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We have attempted to model the electronic structures of glow-discharge amorphous-Si-

based alloys by studying the effects of specific kinds of quantitative disorder on the band

structures of crystalline Si. A realistic tight-binding Hamiltonian has been developed, in-

cluding third-nearest-neighbor interactions, which reasonably describes both the valence and

first three conduction bands of the crystalline materials. Quantitative disorder is investigat-

ed by transforming a disordered system of identical atoms to an ordered diamondlike sys-

tem with disordered potentials. We find that, in both Si and Ge, bond-length distortions
aA'ect mainly the bottom of the valence band at I

&
and the low-density-of-states region

around X~, as well as the peaks of L2 and L ~. One might expect, therefore, that localiza-

tion would be present in both regions near I ~ and X~. Moreover, bond-length distortions

affect the bottom of the conduction-band edge in Ge but not in Si. Bond-angle distortions

are found to cause shifts of band, primarily in the p-like regions of valence band. These

shifts are to lower binding energies and are consistent with the steepening of the top of the

valence-band edge, with disorder, as observed in photoemission measurements. Finally, our

results also account for the merging of the E~ and the E2 peaks of the imaginary part of
the dielectric function e2, with disorder, as observed by spectroscopic ellipsometry and re-

flectivity measurements.

I. INTRODUCTION

Recent progress in the preparation of amorphous
silicon (a-Si) (Refs. l and 2) has accelerated the
search for a better understanding of the physics of
group-IV amorphous semiconductors. It has been
known experimentally for a long time that the
basic tetrahedral co-ordination of group-IV atoms is

retained in these materials apart from a small
number of dangling bonds.

In particular, measurements of the imaginary part
of the dielectric function e2 of glow-discharge a-Si:H
(Ref. 4) suggest the merging of the F. i and E2 peaks
in e-Si, Also, the luminescence peak and optical

gap from absorption measurements on' a-Si:F:H are
located at 1.2 —1.3 and 1.7 eV, respectively. These
values reflect possible connections to the corre-
sponding indirect gaps, I'25 ~X,(b, , ) and I z, ~L i

of c-Si. Although the existence of a medium-range
order for a a-Si has been established only for highly
P- and As-doped a-Si:F:H (Ref. 5) and for a-Si:H
under high rf power, Phillips has put forth a topo-

logical model emphasizing medium-range order
under strain. Thus, a disorder model emphasizing
distortions in the basic tetrahedral unit of c-Si may
provide some quantitative understandings.

Although there have been many theoretical stud-
ies of the electronic structure of a-Si and a-Ge, '

a study of the band structure of the normal crystal-
line phase under the infiuence of specific kinds of
disorder has never been performed. The first at-
tempts along this direction were by Ziman, "Kra-
mer and Treusch, ' and Cohen et al. ' Their ap-
proximations, however, were rather simple and the
disorder considered was not of a very specific na-
ture, In the present study, therefore, we attempt to
determine the effects of various kinds of specific
quantitative disorder on the band structures of Si
and Ge. In particular, we consider small distor-
tions, including extensions and contractions of bond
lengths, various bond-angle changes, and dihedral-
angle variations in the normal crystalline phase of Si
and Ge. The electronic states are modeled using a
realistic tight-binding Hamiltonian including third-
nearest-neighbor interactions. This Hamiltonian
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gives reliable valence bands and low-lying conduc-
tion bands for c-Si and c-Ge. Disorder is intro-
duced in a scheme reminiscent of the virtual crystal
approximation' that is exact for bond-length distor-
tions and approximate for bond-angle and dihedral-
angle distortions.

The format of this paper is as follows: In Sec. II
we describe the construction of our tight-binding
Hamiltonian. In Sec. III we introduce a simple
scheme based on (1) an exact transformation taking
the Hamiltonian for the distorted structure to a dia-
mondlike structure and (2) an approximation to the
matrix elements of this Hamiltonian. In the frame-
work of this scheme the effects of various small dis-
tortions on the band structures of c-Si and e-Ge at
high symmetry points are determined. The results
obtained are discussed in Sec. IV.

