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A method is described for the calculation of effective charges and piezoelectric constants
in crystals directly from self-consistent electronic calculations. The central equations are
based upon moments of the change in electronic charge density 5n ( r ) caused by the dis-

placement of an atom. The long-range Coulomb interactions are taken into account, and it
is shown that the moments are rigorously convergent and define longitudinal effective

charges and piezoelectric constants. The method is not limited to small displacements and,
in fact, uses exactly the same techniques which have been extensively developed for the cal-

culation of surface and interface dipoles. Results are presented for the effective charge in

GaAs using the same ionic pseudopotentials and density functional for the electrons that

predict accurately the lattice constant and phonon energies. The predicted charge is

ei ——0.16
~

e
~

(positive on Ga) compared to the experimental value eL ——er/eo
= +0.20

f
e f.

I. INTRODUCTION

Theoretical progress in calculations of electronic
properties of crystals has reached the point where it
is feasible to accurately predict, from first principles,
the electronic charge density and the total energy of
the electron-ion system. The essential ingredient in
this development is the density-functional method'
which gives a rigorous relation of the charge density
n (r) and the total energy. Together with methods
which greatly reduce the size of the computations, '

this has made it feasible to calculate accurately
many properties of semiconductors, such as the
equilibrium lattice constants, elastic constants, and
phonon energies. ' It has also been extended to
more complex lower-symmetry situations such
as predictions of work functions, and relaxations
of atomic positions at surfaces and interfaces.

This paper discusses the development and appli-
cation of a practical method to calculate macroscop-
ic polarizations from the charge density n (r). The
macroscopic polarizations can be directly measured
and define, e.g., optic mode dynamic effective

charges and piezoelectric constants. It was shown
in Ref. 9 (hereafter referred to as I) that these quan-

tities could be related to the change in charge densi-

ty induced by displacement of individual atoms: the
effective charge by the first moment of this induced

charge density and the piezoelectric constant by

terms involving the second moment. However, in I
no methods for calculation were given and the final

results were stated only in terms of the formal
long-wavelength limit of finite wave-vector equa-
tions. As discussed in I and Refs. 10 and 11, this is
nontrivial because of the long-range character of the
Coulomb interaction. Here we derive an explicit
formulation which is convenient for numerical cal-
culations and which gives a correct, rapidly conver-
gent approximation to the infinite-wavelength limit.

There are four important aspects of the present
formulation which determine its usefulness:

(I) It is convenient for numerical calculations.
We shall show that properties of the charge density
needed for the macroscopic polarizations can be cal-
culated using exactly the same procedure and
methods as have already been extensively developed
for surfaces and interfaces.

(2) The central quantity in the present work is the
change in charge density in real space caused by
displacement of an atom. We show that one can
work with properties of this induced charge density
which are localized to a neighborhood of the given
atom. The resulting form of the induced charge
density is instructive and gives a graphic picture of
the nature of the chemical bonding and local polari-
zability of the electrons. "

(3) Electron-electron interactions are treated self-

consistently. This is absolutely essential in any
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first-principles calculation of electric fields induced

by electronic polarizations because the long-range
electron-electron interaction is purely Coulombic
and has exactly the same form as the macroscopic
fields which we wish to calculate. In the limit of
small displacements, the self-consistency is equiva-

lent to carrying out the exact inversion of the dielec-
tric matrix which is necessary for calculation of
phonon energies, effective charges, etc. '

(4) The present methods are not limited to small

displacements of atoms and may be used to calcu-
late moments which are nonlinear in atomic dis-

placements and even in cases of gross changes in

chemical bonding. An example is the calculation of
interface effective charges in Ref. 8.

