.p is dE p and in the bound-exciton
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ground state E, is ~,. The zero-phonon line due
to purely radiative recombination gives the photon
of energy

hap E—, —dE p
—(Ep —~p) (8)

At temperatures k~T «I~L, recombination with
emission of the LQ phonon is more probable than
that with absorption. The intensity of the optical
line at frequency ~0-n~~ with emission of n I Q
phonons can be approximated by the Poisson-type
distribution' ' '

4n„ -s
I(n) = 7 IMpb I (&p -n&s)

3c 8 ~

For the bound exciton slowly varying in space
envelope, the electric dipole moment of the trans-
ition can be approximated by the product

(10)

of the electric dipole matrix element between the
conduction and valence Bloch functions u, „(x),
i.e. , integral over the unit cell, g, :

gl =e Jtu„*(x)xu,(x}d x, (11)
Qp

and the overlap integral of the bound-exciton
ground-state envelope E and neutral-donor ground-
state envelope fD(r) =(maD) ' exp(-r/aD),

uD= J/f dv, d ARE(r, , r~, r„=r,)f"(r,). ()2

In the computation of the Huang-Hhys factor S we

approximate the Bloch functions by their value at
q=0. Then S can be approximately computed as

s =(2'()~) ' + IDc I

(~
' -~p')X(~),a

variational function (2) is not sufficiently flexible,
it gives too small a value for the binding energy,
too large interparticle distances and values for
Mp(o') and too small values for the functional
X(g). Nevertheless the computed functionals Mp(o }
andX(&y) are smooth monotonic functions of o. The
weak Coulomb binding of exciton to neutral donor
makes the X(a) functional of a small absolute value
and this reduces the Huang-Rhys factor by 3
orders of magnitude with respect to more common
values of the order of unity. 4~

Thomas and Hopfield' measured the absorption
and fluorescent spectra of good CdS platelets at
helium temperatures and plotted in a semiloga-
rithmic plot the intensities of the fluorescent lines
measured at 1.6 K derived from no-phonon lines
of exciton bound to neutral acceptors and donors.
For the exciton bound to neutral donor the inten-
sity ratio of the first I.Q-phonon replica, I& -LO,
to the no-phonon line I2 can be read off from the
plot' as 0.1 to 300, i.e. , 3.3&10"4. This compares
well with our computed value f(n =1)/I(n =0)
=2.15&10 4 in Table III, where we present factors
S computed for semiconductors in which excitons
bound to donors and acceptors have been observed.
However, for CdS the higher phonon replicas do
not obey the Poisson-type distribution.

Henry and Hopfield4 analyzed in CdS and CdSe
the first I.O-phonon replica of the recombination
line I2 of the exciton bound to a neutral donor and
attributed its complicated shape to coupling be-
tween the LO phonons and the donor electron.

%e consider here only the position of the LQ-
phonon replica with respect to the no-phonon line
and estimate its intensity by using the optimized
envelope function for the bound exciton complex.

In the crystal with the forbidden gap ~, the os-
cillator strength ratio of bound exciton to the eon-

x(~)= ",Ju'g(n

is the sum over phonon wave vectors of the
squared modulus of the Fourier transform

2.5—

D; =y", ' d'x&d'x2d'x„E r, , r„r„

x(e""+e"'2—e'~'&)
—3

d'~ D r 'e"'
Since the variational parameters of the envelope

E have been optimized for each mass ratio g, the
functionals Mo and X of the envelope E are func-
tions of g. The values of the functionals Mp(o) and
X(a) computed with the envelope (2) of Adamowski'
are plotted as functions of 0 in Fig. 3. As the

0.50 1.0 1.5
Cf=m /mg

FIG. 3. Calculated oscillator strength ratio M02 of
the bound exciton to the conduction-band —to-valence-
band transition, and the functional X, versus the mass
ratio g =me~
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TABLE III. The electron-to-hole mass ratio 0, the effec tive Rydberg(R =ED, the dimension-

less electron-phonon coupling constant o,', =n (m, /m) ~, the oscillator strength ratio Mo of
bound exciton to the conduction-band-to-valence-band transition, the functional X, and the
Huang-Rhys factor S.

Compound 0 =m, /m„ S = e /2a& (eV) M2
0

104X 104S

CdS
CdSe
CdTe
ZnSe
ZnTe

0.208
0.232
0.253
0.213
0.15

0.330
0.174
0.128
0.235
0.114

0.613
0.580
0.269
0.530
0.299

195
192
188
194
202

1.73
1.80
2.05
1.78
1.51

2.15
1.67
0.87
1.69
0.58

duction-band-to-valence-band transition 3' is
M2~ =I'&u, /~, . Our estimate of Mo = 14 for CdS is
about ten times larger than the ratio l=1.4 of
Eps. (A5) and (A9} of Henry and Nassau. 45 They
estimated I from the oscillator. strength ratio of
bound exciton to the free exciton by using the ap-
proximate wave function of Rashba and Qurgenish-
vili to represent the exciton center of mass bound
to the crystal defect by short-range potential, and
had agreement with the measured4'4' lifetime of
the bound exciton. Our value of JV~ is too large,
showing once again that our envelope is too ex-
tended in configuration space. Inclusion in the in-
teraction potential of the polaron effects47' would
produce larger binding energy, smaller interpar-
ticle distances, and smaller values of Mo.

VII. DISCUSSION

Shallow excitons bound to neutral impurities
have been until now described by models similar

to the one presented here, derived from quantum-
chemistry considerations. The underlying effec-
tive-mass approximation is a far-reaching simpli-
fication. The assumption of a Coulomb potential
between the electron and the hole with the impurity
may not be in some cases justified. Acceptors are
often attributed to vacancies rather than to im-
purities with a charged center. Also donors may
require a more realistic description4~ as they
possess their core with a complicated electronic
structure. Better models of the excitons bound to
impurities are desirable and have to be developed
but they necessarily will involve, from the very
beginning, calculations still more extensive than
those presented here. Our attempt to compute the
phonon-replica intensities indicates a path of rea-
soning which has to be done in order to assess the
relation between the bound-exciton envelope and
the observable quantities of the complex.
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