II. CONSTRUCTION OF THE
TIGHT-BINDING HAMII. TONIAN

There have been many band calculations for the
diamond structure using the linear combination of
atomic orbitals (LCAO) or tight-binding approach. '

It has recently been pointed out that the inclusion of
up to third-nearest-neighbor interactions in the
LCAO Hamiltonian is indispensable for reliable
band calculations of c-GaAs and c-Si.' In fact,
omission of such interactions leads to unsatisfactory
conduction-band energies and wave functions for c-
Si and c-Ge. ' ' Moreover, it is also known that
one should, strictly speaking, also include d atomic
orbitals (AO) into the LCAO basis in order to
describe the conduction-band states of Si correctly. '

In the present treatment, we include the impor-
tant interactions up to some third-nearest-neighbor
atoms to obtain reliable band structures of c-Si and
c-Ge, but omit d AO for the sake of simplicity.
This is not a bad approximation for Ge since the
energy level of 4d AO of Ge is considerably higher
than that of 4p AO. ' In order to pick up the im-
portant neighbor interactions, we use hybrid valence
orbitals (VO) for the basis set. The VO employed
here (Fig. 1) are sp hybridized orbitals which sim-

plify the selection of the most important second-
and third-neighbor interactions that need to be con-
sidered. The selected interaction matrix elements
are defined in Fig. 2. It is obvious that the third-
nearest-neighbor interactions such as V&p and V~&

will be more important than some of the second-
nearest-neighbor ones owing to their distances and
orientations. Thus the less important second-

X
~Y

I I

I 7'
2 I

I 4 2 I

FIG. I. Numbering of the eight VO in a unit cell.

neighbor interactions are discarded. The overlap in-
tegrals between any two different VO in the secular
equations are assumed to be zero. This is equivalent
to an assumption that the VO have been already
orthogonalized through, e.g., the usual Lowdin's
orthogonalization technique. Closed-form expres-
sions of the eigenvalues for I, X, and I points are
obtained in a straightforward manner in terms of
the interaction matrix elements V„,which are treat-
ed as parameters. Those are given in the Appendix.

The V„parameters are determined semi-

empirically so as to reproduce the numerical eigen-
values in good accordance with the standard experi-
mental results for c-Si (Ref. 21) and c-Ge. The
values of the parameters used are given in column 2
of Table I. The calculated eigenvalues at I, X, and
I. points of c-Si and c-Ge are listed in the second

(b)

(c)

FIG. 2. Definitions of the interaction matrix elements
between the VO located as (a) the one center, (b) the
first-nearest neighbors, (c) the second-nearest neighbors,
and (d) the third-nearest neighbors. Dark circles are
atoms in the plane of the paper and a white one is that
above the plane.
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FIG. 3. Schematical drawing of the band structures of (a) c-Si and (b) c-Ge.

column of Tables II and III, respectively. Although
the optimization of the eigenvalues has not been ful-

ly attempted, the overall features of the bands are
satisfactory (Fig. 3) and offer a reasonable starting

point for our analyses in the next section. It is also
to be noted, from Table I, that the third-nearest-

neighbor interaction such as V&~ plays an important
role as is expected.

TABLE I. Values of the parameters of the crystalline ( V„)and the distorted phases ( V„)
for Si and Ge (in eV).

V„ Crystalline
Bond-length changes

Extensions Contractions

Si V1

V2

V3

V4

V5

V6

V7

V8

V9

V1o

—1.145
—4.014
—0.445

0.397
—0.580

0.027
—0.704

0.130
0.095

—0.089
0.197

—1.145
—3.932
—0.436

0.388
—0.568

0.026
—0.689

0.127
0.093

—0.087
0.193

—, 1.145
—4.099
—0.454

0.405
—0.592

0.027
—0.719

0.133
0.097

—0.091
0.201

V1

V2

V3

V4

V5

V6

V7

V8

V9

V1o

V11

—1.072
—4.390
—0.401

0.615
—0.519

0.049
—1.260

0.063
0.119

—0.061
0.272

—1.072
—4.300
—0.393

0.603
—0.508

0.048
—1.234

0.062
0.117

—0.060
0.266

—1.072
—4.482
—0.409

0.628
—0.530

0.050
—1.287

0.065
0.122

—0.062
0.278
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III. CALCULATIONS OF THE EFFECTS
OF DISORDER

We should like to consider the effects of specific
kinds of structural distortions on the electronic
states of c-Si and c-Ge. Specifically, we will consid-
er distortions consisting of (1) bond-length exten-

sions, (2) bond-length contractions, (3) bond-angle
changes with (a) compression with respect to a [111]
axis, (b) extension to a [111]axis, (c) shearing to a
[111]axis, and (d) compression to a [100] axis, and

(4) dihedral-angle deviations. The bond-angle and
dihedral-angle changes are illustrated in Fig. 4. All
of these distortions are taken into account in the fol-

lowing manner.
We consider a weakly distorted structure such that

there is a simple one-to-one correspondence between
the atoms in this system and atoms in the diamond
structure. If the Hamiltonian for the distorted
structure of identical atoms is given by H„wecan
transform it to a new Hamiltonian H, which
describes a system of nonidentical atoms placed on
a perfect diamond structure. The relation between

H, and H, is given simply by

4b- IO

f

(a) (b)

(c) (d)

0

(e)

FIG. 4. The modes of the bond-angle changes (a —d)
and the dihedral-angle deviations (e); (a) the compression
with respect to a [111]axis, (b) the extension to a [111]
axis, (c) the shearing to a [111]axis, and (d) the compres-
sion to a [100] axis. Pb and Pd are 109'28' and 60,
respectively, of the normal crystalline phase.