Previous work on theoretical understanding of ef-

fective charges and piezoelectric constans has been
devoted primarily to construction of models for the
induced charge density in real space. The model
calculations are too numerous to mention complete-

ly, but they include shell models' and bond-charge
models' fitted to lattice dynamical data, as well as
simplified models of the electronic properties such
as semiempirical tight-binding models. ' ' In each
case there is given a specific description of the
response of the electronic charge density to displace-
ments of atoms. These models are very useful and,
in order to make contact with them, it is particular-

ly advantageous that the charge density plays the
essential role in the present general formulation of
the interacting electron-ion system. In addition,
there have been several calculations' of effective

charges using empirical pseudopotentials. To the
knowledge of the present authors, all such calcula-
tions have been based upon the assumption that the
total self-consistent potential moves rigidly with the
displaced ions. This is an approximation used to
avoid the full self-consistent calculation, and
amounts to neglecting certain off-diagonal elements
in the inverse dielectric function matrix. ' Further-
more, it has been argued' that the long-wavelength
limit was not taken correctly in Ref. 18.

In Sec. II the general formulation is presented in

a way which takes into account the long-range char-
acter of the Coulomb fields, and in Sec. III explicit
numerical calculations for GaAs are discussed.

II. FORMULATION

Effective charge and piezoelectric coefficients may
be defined in an infinite crystal by considering the
long-wavelength limit of periodic waves with wave
vector k. The k Fourier component of the polariza-

and

(eL ).ap = «)use. sp

(Ql. ) pr
——(e ') sgspr,

(3a)

3(b)

which are uniquely related to the transverse coeffi-
cients through the macroscopic dielectric tensor e ~.
Note that in a cubic crystal e p' ——5 p(1/e).

In the present work we find that it is most con-
venient to use the longitudinal geometry to calculate
the induced moments using

V P=ik P= —6p

tion is given to linear order by ' '
I' = Vp '(Q prepr+ e„*~pu„p)+X pEp . (1)

Here Greek letters denote Cartesian indices, ~ labels
the atoms in the unit cell, and it is assumed that re-
peated indices are summed. The coefficient of E is
the electronic polarizability X~p ——(1/4')(e p

—1).
The polarization caused bg the atomic displace-
ments ut~ ——u„pexp(ik Rt„) is divided into a pure-

ly acoustic part determined by the strain ep&
——u pk&

where u p is the average displacement of a cell and a
purely optic part proportional to the displacement
of atoms within the unit cell u„, where g„u„=0.
Here Vo is the volume of the unit cell. The coeffi-
cient e„*p is the effective charge defined as the
derivative of P~ with respect to u„p holding the
strain e and the field E constant. Similarly Q p
may be defined as the derivative with respect to ep&
holding the optic displacement u„and field E con-
stant.

It is important to note that Q is not a piezoelectric
constant. In general a strain is accompanied by
internal optic displacements ' ' which are deter-
mined by minimizing the total energy. Here we
will consider only Q, which may be termed a
"quadrupole coefficient" for reasons described in I
and below. The complete expressions for the
piezoelectric constant in terms of Q, e*, and inter-
nal strain parameters may be found in Refs. 9 and
22.

The coeAicients e' and Q may be termed
"transverse" because in transverse geometries with
k l P the macroscopic electric field E vanishes.

Conversely, in a longitudinal geometry with
k

~ ~
P, E = 4n P in the—absence of external fields,

and E may be eliininated from Eq. (1) to yield

(PL )~ = Vp (e ') s(gsprepr+ e„*spu„p) . (2)

Consequently we may define the longitudinal coeffi-
cients
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where 5p is the k Fourier component of the total
induced charge density (ions plus electrons). In this

way we can evaluate the longitudinal coefficients eL
and QL given by Eqs. (2) and (3). The transverse
coefficients e* and Q may be rigorously derived
from eL* and QL using Eq. (3). The desired expres-
sions in terms of moments of the induced charge
density caused by displaceInent of an individual
atom may be derived following exactly the steps in

Sec. II of I. It is important to note that in I, only
the transverse case E = 0 was considered, whereas
here we shall show that it is more advantageous to
consider the longitudinal case with E = —4m.P.
The present analysis will not only eliminate the dif-

ficulty discussed in I in the proof of the convergence
of the moments, but we shall see that it will provide
rapidly convergent expressions convenient for nu

mescal calculations. Nevertheless, we can utilize
essentially the entire analysis in Sec. II of I which is
here reviewed brieAy.