TABLE I. (Continued)

compression

Bond-angle changes

[111] [111]
extension shearing

[100]
compression

Dihedral-angle
changes

—1.145
—3.937
—0.459

0.371
—0.566

0.028
—0.721

0.134
0.099

—0.092
0.205

—1.145
—3.937
—0.459

0.371
—0.566

0.028
—0.724

0.134
0.099

—0.097
0.214

—1.145
—3.989
—0.500

0.388
—0.575

0.027
—0.704

0.130
0.097

—0.090
0.198

—1.145
—3.989
—0.450

0.388
—0.575

0.028
—0.703

0.130
0.098

—0.092
0.207

—1.145
—4.014
—0.445

0.387
—0.575

0.049
—0.704

0.130
0.095

—0.079
0.201

—1.072
—4.302
—0.416

0.586
—0.503

0.050
—1.291

0.065
0.126

—0.062
0.282

—1.072
—4.302
—0.416

0.586
—0.503

0.050
—1.297

0.065
0.126

—0.066
0.295

—1.072
—4.361
—0.406

0.606
—0.513

0.049
—1.261

0.064
0.123

—0.062
0.274

—1.072
—4.360
—0.406

0.606
—0.513

0.049
—1.260

0.064
0.129

—0.064
0.285

—1.072
—4.390
—0.401

0.604
—0.513

0.091
—1.260

0.064
0.119

—0.047
0.277
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TABLE II. Critical eigenvalues of Si and their deviations according to the distortions' (in
eV).

Point level c-Si
Bond-length changes

Extensions Contractions

I)
r~s
res
Ip

—12.50
0.00
3.41
4.15

+ 0.17
+ 0.0$
—0.06
—0.17

—0.18
—0.01
+ 0.06
+ 0.18

X Xi
Xg
X)
X3

—7.69
—2.90

1.20
5.32

+ 0.11

+ 0.07
—0.05
—0.10

—0.11
—0.07
+ 0.05
+ 0.10

Lp
Li
L3
L)
L3
Lp

—10.23
—7.50
—1.20

1.46
3.90
5.23

+ 0.13
+ 0.15

+ 0.03
—0.11
—0.07
—0.11

—0.14
—0.16
—0.03
+ 0.11

+ 0.07
+ 0.11

The + and —signs stand for the ascent and descent from the eigenvalue positions of c-Si,
respectively.

TABLE III. Critical eigenvalues of Ge and their deviations according to the distortions' (in
eV).

Point level c-Ge
Bond-length changes

Extensions Contractions

r,
zs'

Ip
res

—12.60
0.00
0.99
3.23

+ 0.17
-0
—0.11
—0.06

—0.18
-0
+ 0.11

+ 0.07

X X)
Xg
X)
X3

—9.15
—2.90

1.26
6.25

+ 0.15

+ 0.06
—0.07
—0.13

—0.15
—0.07
+ 0.07
+ 0.13

Lg
Lj
L3
Li
L3
Lp

—11.15
—8.72
—1.40

0.82
4.30
5.95

+ 0.16
+ 0.18

+ 0.03
—0.10
—0.08
—0.13

—0.16
—0.18
—0.03
+ 0.10
+ 0.09
+ 0.14

'See the footnote of Table II.
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TABLE II. (Continued)

compression

Bond-angle changes
[111] [111]

extension shearing
[100]

compression
Dihedral-angle

changes

+ 0.06
-0
+ 0.06
-0

+ 0.07
—0,04
+ 0.12
—0.04

+ 0.03
—0.01
+ 0.01
+ 0.03

+ 0.09
—0.04
+ 0.03
-0

+ 0.22

+ 0.15

+ 0.12

+ 0.05

-0
+ 0.20
—0,09
—0.16

—0.01
+ 0.23
—0.08
—0.19

-0
+ 0.06
—0.03
—0.05

—0.01
+ 0.09
—0.01
—0.07

—0.07
—0.04
—0.02
—0.05

—0.01
+ 0.11
+ 0;11
—0.02
—0.06
—0.17

—0.02
+ 0.06
+ 0.12
—0.02
—0.07
—0.13

-0
+ 0.05
+ 0.03
-0
—0.03
—0.05

—0.01
+ 0.03
+ 0.03
+ 0.01
—0.03
—0.02

—0.07
+ 0.22
—0.08
-0
—0.01
+ 0.04

TABLE III. (Continued)