Let us define the induced charge density (ionic
plus electronic) caused by displacement of the atom
at RI„in cell hby

F ( —R )=~a le
I~a

The total induced charge density 6p is the sum of
the contributions caused b~ the displacement of
each atom; therefore the k Fourier component of
the longitudinal polarization is given by

Here V ' f d r denotes the average over the entire
crystal. For a long-wavelength optic mode, with

ui„~ = u„exp(ik Ri„), the integral in (5) is in-

dependent of cell l, and to lowest order in k, may
be written

k.PL —— g fd'r(k r )F„(r )u„
Vp

(6)

where Vo is the volume of a unit cell. From (2),
(3), and (6) we find

(et*)„p——f d r r F„p(r )

Following the analysis of I for acoustic modes,
the longitudinal elements of the tensor Q are

(7)

(k) (QL) ter(k)r —— f d r(k r) QF„p(r), (8)

—L k'PL

=1 3«exp( —i k'r )F~a(r Rt~)ut~~ . —
la

H„p(r) = gF„p( r —R „)

which is the two-dimensional periodic function
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FIG. 1. Schematic illustration of a crystal with a sin-

gle plane of atoms displaced by u . The plane P(0) is
defined to pass the undisplaced positions of the lattice
plane of atoms, z is the distance normal to the plane, and
P(z) is a plane parallel to P(0) separated by z. The dis-
torted crystal now has two-dimensional periodicity with
lattice constant QJ in the direction perpendicular to z,

i.e., a second moment of the function F.
It remains for us to prove that the integrals in

Eqs. (7) and (8) are convergent for r ~ ao. Let us
define the coordinate r in (7) or k r in (8) to be z
and the integral of F t3( r ) over the plane perpendic-
ular to z to be F„p(z), which has dimensions of
charge per unit area. At large z the functions F and
F may be considered in the continuum limit of a di-

pole at the origin screened by the local macroscopic
dielectric tensor e p. The dipole field has the simple
property that the integral F(z) vanishes for any
z Q 0 since it is the average over a plane that does
not pass through the dipole. Thus, despite the fact
that F(r) is long ranged, F(z) is nonzero only for a
small range of z, of the order of atomic dimensions,
where the local continuum arguments do not ap-

ply. Therefore we have shown that the macro-
scopic effective charge and piezoelectric tensors can
be calculated in terms of well-defined integrals over
the function F„p( r ), which is the change in charge
density caused by displacement of an individual
atom.

Finally, we must establish a convenient method
for calculation of F„ti(z). Define P (0) to be the
plane perpendicular to z and passing through atoms
of type ~. If z is a high-symmetry direction, the
atoms in the plane P(0) form a two-dimensional

periodic array which can be labeled by a cell index
m. A schematic example is shown in Fig. 1. Now
F~(z) is the integral of F„~(r R„)over—infinite

planes P(z) parallel to P(0), which is independent
of the cell index m. Let us define
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and

(el*)„p——Idz zH„p( O,z)

ic (gl )~lier ——g Jdzz H p(O, Z)

(1 la)

(1 lb)

where H„tt(Gp) is the G Fourier component of the
derivative of the charge density with respect to equal
displacement of all atoms m tr in the plane P(0).