compression

Bond-angle changes
[111] [111]

extension shearing
[100]

compression
Dihedral-angle

changes

+ 0.06
-0
—0.05
+ 0.05

+ 0.10
—0.04
—0.12
+ 0.11

+ 0.05
—0.02
+ 0.04
-0

+ 0.18
—0.08
+ 0.06
+ 0.01

+ 0.37
+ 0.29
+ 0.14
+ 0.23

—0.03
+ 0.25
—0.10
—0.15

—0.06
+ 0.29
—0.08
—0.18

-0
+ 0.08
—0.03
—0.05

—0.04
+ 0.13
—0.04
—0.06

—0.12
—0.08
—0.05
—0.09

—0.04
+ 0.12
+ 0.12
—0.01
—0.06
—0.19

—0.06
+ 0.06
+ 0.14
+ 0.01
—0.06
—0.15

-0
+ 0.06
+ 0.03
-0
—0.03
—0.06

-0
+ 0.02
+ 0.03
+ 0.02
—0.04
—0.03

—0.12
+ 0.33
—0.12
+ 0.01
—0.05
+ 0.13
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H, = g g g g (h (r —r;)
~
H,

~
hp(r —rj)) ~h (r —R;))(hp(r ' —RJ)

~

i j a P

where h~ designates the ath VO (a = 1 —4) centered on a site, r; locates the ith site in the distorted system,
and R; simply stands for the sum of the lattice site vector and the basis vector for the site i in the crystalline
system. This H, is of a non~eriodic form, so we assume the site potential to be statistically periodic by averag-
ing the matrix elements of H„that is, the interaction matrix elements are represented using an approximate
Hamiltonian H, by

(h (r —R; —R/, ) ~Hg ~hp( —RJ —Rk))V„—:h (r —r;) ~H, ~hp(r —rj)
k=1

Formally, there are infinite numbers of Rk in the
system. It is to be noted that this procedure yields
the exact results for the cases of the bond-length ex-
tensions and contractions, which cause a dilatation
and a compression of the bulk crystal, respectively.
For the cases of the bond-angle changes and the
dihedral-angle deviations, the choice of Rk is as-
sumed to be limited within a cluster involving up to
the third-nearest-neighbor atoms concerned. This
truncation method is reminiscent of the effective-
crystal approximation employed by Kramer and
Treusch. ' Both method are in the framework of
the virtual-crystal approximation which is valid for
small distortions. '"

The bond lengths are extended or contracted by
1.04%%uo from their original lengths. These values are
extracted from the relaxed continuous random
tetrahedral network (CRTN) model of Steinhardt
et al. In the bond-angle changes and the
dihedral-angle deviations, the fluctuations of the an-

I

gles are assumed to be 10'. With respect to these
angle changes, the bond lengths are assumed to
remain the same with those in the crystalline phase.
The details of the calculations of the V„'sin the dis-
torted systems are relegated to the Appendix. The
fluctuations of V„'sthus obtained (Table I) result in

the movements of the positions of the energy band
of the crystalline structures. The complete results
for the deviations in the critical eigenvalues and
their band gaps due to the various distortions are
listed in Tables II and III for Si and Ge, respective-

ly, and in Table IV the features of which are dis-
cussed in the next section. It should be noted that
this methodology is similar in spirit to the examina-
tion of ideal network structure for a-Si by Cohen
et al. ,

' but provides more specific and quantitative
information as shown later. Since we focus our at-
tention on relatively small distortions, the topologi-
cal disorder is not considered in the present study.
Nevertheless, the exclusion of this factor still seems

TABLE IV. Changes of the band gaps of c-Si and c-Ge according to the distortions' (in eV).

Crystalline
Bond-length changes

Extensions Contractions

Si ~(I 25 I is)
A(I 25 ~X))
6(I 2, L, )

b (X4~X))
h(L3 L))
A(L3 ~L3) .

3.41
1.20
1.46
4.10
2.66
5.10

3.34(—0.07)
l.14{—0.06)
1.34(—0.12)
3.98(—0.12)
2.52(—0.14)
5.00(—0.10)

3.48( + 0.07)
1.26( + 0.06)
1.58( + 0.12)
4.22(+ 0.12)
2.80( + 0.14)
5.20{+ 0.10)

a(r„. r )

A{I 25 ~X))
a(r„. L, )

6(X4~X1)
A(L3 ~L))
A{L3 ~L3)

0.99
1.26
0.82
4.16
2.22
5.70

0.88(—0.11)
I.19(—0.07)
0.72{—0.10)
4,03(—0.13)
2.09(—0.13)
5.59(—0.11)

1.10{+ 0.11)
1.33( + 0.07)
0.92( + 0.10)
4.30( + 0.14)
2.35(+ 0.13)
5.82( + 0.12)

. 'The positive and the negative values in the parentheses stand for the blue shift and the red shift from the values of the

crystalline band gaps, respectively, of Si and Ge.
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FIG. 5. Sketches of the DOS of c-Si and its mainly af-

fected regions (black areas) under (a) the bond-length dis-

tortions, (b) the bond-angle distortions, and (c) the
dihedral-angle deviations. The arrows in (b) indicate the
directions of the movings of X4 and L3 peaks to steepen
the top of the valence band.

];]
I

-/2 -/0 -8 -6 -4 -2 0 2

Energy (eV)

FIG. 6. Sketches of the DOS of c-Ge and its mainly
affected regions. See the caption of Fig. 5.

IV. RESULTS AND DISCUSSION

to be plausible since it has been concluded that the

rings, particularly the five-membered ones, in the
CRTN models do not directly contribute to the
band gap, the top portion of the valence band, and
the valence-band width.

From the results shown in Tables II, III, and IV,
one can figure out the sensitive points of I, X, and
L symmetries and the behavior of the band gaps due
to each distortion. The regions of the density of
states (DOS) mainly afFected are sketched in Figs. 5

TABLE IV. (Continued).

Bond-angle changes

compression extension
[111]

shearing
[100]

compression
Dihedral-angle

changes

3.47(+ 0.06)
1.11(—0.09)
1.44( —0.02)
3.81(—0.29)
2.53(—0.13)
4.93(—0.17)

3.57( + 0.16)
1.16(—0.04)
1.48{+ 0.02)
3.79{—0.31)
2.52(—0.14)
4.91(—0.19)

3.43( + 0.02)
1.18(—0.02)

1.47( + 0.01)
4.01(—0.09)
2.63(—0.03)
5.04( —0.06)

3.48( + 0.07)
1.23( + 0.03)
1.51(+0.05)
4.00(—0.10)
2.64(—0.02)
5.04(—0.06)

. 3.38(—0.03)
1.03(—0.17)
1.31(—0.15)

4.12( + 0.02)
2.74( + 0.08)
5.17( + 0.07)

0.94(—0.05)
1.16(—0.10)
0.81{—0.01)
3.81{—0.35)
2.09(—0.13)
5.52(—0.18)

0.91(—0.08)
1.22{—0.04)

0.87( + 0.05)
3.79(—0.37)
2.09(—0.13)
5.50(—0.20)

1.05( + 0.06)
1.25( —0.01)

0.84( + 0.02)
4.05(—0.11)
2.19(—0.03)
5.64(—0.06)

1.13(+0.14)
1.30( + 0.04)
0.92( + 0.10)
3.99(—0.17)
2.21(—0.01)
5.63(—0.07)

0.84(—0.15)
0.92(—0.34)
0.54( —0.28)

4.19( + 0.03)
2.35( + 0.13)
5.77( + 0.07)
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and 6 for Si and Ge, respectively. It is seen that
each distortion influences the DOS in a peculiar
manner. We discuss these effects stepwise in Secs.
IV A —IV C.

A. Bond-length changes

The bond-length extensions cause a rise of the

points of the valence band and a lowering of those
of the conduction band. This is to be expected from
a decrease in the overlaps among the VO, namely
the couple forming the bonds. The bond-length
contractions give the opposite effects within a small

range of the deviations.
The sensitive points of the valence band to the

bond-length changes are I &, X&, L2, and L
~

for
both Si and Ge. We note that all of these points are
s-like in character. The fluctuations in energy of
these points would conceivably create localized
states in the DOS near these regions as shown in

Figs. 5 and 6. This is perhaps most likely in re-

gions where the DOS is small. In the conduction
band it is the L

&
and I 2 points of Si and Ge that

are most sensitive to the bond-length distortions.

Therefore, the lower edge of the conduction band of
Ge is affected more than that of Si. On the other
hand, interestingly, I 25 points of both Si and Ge
are least sensitive among the other points.

All the band-gap changes (Table IV) show the red
and the blue shifts according to the bond-length ex-

tensions and contractions, respectively, for both Si
and Ge. Because of the insensitiveness of I 25

points, the band gaps corresponding to direct transi-

tions at X and L points (X4~X~ and L3 ~L, ) are.
more strongly influenced than those corresponding
to indirect transitions such as 1 z5 ~X

&
(therefore,

assuming I q5. ~ b, , min) in Si and I z& ~L, in Ge.
Hence, under the bond-length distortions, the devia-

tion of the optical band gap is not large for both Si
and Ge. The behavior of the direct band gaps
(X4~X, arid L3 —+L, ) is to be discussed in Sec.
IV B in connection with the experimental results.