In the present work we shall determine H(G~)
by numerically calculating the charge density of the
crystal with a plane of atoms displaced. The calcu-
lations can be done for arbitrary displacements but
we shall consider here only small displacements and
shall compute numerically the derivative from finite

displacements. The problem of calculating the
charge distribution of a two-dimensional periodic
system is one that has been encountered before in

the area of surfaces and interfaces. Extensive tech-
niques have been developed to treat such systems
and we may carry over these techniques here. The
most practical and successful method has been the
superlattices method which corresponds to form-

ing a lattice of displaced planes with periodicity in

the z direction large enough so that the potential
and charge density have converged to their bulk
limits in the regions between the disturbances. In
our case this corresponds to a cell similar to that
shown in Fig. 2. The calculation of the change in

charge density hp(r) and consequently H„~(G&) is

exactly equivalent to the calculation of the self-
consistent charge density at an interface or sur-
face. ' Determination of the first moment of
H„It(0~) is exactly equivalent to the calculation of
the dipole contribution to work function at a surface
or interface. Furthermore, the total Hartree po-
tential is calculated as part of the self-consistent
electronic calculation. From elementary electrostat-
ics the change in the average potentials from one
side of a plane of displaced atoms to the other is
given by

5 V = 4rro = (4'/Ac)el*u (12)

resulting from equal displacement of each atom ma
in the plane P(0). The periodic function H(r )
= H(r + R~ ) can be represented by the Fourier
components H (Gp), where G's are the, reciprocal
vectors of the two-dimensional lattice

H(Gp) = J d rH(r)exp(iG r) . (10)
ce11

It is easy to see that F„p(z) is exactly the same as
the zero Fourier component, i.e., the average

H„~(O,z). Therefore we have finally

where o. is the dipole moment per unit area, 3 0 is
the area of the plane per atom, and el*u is the di-

pole moment per atom in the linear approximation.
We will not describe further the methods of cal-

culation which can be found elsewhere. We will

merely note two important aspects: (1) The super-
cell technique is just a computational tool. Other
methods can be used, such as Green's functions
and direct integration of the Schrodinger equation in
real space. (2) The convergence of the charge den-

sity has been examined for many semiconductor in-

terfaces and surfaces, from which it was shown that
calculations with feasible superlattices can accurate-

ly describe the charge density of an isolated inter-
face or surface, or, in our case, a single plane of dis-

placed atoms.

III. CALCULATION OF e IN GaAs

We give here calculated results for the charge dis-

placement function E„~(z) for Ga and As atoms in

GaAs for the case of z
~ ~

[100]. The case is chosen
because our previous work ' has shown that GaAs
is very accurately described by the Ga and As ionic
pseudopotentials ' and the local density functional
for exchange and correlation V,„(r) = 0.8
X , [3n (r—)/vr]' which is described in Refs. 8 and

30. In particular, the lattice constant, bulk
modulus, and transverse optic and zone-boundary
phonon frequencies are all predicted with no adju-

I

I

~ ~
I

I

L —-o--———o----—o——

0 0
z t. 0011

~ Ga g As

FIG. 2. Superlattice in GaAs formed by displacing
planes of Ga atoms to form a new unit cell as indicated.
The atoms are shown projected onto the plane formed by
[100] and [001]. The new cell contains four Ga and four
As atoms and has its long dimension along the [001] or z
direction. The symmetry of the distorted crystal is exact-
ly the same as that of the Ge-GaAs interface superlattice
considered in Ref. 8. The charge redistribution which
determines the effective charge is therefore calculated in
the same manner as for the interface. The analogous case
with As atoms displaced gives an independent calculation
of the As effective charge.
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stable parameters': Each quantity was predicted,
except the TA(X) frequency, to within a few per-
cent, and the TA(X) frequency, which is
anomalously low and very sensitive to cancellations,
was predicted with an error of only —20%. Furth-
ermore, the present calculations bear a remarkable
similarity to the interface calculations on Ge-GaAs
of Ref. 8. Essentially all the tests for accuracy, con-
vergence, and size of the superlattice are the same as
in those calculations. Hence it is natural to use this
as a test case for the present calculation of an eff'ec-

tive charge from density-functional electronic Ham-
iltonian. The geometry with z parallel to [100] we
have chosen has the property that the linear quadru-
pole coefficient Q or QL is zero by symmetry. This
is advantageous for accurate calculation of the di-

pole coefficient eL*, however, we cannot compute
the quadrupole coefficients from the present results.