B. Bond-angle changes

The results from all the kinds of bond-angle
changes considered in the present study show the
same trends for points in the valence band. Since
the shearing with respect to a [111]axis consists of
the distortion of only one of the sp bonds in each
unit cell (Fig. 4), the fluctuations of the eigenvalues

are smaller than those of other types of the bond-
angle changes. It should be noted that, although the
bond lengths are kept fixed to those of the normal
crystalline phase, the second- and third-nearest-

neighbor distances fluctuate inevitably as a conse-
quence of the change of the bond angles.

All four kinds of the bond-angle distortions pri-
marily cause the shifts of the p-like regions in the
valence band. That is, the fluctuation of L3 takes
place in a large amount under the compression and
the extension with respect to a [111]axis, that of L

~

under the shearing to a [111]axis, and that of X4
under all four kinds of the distortions for both Si
and Ge. These indicate that the distortions of the
directions of the sp tetrahedral bonds cause the des-

tabilization of the binding energies, leading to the
steepening of the DOS at the top of the valence-

band edge of both Si and Ge. These steepenings are
consistent with the experimental information ob-

tained from ultraviolet and x-ray photoemission
measurements. The occurrence of the steepening of
the higher valence-band edge has been also shown

using the structural models for a-Si and a-Ge such
as ST-12 (Ref. 30) and so on. Joannopoulos has

also reached the same conclusion by analyzing the
Bethe-lattice model for Si in which the bond angles

are intentionally fluctuated.
Furthermore, the lower valence-band edge is af-

fected by the compression with respect to a [100]
axis for both Si and Ge. This type of compression
tends to flatten out the distorted tetrahedron (Fig. 4)
like a normal vibrational mode of E symmetry. It
is interesting to point out that the destabilization oc-
curs at the lowest s-like region accordingly as the
tetrahedral coordination deforms into the planar
coordination.

The fluctuations of the points of the conduction
band are relatively small except those of I » of Si
and I"2 of Ge due to the extension with respect to a
[111]axis. These behaviors of I' points will be in-

terpreted by the fluctuations of the second- and
third-neighbor interatomic distances which is men-

tioned above. The behaviors of the high-lying points
such as X3 or L2 of the conduction band are not-
discussed here since their positions in the crystalline

phase are still somewhat too low in the framework
of the tight-binding approach.

It is not practical to comment on the shift of the
optical-absorption edge under these bond-angle dis-

tortions, since the indirect band gaps concerned with

Si and Ge behave individually due to each distor-
tion. On the other hand, typical deviation of the
band gap for the transition of X4~X& is seen for
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all four kinds of the bond-angle distortions. This
deviation is to be expected from the degradation of
the [100] direction, namely, that of the long-range
order, due to these distortions.

The spectroscopic ellipsometry for a-Si prepared
by the laser annealing ' and the reflectivity measure-
ment of glow-discharge a-Si:H have shown the ima-

ginary part e2 of the dielectric function of these ma-
terials. According to them, it seems that the E&
(L3 ~L &) and the E2 (X4~X~ ) peaks gradually
merge into one around the E i peak of c-Si, as the
normal crystalline phase changes into the amor-
phous state. The same kind of observations have
been obtained for a-Si and a-Ge prepared by
sputtering. ' This tendency is clearly repro-
duced by any kinds of bond-angle distortions in the
present result, showing that the band-gap corre-
sponding to the X4~X] transition causes a red
shift moving much faster than that corresponding to
the L3 ~L

~
transition. The red shifts of these

band gaps are also seen in the case of the bond-
length extensions. By this distortion, however, no
typical merging of the E] and the E2 peaks may be
expected because of the same rate of the shifts of
these peaks. It is also interesting to point out that
the E2 peak may be smeared out or even be put out
at some stage of the bond-angle distortions because
of the fragility of this peak resulting from the [100]
direction as described above.

C. Dihedral-angle deviations

Generally speaking, uniform dihedral-angle devia-
tions cause a considerably large change of the atom-
ic arrangement in the bulk network of Si and Ge,
even if the deviation angle is small. Therefore, the
interpretation of the result in this case should be
made with certain reservations. We consider only
the most striking features in our discussion.

All I points of the valence band and the conduc-
tion band, except I 2, and L i of the former band,
seem to be sensitive to the dihedral-angle deviations.
These may cause the localization near both the
lower and the higher valence-band edges of Si and
Ge. The indirect gaps due to the transitions from
I"25 are significantly redshifted, leading to the
lowering of the optical-absorption edge of both Si

and Ge. Another consequence of the dihedral-angle
distortions is the tendency of causing the L3 and X4
points to merge into a single-bump structure in the
p-like region of the valence band.

V. CONCLUDING REMARKS

We have studied various kinds of quantitative dis-
orders on the band structures of Si and Ge to model
the electronic structures of a-Si and a-Ge. The
results indicate that each distortion causes the shifts
of the band of c-Si and c-Ge in an individual

manner, and do apply to spectroscopic observations
being characteristic of a-Si and a-Ge. Moreover,
they suggest regions in the DOS where localization
might occur. There are three major features in the
present study:

(1) The bond-length distortions influence mainly
the lower part of the, valence band and may cause
localization around I ~ and Xi regions where the
DOS is small. In Ge the bottom of the conduction
band is also affected.

(2) All of the bond-angle changes are responsible
for the steepening of the top of the valence-band

edge, as observed for a-Si and a-Ge. In addition,
these distortions may create localization near I ~.

(3) The observed merging of the E& and the E2
peaks of e2 function is accounted for by any of the
bond-angle distortions.

Moreover, the dihedral-angle deviations may give
rise to gap states and also cause a bump structure of
DOS in the p-like region of the valence band.

Finally, we like to point out that the extension of
the present scheme of the calculation, such as the
average T-matrix approximation, will also become a
good tool, as a first-order approximation, for the
probe of modeled electronic structures for a-Si or
a-Ge, including two or more elements like hydro-

gen, fluorine, and so on, on account of its consider-
ably simple algorithm.
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APPENDIX

The closed forms of the eigenvalues of the tight-binding Hamiltonian in Sec. II are obtained as follows for
I, X, and L points in the order of increasing the energy:
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+ 3V + Vp+ 6V + 3V + 6V + 6V6+ 3V7+ 6V8+ 12V + 6V)p+ 6V&&

I p5 = 6]] —V] + Vq —2V3 + 3V4 —2V5 + 6V6 —V7 + 6Vs —4V9 + 6V]0 —2V]] (triply degenerate)

I ]5 —E/g V] Vp + 2V3 3V& + 2V5 + 6V6 —V7 + 6V]] —4V9 —6V]0 + 2V]] (tr]ply degenerate)

I p
= e'p + 3V) —Vp —6V3 —3V4 —6V5 + 6V6 + 3V7 + 6V8 + 12V9.—6V&p —6V)&

X] ——e's + V] —2V6+ V7 —2Vs —4V9 —[(—Vp —2V3+ V4+ 2V5+ 2V]0+ 2V]])

+ 4( V] —V7) ]' (doubly degenerate)

X4 —es —V]+ V~ —2V3 V4+ 2V5 —2V6 —V7 —2Vs+ 4V9 —2V]p+ 2V]] (doubly degenerate)

X] ——e]] + V] —2V6+ V7 —2V]] —4V9+ [(—Vz —2V3+ V4+ 2V5+ 2V]p+ 2V]])

+ 4( V] —V7) ]' (doubly degenerate)

X3 —6Q —V] —Vz + 2V3 + V4 —2V& —2V& —V7 —2V]] + 4V9 + 2V]&] —2V]] (doubly degenerate)

(A 1)

Lp ——@I' + V) + 2V3+ 2V4+ 2V6+ V7 —2V8 —4VIp

——,[(—2V, —2Vz —4V3+ 2V4+ 8V6 —2V7 —SVs —4V]o)
1 2

+ 12( V] + 2V5 —V7 —2V„)~]]~~

L J
= E'p + V} —2V3 —2V4 + 2V6 + V7 —2V8 + 4V)p

——,[(2V] —2Vp —4V3+ 2V4 —SV6+ 2V7+ SV]] —4V]0) + 12(V] —2V5 —V7+ 2V, ]) ]'

L 3' —E/]
—V] + Vz —2 V3 + V4 —2 V6 —V7 +. 2 V]] —2 V]0 (doubly degenerate)

L) ——eI(( + V) —2V3 —2'+ 2V6+ V7 —2V8+ 4Vtp

+ —,[(2V] —2V~ —4V3+ 2V4 —8V6+ 2V7+ SV]] —4V]o) + 12(V] —2V5 —V7+ 2V„)]'

L 3 —s]] —V] —Vp + 2 V3 —Vg —2 Vs —V7 + 2 V]] + 2V]p (doubly degenerate)

Lq ——e~ + V~ + 2V3+ 2V4+ 2V6+ V7 —2V8 —4V~p

+ —,[(—2V] —2Vp —4V3+ 2V4+ SV6 —2V7 —SV]] —4V]p) + 12(V] + 2Vg —V7 —2V, ]) ]

In the above expressions e~ signifies the orbital ener-

gy of a hybrid valence orbital (Fig. 2), which can be
treated as a constant.