To calculate the change in charge density we have
used exactly the same superce11 periodicity as in our
interface calculations on Ge and GaAs, that is, an
eight-layer cell (four Ga layers and four As layers)
which is 4 times the size of the primitive fcc cell
and is illustrated in Fig. 2. In each calculation
there are two equivalent layers displaced by exactly
equal and opposite amounts. Thus each ce11 has no
dipole by symmetry and there are rigorously no
long-range fields. We have carried out two calcula-
tions, one with only As atoms displaced and a
second with only Ga atoms displaced in the pattern
shown in Fig. 2. The magnitude of the displace-
ment was chosen to be 0.01a where a is the cube

0
edge = 5.65 A in GaAs. This magnitude of the dis-

placement was found to give linear change in the
charge density in the interface calculations and we
assume that the same is also true for the present
case.

The calculation in the periodic supercell structure
was carried out by Fourier analysis. All details are
equivalent to the interface calculations. Approxi-
mately 570 plane waves were included in the expan-
sion of the wave functions, with 85 treated exactly
and the remainder included by second-order
Lowdin perturbation theory. ' ' The charge densi-

ty was evaluated using sets of 1 and 3 special points.
Self-consistency was achieved to within 0.6 mRy
( =6%) for the worst-behaved Fourier component,
the one with the smallest G which is the most im-

portant in determining the asymptotic behavior of
p(r) and V(r) far from the planes of displaced
atoms.

The electronic charge density averaged perpendic-
ular to the [100] direction is given in Fig. 3, the top

Ga DISPLACED

30

cO

C)

CC

A
C3

C3

C)
CLI—
C3
UJ

LLJ

20

As DISPLACED

FIG. 3. The charge density n (z) averaged in the
planes perpendicular to the [001] or z direction of the un-

distorted crystal (dashed line) compared with the charge
density n(z) (solid lines) of the crystal with planes of
atoms displaced. Only half the unit cell is shown. The
other half is exactly symmetric. The upper figure is for
Ga atoms displaced by u = +0.01a in the [001] direc-
tion as indicated in the unit cell shown in Fig. 2. The
lower figure is for As atoms displaced. The units are
such that the average of n (z) is the number of electrons
per cell, which is 32 in the present case. The change in

charge density An(z) is shown more clearly in Fig. 4.

portion for As displacement and the bottom for Ga
displacement. For comparison, the dotted line
shows the undistorted charge density of the GaAs
crystal taken from Ref. 8. The change in charge
density is shown on an expanded scale in Fig. 4.

100—

0

Ga

100

0

-100

FIG. 4. The change in charge density An (z) from the
undistorted crystal per unit displacement (u/a). See cap-
tion to Fig. 3.
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Note that in each case the displacement of the posi-
tive nuclei is largely offset by the flow of negative
electrons. In fact the electrons almost completely
screen the nuclei. However, in the case of As we
shall see that there is a slight over compensation
(i.e., a negative effective charge for the As) and for
Ga a slight undercompensation (i.e., a positive effec-
tive charge for the Ga). We have computed the ef-

fective charge in two ways: First, eI is found from

Eq. (12) where 5 V is the difference in the self-

consistent Hartree potentials evaluated at the mid-

points between the displaced planes, i.e., the posi-
tions at the extreme left and right in Figs. 3 and 4.
This is evaluated as a matter of course in the pro-
cess of carrying out the electronic calculations.
Second, as a numerical check we have integrated the
change in charge density as in Eq. (11) to obtain the
moment directly.

In Table I we give the results of both calculations
and also the experimental value of the longitudinal
eAective charge, which is eT*/e = 2.16/11.0
= 0.20

~

e
~

. We see that the agreement with exper-
iment is satisfactory, considering that there are no
parameters involved and that this is the same poten-
tial which can also give so many other electronic
and structural properties. %e see also that checks
of our numerical calculations are very good. The
two methods of calculation agree well and the two
independent calculations give closely the result
et*-, + e&, ——0, which is required by translation in-

variance. ' The small discrepancies, particularly for
Ga displaced, are discussed below.

The figures of the change in charge density also
give us other information. First, for displaced As
atoms the change in charge density is essentially
zero in our supercell far from the displaced atoms.
It appears that our ce11 is large enough and only
very small errors result from the fact that we must
truncate our integrals rather than integrating from
—oo to + co as in Eq. (lla). However, for dis-

placed Ga atoms there is still some overlap. There-
fore we expect that the Ga calculation is less accu-
rate and that this is the reason that the charge neu-

trality condition is not obeyed exactly. This is relat-
ed to the general conclusion which may be drawn
from the figures that the charge displacement is
more distributed in the case of Ga than for As.

The displaced charge density in Fig. 3 is clearly
spread over neighboring atoms: This is the result of
both Coulomb fields and covalent interactions. The
general nature of the charge displacement has been
examined in Si in previous calculations. ' Our
present results are consistent with these except that,
of course, here the heteropolar character of the crys-
stal leads to nonzero eAective charges. In a bond
picture it is clear that this involves transfer of
charge from one bond to another and a simple bond
polarity model is not sufficient. ' ' One can see in

Fig. 4 that charge is displaced across several layers
of atoms, but it is not possible a priori to say wheth-

er or not this could be described by a nearest-

neighbor tight-binding model in which the charge is
transferred sequentially from one bond to a nearest-

neighboring bond.
Using the value of eo ——11 for the macroscopic

dielectric constant, our calculations yield a predicted
value of the transverse effective charges of
e" = —0.154 && 11 = 1.7

~

e ~. This may be com-
pared with the experimental number ' of 2.16 and
with other calculations. From an empirical tight-

binding model, Ren and Harrison' found
e = 1.89. Empirical pseudopotential methods have
been used in Refs. 18—20, to find, respectively,
e* = 2.39, 1.95, and 1.95. All these methods have
used empirical potentials and have made particular
assumption on the change in the potential in the dis-
torted crystal involving unknown approximations.

To the knowledge of the authors, none of the
model calculations such as the shell model' or
bond charge' models have been analyzed in a way

TABLE I. Ionic and electronic contributions to the effective charge in GaAs. The total
longitudinal charge is compared with experiment taken from Ref. 21 and Eq. (3a). The sign is
found to be positive for Ga, an assignment which is not known experimentally.

ionic electronic

—5.155
—2.852

total

—0.155
+ 0.148

el
from self-consistent

potential
—0.153
+ 0.161

Experiment +0,197
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that can be compared directly. It would be interest-

ing for those who do such calculations to make
comparisons with detailed electronic calculations
such as the present work. It seems feasible to
describe the results given in Fig. 4 by displacements
of shells of charge. For a bond charge model it is
clear that the bond charge must be rather spread
out and that there must be charge transfer between
bonds' to describe the true electronic system.

IV. CONCLUSIONS

In summary, we have presented a method for
computation of effective charges and piezoelectric
constants by calculating the change in charge densi-

ty induced by displacement of a plane of atoms.
%e showed that all computational considerations
and questions of convergence of the Coulomb sums
are exactly equivalent to calculation of the self-
consistent charge density at an interface between
two semiconductors. In particular, calculation of
an effective charge involves the same considerations
and the same numerical steps as does the computa-
tion of the interface dipole potential in the interface

calculation. It is most direct to carry out the calcu-
lation for finite displacements and, from the finite
differences, one can calculate linear and nonlinear
polarizations. %e have presented results for the
linear effective charge e' in GaAs, using the same
pseudopotentials and density functional which we
have shown ' predict accurately the lattice con-
stant, bulk modulus, and phonon frequencies in

GaAs. We found e* = 1.7
~

e ~, compared to the
experimental value ' of 2.16, with a positive effective
charge for Ga. The direct calculation of the change
in charge density, as illustrated in Figs. 3 and 4, has
the advantage that it shows directly the dynamic
charge response that determines the sign and large
magnitude of the effective charges in III—V com-
pounds.
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