Next, we outline how to numerate the interaction
matrix elements V„for the distorted system using

Eq. (2). Since it is too space consuming to describe
here about every V„for all cases of the distortions,
we restrict ourselves only to visualize the way of the
estimations of V„'s,taking V9 in the case of the
compression with respect to a [100] axis as an ex-

ample.
At first, it is convenient to decompose the V„'s

for the crystalline phase into the AO interaction
terms as follows:

t
V] ———,(e, —e~)

V~ ——
~ [A~(r]) + 2~32,&(r]) + 3A&z~(r])]

2v3
V3 = —, A„(r])+ A (r, ) —A (r, )

3

2~3 1
V4 ———, A~(r]) — A@(r]) + Aq~~(r])—PP&

8

3 App (r,)—
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2~3
A (r, ) — A~(r, ) + A„—.(r, )

4+ App
—(r))

Vs ——, [A~—(r3)+ 3App (r2)]

V7 = —,[A„(r2)+ 2~2A~(r2) + 2A (r3)

g App (r2)]

Vs ——[A (r2) —2A (r2) + A (r2)]

V9 4 [A ( r2 ) + ~2A$p (r2 ) App~(r2) ]

6V11
V&o =

& Asr(P3) + A@(P'3)
11

9 24+ A ~(r3) A ~(r3)PPo 1 1
PP1F

6v'l l
V» ———, A~(r3) + A@(r3)

(A2)
(c)

FIG. 7. Notations of A„(r;)interactions. (a) A (r;),
(b) A,p(r;), (c) App (r') and (d) App (r').

neighbor interactions other than V&p and V~~, the
values of which are assumed to be zero.

For V9 in the case of the compression with

respect to a.[100] axis, three different kinds of
terms, V9, V9', and V9", are required as the

numerator in Eq. (2), which originate from the three

different kinds of spatial configurations of the VO
concerned as illustrated in Fig. 8. These terms are

given by the followmg expressions:

V9 —
g [A (r2 ) + V 2A+(r2 ) —

App (r2 )]

V9 ——
4 [A~(r2*) + 1.272968A@(rz )

'

20+
11 App ("3)+ App (p3)PP'II

e, = &X, iH iX, &,

ep = &X, ~H ~Xp)

Aq„(rr) = &Xq(H (X,)

(A3)

where H is the Hamiltonian. The four kinds of the

A»(r;) interactions are shown in Fig. 7, and r;, r2,
and r3 are the distances up to the first-, second-,
and third-nearest-neighbor atoms, respectively. The
expressions for Vt —V5'ln Eq. (A2) are identical to
those given by Pantelides and Harrison. We do
not have to mind the explicit values of e, and ep
here because V~ does not change its value for any
kinds of disorder on account of its nature as the
one-center interaction. Therefore, all of the values
for Az, (r; ) should be assigned from Eq. (A2) using
the values of V„'sin the second column of Table I.
The [ A„,(r 3) I is obtained by adding two third-

««e'„ep, and A„„(r;) are, respectively, the orbital
energies of the 3s (4s for Ge) AO, the 3p (4p for
Ge) AO, and the interaction matrix elements
between AO X& and X„.The centers of these 7's
are separated by r;. Explicitly, they become as fol-
lows:

—0.189776A ~(rz' )

—1.189776App~(r2 )]

V9
' ——, [A~(r2') + 1.54—25802~(r~")

+ 0.189776App (r2 )

—0.810224App (r3')]

(A4)

In the above expressions rq and r2' are 1.058r&
and 0.970r2, respectively, in the present case of the
distortion. The deviated values of A&„(r)in the

FIG. 8. Definitions of the interactions, V9, .V9 *, and

V9 under the compression with respect to a [100] axis

(indicated by arrows). Note that each VO lobe is not on

the bonding direction because of the distortion.
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neighborhood of r &, r2, and r3 are calculated using
the d scaling. This scaling for [ A&„(r)I is also

employed for the calculations of V„'sin the cases of
the bond-length changes.

Now V9 is given by

VQ + Vgttt + Vg+)fc

V9 —— , (A5)
3

by the consideration of the equal weight of V9,
V9, and V9

*'
in the present case. It is to be noted

that this weight in the average depends on specific
V„for each distorted system. A11 the other V„'sare
to be estimated in a similar fashion described here.
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